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The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network.
Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time
susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival
time E[T ] of a virus in the complete graph KN and the star graph K1,N−1. By using the survival time, instead
of the average fraction of infected nodes, we propose a new method to approximate the SIS epidemic threshold
τc that, at least for KN and K1,N−1, correctly scales with the number of nodes N and that is superior to the
epidemic threshold τ (1)

c = 1
λ1

of the N-intertwined mean-field approximation, where λ1 is the spectral radius of
the adjacency matrix of the graph G. Although this new approximation of the epidemic threshold offers a more
intuitive understanding of the SIS process, it remains difficult to compare outbreaks in different graph types. For
example, the survival in an arbitrary graph seems upper bounded by the complete graph and lower bounded by
the star graph as a function of the normalized effective infection rate τ

τ
(1)
c

. However, when the average fraction of

infected nodes is used as a basis for comparison, the virus will survive in the star graph longer than in any other
graph, making the star graph the worst-case graph instead of the complete graph. Finally, in non-Markovian SIS,
the distribution of the spreading attempts over the infectious period of a node influences the survival time, even
if the expected number of spreading attempts during an infectious period (the non-Markovian equivalent of the
effective infection rate) is kept constant. Both early and late infection attempts lead to shorter survival times.
Interestingly, just as in Markovian SIS, the survival times appear to be exponentially distributed, regardless of
the infection and curing time distributions.
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I. INTRODUCTION

Spreading phenomena on networks, such as social conta-
gion; the spread of messages, memes, and tweets on online
social networks; the propagation of failures in infrastructural
networks; as well as biological diseases, play a paramount
role and can impact our society seriously. Unfortunately, their
mechanisms are currently far from sufficiently understood.

Most studies on the classical epidemiological models
such as susceptible-infected-susceptible (SIS) and susceptible-
infected-recovered (SIR) [1,2], which may give a first-order
insight into the emergent behavior on networks, have pre-
dominantly focused on the determination of the number or
fraction of infected nodes after a long time and on the epidemic
threshold [3–5]. The epidemic threshold, the characterizer of
a phase transition, separates the regime where an infection
dies out quickly from the regime where the average number of
infected nodes is stable over a long time, called the metastable
or quasistationary state.

A first-order mean-field approximation of the epidemic
threshold τ (1)

c = 1
λ1(A) , where λ1(A) is the largest eigenvalue

of the adjacency matrix A, was first proposed by Wang
et al. [6] and rigorously proved by Van Mieghem et al. in
Refs. [5,7] and later appeared in the physics community [8].
Van Mieghem et al. [5] also showed that this mean-field
threshold lower bounds the “in reality observed” epidemic
threshold, τ (1)

c = 1
λ1(A) � τc. A more accurate lower bound

τc � τ (2)
c � τ (1)

c , where τ (2)
c is the second-order mean-field

threshold, was derived in Ref. [9]. Alternatively, in the work
of Pastor-Satorras et al. [3,10], a heterogeneous mean-field
approximation of the epidemic threshold was derived as
τHMF
c = E[D]/E[D2], where D is the degree of a randomly

chosen node in G. For power-law degree graphs, there

is evidence of multiple phase transitions [11] in the SIS
process.

Here we deepen our understanding by considering the time
aspect of an epidemic. Our main concern is the following
question: How long will the virus stay in this metastable state?
Below the epidemic threshold, the infectious process dies out
exponentially fast with time [12,13]. However, around and
above the epidemic threshold, relatively little is known about
the time dynamics of epidemics, even of the relatively simple,
Markovian SIS model on networks: What is the role of the
network topology on the average time that an epidemic lasts?
How does this time vary with the size of the network? What is
the effect of the initial number of infected nodes?

Before specifying our new contributions, we define the SIS
epidemic process on a graph G(N,L) with N nodes and L

links. In the SIS process, a node can be in one of two states:
infected or healthy. Infected nodes spread the infection to their
healthy neighbors with the infection rate β per link and they
cure with the rate δ back to healthy but susceptible nodes. In
the Markovian SIS processes, both the infection and curing
processes are independent Poisson processes, and the ratio
between the infection and curing rate is defined as the effective
infection rate τ = β

δ
, also called the spreading rate [2].

In Sec. II, based on the hitting time of the absorbing state in
the uniformized embedded Markov chain, we derive an exact
solution for the average survival time in the complete graph
(Sec. II A) and the star graph (Sec. II B). For the complete
graph, we show how our results lead to new interpretations of
previous work. In addition, we propose a new, precise method
to approximate the epidemic threshold (Sec. II C), based on
the formalism of the Markovian hitting time and evaluate the
accuracy of the method on the known, exact results of the
epidemic threshold for the complete graph and the star [14].
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These analytic results provide the major insight for simulation
results on other types of graphs, presented in Sec. III.

Finally, in Sec. IV, we extend the Markovian approach
towards more real-world phenomena, that are likely not
Markovian [15,16]. We show that in non-Markovian spreading,
a heavy-tailed distribution for the infection rate leads to
shorter survival times but the survival time distribution still
has an exponential tail. Conversely, for rate distributions with a
steeper tail, the expected survival time increases. As a function
of the shape parameter α, which controls how quickly the
Weibull distribution (8) decays, the average survival time peaks
just above 1, that is, just after the exponential case.

II. SURVIVAL TIME VIA HITTING TIME

The classical SIS process on a graph is completely de-
scribed by a 2N state continuous-time Markov chain [5,17],
where N is the number of nodes in the network. Each state
in the SIS Markov chain represents a particular configuration
of infected nodes. Since a node is either infected or healthy,
each state can be expressed as a binary string of length N

in which bit i corresponds to the state of node i, leading to
a total of 2N states. Only state transitions that differ in one
bit are possible. The state in which the virus has died out,
or the string contains only zeros, is an absorbing state in the
Markov chain. The average survival time of the SIS process
can be computed via the average hitting time of the absorbing
state. Computing the hitting time for a Markov chain with
such a large state space is only feasible for very small graphs.
For graphs where the infectious state shows some form of
symmetry, however, the number of states can be dramatically
reduced. Unfortunately, symmetry in the graph structure or
node degree alone is not enough to reduce the size of the
state space; symmetry in the infectious state of the network
is required. In the complete graph KN , for example, every
infected node links to all healthy nodes. As a result, every state
with n infected nodes has transitions to all states with n − 1, as
well as to all states with n + 1, infected nodes, leading to a birth
and death process with N states [12]. In this section, we exploit
the symmetry in the infectious state of the complete graph and
the star graph, which possess a simplified Markov chain with
O(N ) states, to compute the hitting time of the absorbing
state. Clearly, the hitting time of the absorbing state depends
on the starting state. The worst-case average survival time
occurs when initially all nodes are infected. This paper mainly
focuses on the worst-case survival time. Using the hitting time,
we derive an alternative expression for the epidemic threshold,
which we compare to the exact results [14] on the complete
and star graph.

