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A general two-layer network consists of two networks G1 and G2, whose interconnection pattern is specified
by the interconnectivity matrix B. We deduce desirable properties of B from a dynamic process point of view.
Many dynamic processes are described by the Laplacian matrix Q. A regular topological structure of the
interconnectivity matrix B (constant row and column sum) enables the computation of a nontrivial eigenmode
(eigenvector and eigenvalue) of Q. The latter eigenmode is independent from G1 and G2. Such a regularity
in B, associated to equitable partitions, suggests design rules for the construction of interconnected networks
and is deemed crucial for the interconnected network to show intriguing behavior, as discovered earlier for the
special case where B = wI refers to an individual node to node interconnection with interconnection strength
w. Extensions to a general m-layer network are also discussed.
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I. INTRODUCTION

An interdependent network, also called an interconnected
or multilayer network or network of networks, is a network
consisting of different types of networks, which depend upon
each other for their functioning [1]. For example, a power
grid is steered by a computer network, which in turn needs
electricity to function. Interconnected networks have been
brought to the scientific scene by Buldyrev et al. [2], who
illustrated the existence of dramatic cascading effects that
could not occur in single networks. Since their pioneering
work, a wealth of papers (see Ref. [3] and references therein)
have appeared on interconnected networks. Different termi-
nologies and mathematical representations, based on tensors,
are discussed in Ref. [4]. The present work is motivated by the
difficulty to specify the interconnection pattern between the
layered or separate networks of an interdependent network.
Particularly, the functional brain networks, measured with
magnetoencephalography (MEG) at different frequencies,
present slightly different properties of the anatomic brain and
the challenge is to understand how these layered networks at
different frequencies are interconnected to represent the total
brain functioning (see, e.g., Refs. [5,6]).

The dynamics of many processes on networks can be
described in terms of the Laplacian of the underlying graph
topology, such as diffusion and approximate synchronization
[4], and recently the (exact) prevalence in susceptible-infected-
susceptible (SIS) epidemics on networks [7], analyzed in
Ref. [8]. Radicchi [9] motivates the use of the Laplacian
with many more examples. We study the eigenstructure
of the Laplacian of a two-layered interconnected network
(generalized to an m-layered network in Appendix B) as a
function of the interconnectivity matrix. An insight presented
here is that regularity in the interconnection pattern features
attractive properties, that provide engineers with handles to
control or uncouple the network’s dynamics by changing the
strength of the interconnectivity as well as by balancing or
distributing that total strength over several interlinks, that
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connect nodes in different networks or layers. Previously
reported special properties, for example a modular intercon-
nected structure as in Ref. [10], can be related to regularity in
the interconnection pattern. In fact, we show that most special
phenomena observed—via the Laplacian spectrum—in the
dynamic behavior of interconnected networks can be traced
back to the graph theoretic concept of “equitable partitions”
(explained in Sec. III A 2 and Appendix B).

After a definition of the interconnected network in Sec. II,
the Laplacian eigensystem is studied. We derive a general
quadratic form from which an interconnectivity energy is
deduced. Although finding a nontrivial eigenmode (eigenvalue
and eigenvector) is generally difficult to find, we show that,
when the interconnection structure exhibits regularity, an
interesting eigenmode can be determined in general, whose
properties and consequences are studied in the remainder
(Sec. III) of this paper. We conclude in Sec. IV. The proofs of
the theorems are deferred to Appendix A.

II. TWOFOLD INTERCONNECTED NETWORK

Consider an interconnected network G with adjacency
matrix

A =
[

(A1)n×n Bn×m

(BT )m×n (A2)m×m

]
, (1)

where A1 is the n × n adjacency matrix of the graph G1 with n

nodes, A2 is the m × m adjacency matrix of the graph G2 with
m nodes and B is the n × m matrix interconnecting G1 and G2.
The total number of nodes in G is N = n + m. In the theory of
interconnected or interdependent network (see Refs. [3,11,12]
), it is convenient to consider the interconnection matrix B

as a weighted matrix, whose elements are real, non-negative
numbers, rather than just zero-one as in the square adjacency
matrices A1 and A2. One of the main reasons for a real
interconnection matrix B is that the networks G1 and G2 are
usually of a different type, e.g., a communication network G1

that controls a power grid G2. When B = O, the network G is
not interconnected anymore and falls apart into two separate
networks G1 and G2. Thus, in the sequel, we assume that
B �= O, implying that at least one element Bij > 0. We remark
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that, possibly after a node relabeling, the adjacency matrix of
any graph can be written as a block matrix (1), where two
subgraphs G1 and G2 are interconnected by an n × m zero-one
matrix B. The adjacency matrix A in (1) represents a twofold
interconnected network in the most general way. Two special
cases of the interconnection matrix B, namely B = wI and
B = wJ , where J