We use an embedded Markov chain to transform the
continuous-time Markov chain to a discrete-time one. The
embedded Markov chain of a continuous-time process contains
the transition probabilities at the time of a transition, but no
longer contains the precise timing of the events (see Ref. [12]).
The average hitting time of the absorbing state in the embedded
chain, starting from the all-infected state, gives the average
number of transitions between the initial state and reaching
the absorbing state. However, the time between transitions is
unknown. By introducing self-loops in the embedded Markov
chain, the average transition rate from state i to j (i �= j ) in the

embedded chain is made identical to the transition rate in the
original continuous-time Markov chain. The transition rate,
including self-loops, is uniform, which enables us to relate the
number of transitions to time.

The transition matrix of the uniformized embedded Markov
chain in units of φ of a continuous-time Markov chain is
given by S(φ) = J + Q

φ
, where Q = [qij ] is the infinitesimal

generator of the continuous-time Markov chain [12] and
J is the identity matrix. The off-diagonal elements qij of
the infinitesimal generator contain the transition rates from
state i to state j , while the diagonal elements are given by
−∑

j=1,j �=i qij . Transitions in the uniformized Markov chain
all occur with the same rate φ � maxi qi , where qi is the
total outgoing rate of state i: qi = ∑

j=1,j �=i qij , with qij the
transition rate from state i to state j .

The average hitting time of the absorbing state in a discrete
Markov chain is given by the minimal non-negative solution
of the following system [12,18]:

w1 = 0
(1)

wi = 1 +
∑

sij (φ)wj for i �= 1,

where wi is the average hitting time of the absorbing state
starting from state i and sij is the transition probability from
state i to j in the uniformized embedded Markov chain.

The system of equations (1) can be written as Kw = b,
where K = J − S(φ). The vector b is defined as b = u − e1,
where u is the all-one vector and e1 is the first standard basis
vector. The minimal non-negative solution of system (1) for wi

will give the average hitting time E[T ] of the absorbing state
when starting in state i in units of φ−1, whereas multiplying K

by φ will give the average hitting time in units of 1. Therefore,
we solve the system

φKw = b, (2)

where φK simplifies to φK = φ(J − J + Q

φ
) = −Q.

A. The complete graph

The Markov transition graph of the SIS Markov chain on
the complete graph KN is shown in Fig. 16. Solving system (2)
for the complete graph (see Appendixes A and C) yields the
average survival time

E[T ] =
N∑

j=1

xj

j
, (3)

where xj obeys the recursive relation

xj+1 = xj (N − j )τ + 1, (4)

with initial conditions x1 = 1, xj = 0 for j < 0.
The result (3) is connected in a surprising way to earlier re-

sults. Given that a continuous-time Markov process, containing
an absorbing state, starts from the quasistationary distribution,
Artalejo [19] has demonstrated that its survival time T

is exponentially distributed as Pr[T � t] = 1 − exp(−tζ ),
where ζ is the second largest eigenvalue of the infinitesimal
generator Q of the Markov chain. Fill [20] and Miclo [21]
show that, for an irreducible, continuous-time birth-and-death
process with N states (such as the SIS process on the complete
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FIG. 1. (Color online) Decay rate in a complete graph of 64 nodes (a) and histograms of the survival time (b). (a) The decay rate |ζ | as a
function of the effective infection rate τ in a complete graph of 64 nodes determined in four different ways: average survival time (squares),
fitting the histogram of the survival time (triangles), ζ (green line), and Eq. (3) (blue line). (b) Histograms of the survival time in units of
δ = 1 in a complete graph of 64 nodes for effective infection rate τ ranging from 0.022 to 0.028. The epidemic threshold in KN is close to

1
N−1 = 0.016.

graph KN ), the hitting time of the absorbing state is distributed
as the sum of N independent exponential random variables
with parameters equal to the eigenvalues of Q. Since the
spectrum of Q contains information about the survival time
of the SIS process, The author of Ref. [22] recently used a
Lagrange series to derive the accurate expression, for large
N , of the decay rate ζ < 0 of the survival time for effective
infection rates τ > τc in KN . In particular, the average survival
time E[T ] of the SIS process in KN is shown [22] to be
approximately equal to |ζ−1|, with

−ζ = δ

F (τ )
+ O

(
N2 log N

(τN )2N−1

)
, (5)

where

F (τ ) =
N∑

j=1

j−1∑
r=0

(N − j + r)!

j (N − j )!
τ r . (6)

Remarkably, as proved in Appendix C, for a Markovian SIS
epidemic process on the complete graph KN , the average
survival time E[T ] is exactly equal to F (τ ) for all effective
infection rates τ , and thus not only for τ > τc.

Equation (6) appears in the first term in the Lagrange
series (5) of the second largest eigenvalue ζ of the infinitesimal
generator Q of the continuous-time SIS Markov process on KN

(discussed further in Sec. II A) and is expected to be close to
ζ . In fact, for an effective infection rate τ > τc, the order term
in (5) tends exponentially fast in N to zero!

To show the difference between the various ways of
determining the survival time of the SIS process in KN , we
determine the decay rate of the survival time in a complete
graph of 64 nodes in four different ways: (i, blue line) the
second largest eigenvalue ζ of the infinitesimal generator Q,
(ii, triangular markers) an exponential fit to the histogram of
simulated survival times, (iii, square markers) the reciprocal
of the average of the simulated survival times, (iv, green line)
computed from (3) that is numerically superior to the double

sum in (6) for large N . All simulations start in the all-infected
state and the time till extinction is measured.

Figure 1(a) shows that the decay rate found by the four
different methods all converge to the same value as the effective
infection rate τ increases. For relatively small values of τ ,
however, the four methods split into two groups. The second-
largest eigenvalue ζ and the fit of the survival times give the
same decay rate, and the average survival time and (3) give
the same decay rate, which confirm two conclusions. First,
the second-largest eigenvalue ζ is indeed the most dominant
eigenvalue and a good approximation for the tail of the survival
time distribution for the investigated range of τ , in agreement
with Artalejo’s result [19]. Figure 1(a) shows the histograms
and fitted exponential functions for four values of the effective
infection rate. These results confirm that the survival time of an
SIS virus in the complete graph is exponentially distributed and
that the decay rate in the complete graph is indeed given by (5)
and (6). For large τ , much of the weight of the distribution
is in the tail so the average of the distribution of T is well
approximated by ζ−1, i.e., E[T ] ≈ |ζ−1|. A more detailed
analysis of the survival time distribution, including the start of
the distribution, is presented in Sec. IIA1. Since the average
survival time starting from the quasistationary or metastable
state is given by Artalejo [19] as E[T ] = |ζ |−1, we expect
that for small values of τ starting from the all-infected state
and from the quasistationary state will lead to increasingly
different average survival times.

Second, employing the exact result of the average hitting
time of the absorbing state, Appendix C proves E[T ] = F (τ )
and, hence, that F (τ ) in (6) is the exact average survival time
in the complete graph KN . When the order term in (5) becomes
significant in magnitude, the distribution of the survival time is
no longer well described by the tail alone, which corresponds
to the value of τ in Fig. 1(a) where the four different approaches
diverge.

Figure 2 shows the average survival time of the SIS
process in a complete graph on 100 nodes as a function of
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FIG. 2. (Color online) Average survival time in a complete graph
of 100 nodes as a function of the normalized effective infection rate,
computed via the hitting time, simulations and approximated by |ζ |−1.

the normalized effective infection rate τ/τ (1)
c computed via a

recursion for the hitting time Eq. (C6) and by simulations. The
N-intertwined mean-field approximation (NIMFA) epidemic
threshold τ (1)

c is defined as the reciprocal of the largest
eigenvalue λ1 of the adjacency matrix and is a lower bound
of the real epidemic threshold [23,24], i.e., τ (1)

c � τc. The
simulations are in perfect agreement with the average hitting
time. The approximation E[T ] � |ζ |−1 is also shown in Fig. 2
and is very accurate for large effective infection rates.

1. Survival time distribution around the epidemic threshold

Besides the expectation E[T ], the uniformized embedded
Markov chain enables us to derive the complete probability
density function (pdf) of the survival time T , measured
in units of 1 (as mentioned above). Let P k be the k-step
transition probability matrix of the uniformized embedded
Markov chain [12] describing the SIS process on the complete
graph, and then (P k)N+1,1 is the probability that the virus
has died out after k steps, given that initially all nodes are
infected. The probability that the virus has not died out yet
after k steps is then given by Pr[T � k] = 1 − (P k)N+1,1 and
Pr[T = k] = Pr[T � k] − Pr[T � k + 1]. Figure 3 shows the
average survival time distribution in a complete graph with 100
nodes for values of the effective infection rate τ at different
fractions of the NIMFA epidemic threshold ranging from 0.8
to 1.2. The curve for τ = τ (1)

c is indicated by the dashed
black line. Figure 3 illustrates that the curves, both above
and below the epidemic threshold, are similarly shaped. For
values of the effective infection rate τ above τ (1)

c , the peak of
the distribution reduces and moves slightly towards the right,
while the exponential tail becomes less steep. The exponential
tails of the distributions are drawn on lin-log scale in the inset
of Fig. 3. The inset shows that nothing special happens around
the threshold in terms of the survival time distribution of the
SIS process. The slopes of the exponential tail become less
and less steep for increasing infection rates, but no transition
is observed around the epidemic threshold.

When the effective infection rate τ is reduced to zero,
only curing can occur. The probability density function of the
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FIG. 3. (Color online) Survival time distribution of the SIS pro-
cess in a complete graph of 100 nodes for different values of f = τ

τ
(1)
c

ranging from 0.8 to 1.2. The curve for τ = τ (1)
c is indicated by the

dashed black line. The inset shows the same data on a lin-log scale
to emphasize the exponential tale of all distributions both above and
below the epidemic threshold.

survival time T of the SIS process for τ = 0, denoted by X =
Tτ=0, is given by fX(x) = δI (1 − e−δx)I−1e−δx , where I is the
number of initially infected nodes, which is the distribution of
the maximum [12] of I independent and identically distributed.
exponentially distributed random variables, all with mean 1

δ
:

fX(x) = d

dx
Pr

[
max

1�m�I
Xm � x

] = d

dx

I∏
m=1

Pr[Xm � x]

= d

dx
(1 − e−δx)I = δI (1 − e−δx)I−1e−δx, (7)

which may explain the bell shape in Fig. 3.
Even if the changes in the survival time distribution are

subtle around the epidemic threshold, the influence on the
average survival time displays “transition behavior.” Figure 4
shows the survival time of the SIS process in the complete
graph around the epidemic threshold for various network
sizes N . The threshold behavior, characterized by the bending
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FIG. 4. (Color online) The average survival time of the SIS
process in the complete graph as a function of the normalized effective
infection rate τ

τc
for various network sizes.
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at τ

τ
(1)
c

slightly above 1 and followed by a steep increase,
changes with the network size N . Even for a network
of 1600 nodes, the average survival time increases faster
than exponential after the threshold, which agrees with the
asymptotic approximation [22] of

F (τ ) ∼ f
√

2π exp{N [log(f ) + f −1 − 1]}
δ(f − 1)2

√
N

,

with f = τ/τc. Figure 4 also shows the NIMFA average
fraction of infected nodes in KN

y∞ = 1 − 1

(N − 1)τ
= 1 − 1

τ/τ
(1)
c

for τ > τ (1)
c = 1

N−1 on the right-hand side axis for reference.
With increasing network size, even small fractions y∞ of
infected nodes (for τ just above τ (1)

c ) can last in the network for
very long times. A comparison with the NIMFA solution also
shows that the transition point moves closer towards τ (1)

c with
increasing N , very similar to the peak in E[T ]I=1/E[T ]I=N

in Fig. 7(a).

B. The star graph

The key to reducing the 2N state space in the case of a
star graph lies in realizing that the virus can only spread when
the center node is infected. Moreover, all states in which the
center node is either infected or healthy are identical, allowing
us to reduce the number of states to 2N , as illustrated in
Fig. 17. The average hitting time equations (2) can also be
solved for the star graph, as shown in Appendix B. Figure 5
shows the average survival time as a function of the network
size for different values of the effective infection rate τ �
τ (1)
c = 1/λ1 = 1/

√
N − 1. The average survival time in Fig. 5

increases logarithmically in N for relatively small effective
infection rates. The apparent stabilization of E[T ] is an artifact
caused by the fact that the NIMFA epidemic threshold τ (1)

c

is wrong [14] by a factor τc

τ
(1)
c

=
√

1
2 log(N ) + 3

2 log log(N ).

Hence, for sufficiently large N , the value mτ (1) for any integer
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FIG. 5. (Color online) Average survival time on a star graph as a
function of the size of the graph for various fractions of the NIMFA
epidemic threshold τ (1)

c .
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FIG. 6. (Color online) Average survival time of the SIS process
starting from a single infected node in a star graph as a function of the
normalized effective infection rate for various network sizes. For each
size two curves are shown: a solid one indicating the process started
at a center node and a dashed one indicating the process started at a
leaf node.

m drops below the epidemic threshold τc, where E[T ] =
O(log N ). In Sec. II C an approximation to the epidemic
threshold in KN and K1,N is determined via the survival time,
and the same correction factor for the NIMFA threshold is
found.

Figure 6 shows the expected survival time starting from
a single infected node in the star graph as a function of the
normalized effective infection rate τ/τ (1)

c . Obviously, there is
a difference in the star graph between starting an epidemic
at the center node or at one of the leaf nodes. The difference
in average survival time between these two starting positions
decreases slowly with increasing effective infection rate τ .
Hence, Fig. 6 illustrates that if a message or virus is desired to
stay in the network for a long time, injecting the hub or center of
the star is the best strategy. Although intuitive, our theoretical
results allow us to quantify the difference in average survival
time between choosing a leaf or hub node. Moreover, since
most real-world networks can be approximately considered as
a set of connected large stars, we expect that injecting the hub
node will also cause the virus or message to remain longer in
the network on average.

In contrast to the complete graph, the infection rate in the
star graph must be a few times larger than λ−1

1 to stay in the
network for a long time. In the next section, we determine,
via the hitting time, precisely how much larger than λ−1

1 the
epidemic threshold is. After passing the epidemic threshold,
the increase in survival time is not as explosive as in the
complete graph.

C. Epidemic threshold via survival time

Although E[T ] = F (τ ), computed from (6), gives the
average hitting time of the absorbing state in KN starting from
the all-infected state, the hitting time equations (2) can be
solved numerically for any initial state. Using the numerical
solution of (2), we can compare the survival time of a virus
starting with a single infected node to the survival time, starting
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FIG. 7. (Color online) The ratio between the average survival time of the SIS process in the complete graph starting with one node infected
and with all nodes infected E[T ]I=N

E[T ]I=1
as a function of τ/τ (1)

c for different network sizes (a). The ratio of τ (ST)
c /τ (1)

c as a function of the network
size (b).

with all nodes infected. Figure 7(a) shows the ratio of the
average survival time starting with a single infected node and
starting in the all-infected state, r = E[T ]I=N/E[T ]I=1 in KN

as a function of the normalized effective infection rate τ/τ (1)
c

for various network sizes N . The maximum ratio depends
on the network size N and is generally largest just after
the NIMFA threshold τ (1)

c = 1
N−1 and slowly seems to move

towards τ (1)
c with increasing N .

The peak or maximum ratio r that occurs at τ = τ (ST)
c (ST

denotes survival time) can, just as the epidemic threshold
τc, be interpreted as a crossover point between a regime
where the curing process dominates the survival time to a
regime where the infection process dominates. Left of the peak
(τ < τ (ST)

c ), the survival time is dominated by the combined
curing processes of the nodes; with increasing infection
rate τ , the ratio r increases: It takes longer to cure for N

nodes than just one. Right of the peak (τ > τ (ST)
c ), however,

spreading processes dominate the survival time. Above the
epidemic threshold (τ > τc), the survival time T consists of
two contributions: the convergence time TI→M from the initial
state with I infected nodes to the metastable state M and the
remaining time TM→A from reaching the metastable state M

towards absorption A, where the virus is extinct. Hence, the
ratio r = E[T ]I=N/E[T ]I=1 can be written as

r = E[TI=N→M ] + E[TM→A]

E[TI=1→M ] + E[TM→A]
= 1 + E[TI=N→M ]

E[TM→A]

1 + E[TI=1→M ]
E[TM→A]

.

The larger τ > τc, the closer the initial state I = N lies to
the number of infected nodes in the metastable state M and the
smaller the time to reach M from I = N . The converse holds
for the initial state I = 1. Hence, r rapidly becomes smaller.
For τ > τc, the spreading times E[TI=1→M ] and E[TI=N→M ]
are far smaller than the average duration of the metastable
state E[TM→A]. With increasing effective infection rate τ , the
spreading time decreases, while E[TM→A] increases more than
exponentially, forcing r quickly to 1.

We show that the peak in r = E[T ]I=N/E[T ]I=1 at τ =
τ (ST)
c provides an accurate approximation of the epidemic

threshold, thus τc ≈ τ (ST)
c for large N . Time-based properties

of the SIS process, instead of the fraction of infected nodes,
to identify the epidemic threshold were recently discussed by
Boguna et al. [25]. The ratio τ (ST)

c /τ (1)
c as a function of the

network size N is plotted in Fig. 7(b). For large N in KN , both
the NIMFA epidemic threshold τ (1)

c and the threshold τ (ST)
c

approximated from the survival time are the same. For very
small networks, however, the NIMFA threshold is larger than
the “survival time threshold” τ (ST)

c , which may seem surprising,
since the NIMFA threshold is proved to be a lower bound for
the exact epidemic threshold [24]. For small network sizes N ,
the epidemic threshold is not precisely defined, because there is
a relatively broad transition region in τ . Only in large networks
do sharper transitions appear and, ultimately, a zero-one
sharp phase transition that precisely determines the epidemic
threshold. Similarly, our newly defined approximation of the
epidemic threshold is increasingly accurate and close to the
“real” threshold for large graphs.

Similarly to the complete graph, τ (ST)
c can also be deter-

mined numerically for the star graph. In Fig. 8, the ratio
τ (ST)
c /τ (1)

c is compared to the ratio τc/τ
(1)
c as deduced in

Ref. [14]: For large N ,

τc/τ
(1)
c ∼

√
1/2 log N + 3/2 log log N

for the star graph and

τc/τ
(1)
c ∼ 1 + c√

N
with c >

10

3

for the complete graph. Figure 8 illustrates the good agreement,
suggesting that τc ≈ τ (ST)

c for large N .

III. THE AVERAGE SURVIVAL TIME IN
OTHER GRAPH TYPES

In this section, we use simulations and numerical methods
to investigate the survival time in general graphs. The simu-
lation results are obtained as follows. Starting from the initial
state with all nodes infected, we simulate the SIS process and
sample the number of infected nodes. The sample points are
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FIG. 8. (Color online) The ratio of τ (ST)
c /τ (1)

c compared to the scaling in Ref. [14] as a function of the network size for the complete graph
(a) and the star graph (b).

placed at times ( 3
2 )

k
for −20 � k � 32 ranging from 3 × 10−4

to 4.5 × 105. Samples are taken regardless of the viral state
of the network. If the virus dies out before the end of the
simulation, then all subsequent samples for that particular run
will be 0. The results shown in this section are averaged over
10 000 runs.

Figure 9 shows that the average survival time in the Erdős-
Rényi random graph and the square lattice is exponentially
distributed, in agreement with Markov theory. After the initial
quick drop in the number of infected nodes, the decay of the
number of infected nodes are straight lines iin the lin-log plot,
indicating the exponential decay. The insets in Fig. 9 show
the expected number of infected nodes as a function of time
on a logarithmic time axis. The compression of large time
values makes the plateaulike metastable state visible. Both
the Erdős-Rényi graph and the square lattice show similar
behavior. Indeed, all graph types are expected to show similar

metastable state behavior; the only two differences between
different graph types are the number of infected nodes in the
metastable state as a function of the effective infection rate τ

and the duration of the metastable state: the survival time.
We first show in Fig. 10(a) the difference in the expected

survival time for a fixed fraction of infected nodes in the
metastable state y∞ for various different graphs: the ring
graph, the path graph, the square lattice (grid), the complete
graph, the connected Erdős-Rényi random graph with link
probability 2 log(N )/N , a grown preferential attachment graph
with m = 4 new links per node, and a star graph. All graphs
have 64 nodes and the effective infection rate τ is chosen
in such a way that the average fraction of infected nodes
in the metastable state is 0.45 and the same for all graphs.
Figure 10(a) shows that the ring and path graphs are the two
graph types that can sustain an outbreak the shortest, whereas
the star graph can sustain an outbreak the longest. A virus
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FIG. 9. (Color online) The expected number of infected nodes as a function of time for two graphs of 64 nodes for various values of the
infection rate β. The curing rate δ = 1 for all simulations. The insets in the plots show the expected number of infected nodes with a logarithmic
time axis highlighting the plateaulike metastable state of the SIS process. (a) An Erdős-Rényi graph of 64 nodes for β ranging from 0.13 to
0.23. (b) A square lattice of 64 nodes for β ranging from 0.55 to 0.67.
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FIG. 10. (Color online) Expected survival time in general graphs. (a) The expected number of infected nodes in various graph types for an
effective infection rate τ that is chosen to have 45% nodes infected in the metastable state. (b) The exponents of the tail of the survival time
distribution for various graphs of size N = 64 as a function of τ/τ (1)

c where τ (1)
c = λ−1

1 is the NIMFA epidemic threshold.

survives longest in the star graph because, to achieve 45%
infected nodes in the metastable state, the effective infection
rate τ is the smallest for the star graph among all above
compared graphs. All simulations start with all nodes infected,
so the number of infected nodes first drops to the level of the
metastable state. Figure 10(a) illustrates that the longer the
process stays in the metastable state, the quicker it reaches
the metastable state from the all-infected state. However, the
differences are not nearly as large as the difference in the
survival time for most graphs, with the exception of the ring
and path graph.

A. Extreme graphs: Complete and star graphs

Figure 10(b) shows the decay rate 1/E[T ] for seven
different graph types as a function of the normalized effective
infection rate τ/τ (1)

c > 1. Clearly, the complete graph has the
steepest decline in decay rate. In the star graph, the SIS process
needs a much higher normalized effective infection rate to
survive as long as in the complete graph. The path and ring
graphs follow the star graph for smaller values of the effective
infection rate but then branch off for larger values of the
infection rate. The point where the path and ring graph branch
off from the star graph is likely the location of the epidemic
threshold in these two graphs. In Sec. III B, we will show
that the epidemic threshold for the ring graph of this size lies
around 2.5–2.8. Above the epidemic threshold, the ring and
path graphs can sustain an outbreak longer than the star graph.
Figure 10(b) also suggests that, as the star and the complete
graph are two extreme graphs, the average survival time E[T ]
as a function of the normalized effective infection rate τ/τ (1)

c

in all other graphs is expected to lie between these two graphs.
In the extreme cases of infection rates either zero or infinity,
every graph type shows the same behavior, but in between
these two extremes the observed behavior in Fig. 10(b) holds.
Combining the information from Figs. 10(a) and 10(b) leads
to the conclusion that the star graph is the graph where a virus
stays active the longest when the metastable state fraction
of infected nodes is kept at 45% but the shortest when the

normalized effective infection rate τ/τ (1)
c is kept constant. In

part, the latter is caused by the fact that the NIMFA threshold
for the star graph is not very accurate.

B. The ring graph

Mountford et al. [26] have shown that the survival time of
a contact process on a tree with bounded degree is exponential
in the number of nodes, which implies that the survival time
on a path graph is exponential in N . As the ring graph is a
path graph with one extra link, the survival time for a given
effective spreading rate τ is expected to be at least equal to
that of the path graph.

The method, explained in Sec. II C, to approximate the
epidemic threshold from the survival time, is applied in Fig. 11
to the ring graph of N = 500 and N = 1000 nodes. For
N = 500, the “survival time” epidemic threshold τ (ST)

c lies

10

9

8

7

]T[E
N=I

]T[E\
1=I

3.02.52.01.51.00.50.0
τ (1)/τc

 N=500
 N=1000

c

FIG. 11. (Color online) The ratio between the average survival
time of the SIS process in the ring graph starting with one node
infected and with all nodes infected E[T ]I=N

E[T ]I=1
as a function of τ/τ (1)

c

for different network sizes.
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at approximately 2.8τ (1)
c , while, for N = 1000, τ (ST)

c ≈ 3τ (1)
c ,

although the NIMFA epidemic threshold τ (1)
c = 1

λ1
= 0.5 is

constant for any ring. We infer from Fig. 11 that, for a ring,
τc = fring(N)

λ1
, where fring(N ) is a slowly increasing function of

N . Unfortunately, the determination of fring(N ) via τ (ST)
c for

larger graphs is computationally very expensive.

IV. NON-MARKOVIAN SPREADING

The exact results for the complete graph KN and the
star graph K1,N that underpin the results in Sec. II are
only attainable because the infection and spreading processes
are independent Poisson processes. The analysis of non-
Markovian epidemic spreading is complicated by the absence
of the memoryless property of the exponential distribution.
Yet it has received attention in the literature [27–30]. In
this section, we show the influence on the survival time of
a non-Poissonian infection process. The NIMFA infection
probability in the metastable state is derived in Ref. [31],

E[M](1 − vi∞)
N∑

j=1

aij vj∞ = vi∞,

where E[M] is the expected number of infection attempts
during an infectious period of a node, aij are the components of
the adjacency matrix A of the graph, and vi∞ is the probability
that node i is infected in the metastable state. In the case of
exponentially distributed interarrival times between infection
and spreading events, E[M] is given by τ = β

δ
, while the

general expression for E[M] is deduced in Ref. [31]. The
NIMFA steady-state infection probability vi∞ is, however, no
longer an upper bound, as shown in Ref. [24] and further
illustrated in Ref. [32]. The average survival time E[T ] for
non-Markovian SIS processes is deduced by simulations.

In order to investigate the effect of heavy-tailed distribu-
tions for the infection times TI on the survival time, we replace
the exponential distribution with a Weibull distribution given
by

fTI
(x) = α

b

(
x

b

)α−1

e−(x/b)α , (8)

where α is generally called the shape parameter and b the
scale parameter. For α = 1, the Weibull distribution reduces
to the exponential distribution. For α < 1, the distribution is
heavy-tailed and reduces to a Zipf distribution for α = 0. For
large values of α, the tail falls off exponentially and for α → ∞
the Weibull distribution reduces to a Dirac function. The shape
of the Weibull distribution as a function of α is shown in the
inset of Fig. 13(a).

The difference between the Markovian and non-Markovian
SIS process is most visible in the distribution of the infection
attempts over an infectious period of a node. Even when the
average number of infection attempts during an infectious
period E[M] is kept constant, the steady-state fraction of
infected nodes and the survival time of the process change
because of the timing of infection attempts relative to the
curing time of a node. In this section, we only change the
distribution of the infection events and keep the curing time of
a node exponentially distributed.
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FIG. 12. (Color online) Distribution of the infection attempts
over a link normalized to the infectious period of the source node.

Figure 12 shows the simulated time distribution of infection
attempts over a single link, normalized to the infectious period
of the source node. Figure 12 is obtained as follows: We
store the occurrence time of each infection attempt, relative
to the beginning of the infectious period of the node, and
normalize that occurence time to the duration of the infectious
period of the node. For exponential interarrival times, given
that one event has happened during an interval, its occurrence
time is uniformly distributed over that time interval [12]. For
other distributions, however, the occurrence of events is not
uniformly distributed over an interval. Indeed, in Fig. 12, the
exponential case (α = 1) is uniform, as expected, but for α < 1
events tend to be early and for α > 1 late. We believe that the
deviation from uniform infection attempts over an infectious
period makes the non-Markovian SIS different in its behavior
from the classical, Markovian SIS epidemic.

The SIS process only stays long in a network if nodes
become reinfected after they cure. Therefore, the timing of the
infection attempts greatly influences the process. When the
virus spreads from a source node early in its infectious period,
it is less likely that the newly infected neighbor will reinfect
the source node after it cures, because the newly infected
neighbor is also likely to spread early and the infectious state
of the source node has most likely not changed yet. On the
other hand, if the source node spreads the infection towards
the end of its infectious period, it is likely to be cured and
susceptible again if the newly infected neighbor spreads the
infection back.

Figure 13(a) shows the survival time distribution for α

ranging from 0.5 to 1.5 and a constant value for the expected
number of infection attempts during an infectious period
E[M] = 0.014 starting from the all-infected state.

For small values of the shape parameter α, the survival time
distribution falls off much quicker than for the exponential case
(shown in black), due to the early infection attempts, explained
in Fig. 12. The virus does not succeed in reinfecting nodes that
are cured and, thus, dies out quicker. For larger values of α,
the opposite happens. The survival time distribution falls off
slower than in the exponential case.
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FIG. 13. (Color online) Survival time as a function of the shape parameter α in the complete graph (a) and the star graph (b). (a) Distribution
of the survival time for Weibull distributed interarrival times for various values of the shape parameter α = {0.5,1.3} and E[M] = 0.014 in the
complete graph of 100 nodes. The exponential case (α = 1) is indicated in black. Inset: The Weibull distribution. (b) Survival time distribution
in a star graph of 100 nodes for different values of the shape parameter α = {0.5,1.4}. Scale parameter b is chosen such that on average 25%
of the nodes are infected in the metastable state. Inset: The rates of the exponential tails as a function of α.

The same influence of the shape parameter α on the average
survival time, observed in the complete graph, is also visible in
the star graph, as shown in Fig. 13(b), where the survival time
distribution for various values of α is drawn in a star graph of
100 nodes. The inset shows the decay rate, the exponent of the
tails, as a function of the shape parameter α. In this case, we
have kept the steady-state fraction of infected nodes constant
at 25% by changing the scale parameter b in (8) appropriately.

The effect of very small values for the shape parameter α

is shown in Fig. 14(a), where the survival time distribution is
shown for a complete graph of 100 nodes for various values of
α. The black curve indicates the survival time of the virus,
when the infection rate is zero, in which case nodes can
only cure. Since all nodes are infected in the initial state, the

black curve shows the the probability distribution (7) of the
maximum of 100 exponential independent and identically dis-
tributed random variables with rate δ. Figure 14(a) illustrates
that, for small values of the shape parameter α, the distribution
of the survival time resembles that of the no spreading case:
All spreading attempts occur shortly after infection, as shown
in Fig. 12, after which all nodes cure again as if there is no
infection taking place.

The effect of relatively large values for the shape parameter
α, on the other hand, is shown in Fig. 14(b) for three different
graph types: the complete graph, the star graph, and the square
lattice. For small values of α, the expected survival time of
the virus is short, as mentioned above. As the shape parameter
α increases, so does the expected survival time. However, the
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FIG. 14. (Color online) Survival time as a function of shape parameter α. (a) Survival time distribution in the complete graph of 100 nodes
for small values of the shape parameter α. The scale parameter b is chosen such that E[M] is constant. (b) Average survival time as a function
of the shape parameter α in the complete graph, the star graph, and the square lattice, all with N = 100 nodes. The scale parameter b is chosen
such that on average 25% of the nodes are infected in the metastable state.
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FIG. 15. (Color online) (a) The average number of infected nodes in a square grid of 100 nodes for various values of the shape parameter α

and a scale parameter b chosen in such a way that the average is constant. The virus is prevented from dying out. (b) Survival time distribution
of the SIS process with uniformly distributed cure and infection times for different values of the width of the infection rate. The mean of
the infection rate is scaled to have on average 25% of the nodes infected in the metastable state. The exponential case is shown in black for
reference.

expected survival time peaks around α = 1.1 for the star graph
and complete graph and then starts to decrease. This might be
caused by a form of synchronization in the infection times.
The larger the shape parameter α becomes, the narrower the
infection time distribution becomes. As a result, infections
occur in an increasingly small interval after the source node
becomes infected. When the infectious periods of the nodes
are aligned in time, the chance that the virus dies out increases.
Dying out is more likely in the star and complete graphs
because of the very small average hop count. In the case of the
square grid, the shortening of the survival time with increasing
α is not observed; the expected survival time does not peak
but stabilizes. Figure 14(b) illustrates that the peak is much
sharper in the star graph than in the complete graph.

The influence of a small shape parameter α as described
above on the distribution of the number of infected nodes
in the metastable state is shown in Fig. 15(a), which shows
the distribution of the number of infected nodes for various
values of the shape parameter α. To simulate the metastable
distribution of infected nodes, we simulate a modified SIS
(MSIS) process [14] where the absorbing state is removed
and take the steady state of the MSIS process to be the
metastable state of the original SIS process. For smaller values
of the shape parameter α, the distribution peaks around a
single infected node and is relatively flat after that peak.
States with a large number of infected nodes are not unlikely,
indicating that the virus quickly spreads as a result of the nodes
spreading early during the infectious period and then dies out
again.

To show the effect of both late infection times and synchro-
nization, we use uniformly distributed cure and infection times.
The width and mean of the cure times is kept constant, but the
width of the infection time distribution is varied while the
mean is scaled to keep the average fraction of infected nodes
y∞ constant. Because both the curing and infection times are
uniformly distributed, the interval in which infection attempts
can fall lies between the start of the infection distribution and

the end of the curing distribution. The values used in Fig. 15(b)
imply an interval for infection attempts between [1.95,2.1] and
[2.09,2.1]. Figure 15(b) shows the survival time distribution in
the complete graph of 100 nodes for various values of the width
of uniform infection time distributions. The average survival
time distribution also has an exponential tail when both the
infection and the curing times are nonexponential. Figure 15(b)
shows that the late infection times lead to longer survival times
than for exponential infection times (shown in black) but that
for the narrower intervals the expected survival time is shorter.
For the narrowest width of the infection time distribution, any
infection attempt lies in an interval only 0.01 time units wide,
which leads to synchronized behavior. Although late infections
lead to longer expected survival times, synchronized spreading
leads to shorter infection times.

V. CONCLUSION

In this paper, the survival time T of an SIS process on
a network has been investigated. We have derived exact
equations for the average survival time in the complete graph
KN and the star graph K1,N , using the hitting time of a
uniformized embedded Markov chain. For the SIS process
on the complete graph KN , we have proved that the average
survival time E[T ] = F (τ ), which is the first term in the
Lagrange series (5) of the second largest eigenvalue ζ of the
infinitesimal generator Q of the continuous-time Markov SIS
process. Numerically efficient expressions are deduced such
as the recursive (3).

Relying on the hitting time formalism in Markov theory, a
new method to accurately approximate the epidemic threshold
from the survival time is presented: The epidemic threshold
occurs at the effective infection rate τ (ST)

c that corresponds to
the peak in E[T ]I=N

E[T ]I=1
.

Simulations have shown that graphs other than KN and
K1,N also exhibit exponentially distributed survival times.
When the steady-state fraction y∞ of infected nodes is kept
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FIG. 16. (Color online) State diagram and transitions of the SIS
process in the complete graph. The state numbers are indicated inside
the states, whereas the number of infected nodes in each state is
indicated in blue next to the state. The transition rates to states
with more infected nodes (towards the right) depend on the number
of healthy and infected nodes and the infection rate β, while the
transition rates to states with fewer infected nodes (towards the left)
depend on the number of infected nodes and the curing rate δ.

constant (e.g., at 45%), the star graph sustains the infection
the longest, whereas the ring graph sustains the infection the
shortest. As a function of the normalized effective infection
rate τ/τ (1)

c , however, the virus dies out the quickest in the star
graph. These results are caused by the accuracy of the NIMFA
epidemic threshold τ (1)

c = 1
λ1

, used in the normalization τ/τ (1)
c

and underline the difficulty of finding an unbiased way to
compare the SIS process in different graph types.

Finally, in non-Markovian spreading, the virus dies out
quicker for heavy-tailed infection time distributions, compared
to exponential infection times, for the same number of
expected infection attempts during an infectious period. For
heavy-tailed distributions, these infection attempts tend to
occur early in the infectious period, thereby minimizing the
probability that a source node can be reinfected by a neighbor
node, because the source node is most likely still infected,

δ δ δ δ δ δβ 2β 3β (N-2)β (N-1)β

δ 2δ 3δ (N-1)δ

δ 2δ 3δ (N-1)δ

ββ)3-N(β)2-N(β)1-N(

1 2 3 4 N-1 N

0 1 2 3 N-2 N-1
1 3 5 7 2N-3 2N-1

2 4 6 8 2N-2 2N

FIG. 17. (Color online) Markov Chain representation of the SIS
virus process in the star graph. In the odd state the center node is not
infected, whereas in the even states the center node is infected. The
number of infected nodes is indicated in blue next to the states.

when a neighbor tries to reinfect the source node. As a result,
the infection initially spreads quickly through the network and
then dies out again. Many real-world dynamic processes are
non-Markovian [30], which motivates us to understand the
differences between non-Markovian and Markovian SIS.

APPENDIX A: SURVIVAL TIME IN KN

The SIS process on a complete graph can be described [12]
by a continuous-time Markov chain, as illustrated in Fig. 16.
States are numbered from 1 to N , while the number of infected
nodes in state i is i − 1. The infinitesimal generator is given
by:

−Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
−1 1 + (N − 1)τ −(N − 1)τ 0 0 0 0

0 −2 2 + 2(N − 2)τ −2(N − 2)τ 0 0 0
0 0 −3 3 + 3(N − 3)τ −3(N − 3)τ 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 0 −N N

⎤
⎥⎥⎥⎥⎥⎥⎦

.

System (2) can be solved using Gaussian elimination, that is, by reducing the augmented matrix [−Q|b] to row echelon form.
Because we are interested in the worst-case scenario, we only need to know the value of wN+1, which corresponds to the hitting
time of the absorbing state starting from the all-infected state. In Gaussian elimination, the system matrix is reduced to an
upper-triangular matrix. Reducing all nonzero subdiagonal elements from column k for k � 2 to zero is achieved by adding k

dk

times row k to row k + 1:

rk+1 → rk+1 + k

dk

rk,

where rk is row k in [−Q|b]. The multiplication factor dk can be found recursively for k > 2 as

dk = (k − 1)(1 + (N − k + 1)τ ) − (k − 1)(k − 2)(N − k + 2)τ

dk−1
, (A1)

with initial conditions d1 = 1 and d2 = 1 + (N − 1)τ . Since all row operations are performed on the augmented system matrix,
the entries in b also change. The average survival time starting from the all-infected state is found by dividing the last element in
b by wN+1 = dN+1:

E[T ] = bN+1/dN+1, (A2)

where bk is given by the recursive relation for k > 1 as

bk = 1 + (k − 1)

dk−1
bk−1 (A3)
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and initial condition b1 = 0. Using (A2) and (A3), Appendix C proves that the average survival time in KN equals E[T ] = F (τ ),
which we consider as a major result.

APPENDIX B: SURVIVAL TIME IN K1,N−1

The continuous-time Markov chain for the star graph contains 2N states, as shown in Fig. 17. The Markov chain in Fig. 17 is
a relabeling of the chain in Ref. [14] so the infinitesimal generator has a five-band structure. In the odd states, the center node is
healthy, whereas in the even states it is infected. The number of infected nodes in each state is indicated in blue next to the state.
Just as in the case of the complete graph, we solve the system φKw = b, where φK = −Q and b = u − e1 is the all one vector
minus the first standard basis, by reducing the augmented matrix [−Q|b] to row echelon form. The infinitesimal generator of the
SIS process on the star is given by

−Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
−1 q2 0 −(N − 1)τ 0 0 0 0 0 0
−1 0 q3 −τ 0 0 0 0 0 0

0 −1 −1 q4 0 −(N − 2)τ 0 0 0 0
0 0 −2 0 q5 −2τ 0 0 0 0

0 0 0 −2 −1 q6 0
. . . 0 0

0 0 0 0
. . . 0 q7

. . . 0 0

0 0 0 0 0
. . . −1 q8 0 −τ

0 0 0 0 0 0 −(N − 1) 0 q9 −(N − 1)τ
0 0 0 0 0 0 0 −(N − 1) −1 q10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Contrary to the complete graph, odd columns have two nonzero elements below the diagonal and reducing them to zero will also
lead to two nonzero elements below the diagonal of the next (even) column.

The nonzero subdiagonal entries of odd columns for k > 1 are reduced to zero by two row operations:

rk+1 ← rk+1 + δ

dk

rk

rk+2 ← rk+2 − (k + 1)δ

2dk

rk.

The nonzero subdiagonal entries of even columns for k > 2 are also reduced to zero by two row operations:

rk+1 ← rk+1 − mkkδ

2dk−1dk

rk

rk+2 ← rk+2 + kδ

2dk

rk,

where dk is given by:

kδ

2
+

(
N − k

2

)
β − (k/2 − 1)(N − k/2 + 1)βδ

dk−2
+ δmk

dk−1
, for even k > 2,

δ + (N − 1)β, k = 2,

(k − 1)(δ + β)/2, for odd k > 0,

and mk is given, for k > 4, by

mk = −
(

k

2
− 1

)
β + (k/2 − 1)(N − k/2 + 1)βδmk−2

dk−2dk−3
,

with initial condition m4 = −β. The worst-case expected survival time in the star graph is obtained by dividing w2N = d2N by
the last element in b:

E[T ] = b2N/d2N,

where bk is given by

1 +
(

k

2
− 1

)
δ

dk−2
bk−2 + δ

dk−1
bk−1 for k > 1 even,

1 + (k − 1)δ

2dk−2
bk−2 − (k − 1)mk−1δ

2dk−2dk−1
bk−1 for k > 1 odd,

and initial conditions b1 = 0, b2 = 1.
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Although the expression for the average survival time in the star graph is more involved than in the case of the complete graph,
it enables the numerical evaluation of the average survival time in a linear time and constant space complexity.

APPENDIX C: PROOF THAT E[T ] = F(τ ) FOR SIS EPIDEMICS ON KN

First, we rewrite (6) as

F (τ ) =
N∑

j=1

xj

j
, (C1)

where xj = ∑j−1
r=0

(N−j+r)!
(N−j )! and initial conditions x1 = 1, xj = 0 for j < 0. Now xj obeys the recursive relation (4). Indeed,

xj+1 =
j∑

r=0

(N − j − 1 + r)!

(N − j − 1)!
τ r = τ (N − j )

j−1∑
r=−1

(N − j + r)!

(N − j )!
τ r

= xj (N − j )τ + τ (N − j )
(N − j − 1)!

(N − j )!
τ−1 = xj (N − j )τ + 1.

The summation (C1) is more efficient to compute numerically as it contains only N terms instead of N2

2 in the double sum in (6)
and does not contain factorials.

We will now show that (A2) is equal to F (τ ) in (6) or in (3). As a consequence, the first term in the Lagrange series [22] of the
second-largest eigenvalue ζ of the infinitesimal generator Q is precisely the average worst-case survival time of the SIS process
on KN .

We first rewrite bN+1 using the recursion (A3):

bN+1 = 1 + N

dN

bN = 1 + N

dN

[
1 + (N − 1)

dN−1
bN−1

]
= 1 + N

dN

+ N (N − 1)

dNdN−1
bN−1.

Repeating this process for all bi until i = 1 results in

bN+1 =
N−1∑
j=0

N !
∏N−j

i=2 di

(N − j )!
∏N

i=2 di

.

Finally, dividing by dN+1 yields, by use of (A2), the average survival time,

E[T ] =
N−1∑
j=0

N !
∏N−j

i=2 di

(N − j )!
∏N+1

i=2 di

. (C2)

Next we rewrite (C2) in terms of pj = ∏j

i=2 di , which also equals

pj = djpj−1 = dj

j−1∏
i=2

di (C3)

and

dj = pj

pj−1
.

Substituting into (A1) yields

dj = (j − 1)(1 + (N − j + 1)τ − (j − 1)(j − 2)(N − k + 2)τpj−2

pj−1
. (C4)

Substituting (C4) into (C3) leads to the following recursive expression for pj :

pj = (j − 1)[1 + (N − j + 1)τ ]pj−1 − (j − 1)(j − 2)(N − j + 2)τpj−2,

which can be further simplified by first splitting and then iterating the first term:

pj = (j − 1)pj−1 − (j − 1)(j − 2)(N − j + 2)τpj−2 + (j − 1)(N − j + 1)τpj−1

= (j − 1)(j − 2)[1 + (N − j + 2)τ ]pj−2 − (j − 1)(j − 2)(j − 3)(N − j + 3)τpj−3

− (j − 1)(j − 2)(N − j + 2)τpj−2 + (j − 1)(N − j + 1)pj−1

= (j − 1)(j − 2)pj−2 − (j − 1)(j − 2)(j − 3)(N − j + 3)τpj−3 + (j − 1)(N − j + 1)pj−1.
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The first term can be expanded recursively to arrive, with p2 = d2 = 1 + (N − 1)τ , at

pj = (j − 1)(j − 2)...2p2 − (j − 1)(j − 2)...(N − 1)τp1 + (j − 1)(N − j + 1)pj−1

= (j − 1)![1 + (N − 1)τ ] − (j − 1)!(N − 1)τ + (j − 1)(N − j + 1)pj−1

= (j − 1)! + (j − 1)(N − j + 1)τpj−1. (C5)

From (C5), we find that pN+1 = N ! and (C2) becomes

E[T ] =
N−1∑
j=0

pN−j

(N − j )!
=

N∑
k=1

pk

k!
. (C6)

Moreover, let yk = pk

(k−1)! , and then in (C5)

(j − 1)!yj = (j − 1)! + (j − 1)(N − j + 1)τ (j − 2)!yj−1

and, after rearranging terms,

yj = 1 + (N − j + 1)τyj−1.

Comparing with (4), we observe that yj obeys the same recursion (including the initial conditions) as xj in (4). Due to the
uniqueness of the solution of a linear difference equation, yj = xj , so E[T ] = ∑N

k=1
xk

k
, which is precisely (6), proving that

the first term in the Lagrange series of the second-largest eigenvalue ζ of the infinitesimal generator Q is equal to the average
survival time of the SIS process on KN . As the survival time starting from the metastable state is exponentially distributed with a
rate equal to ζ , the order term in (5) is a measure for the difference between starting in the metastable state and in the all-infected
state.
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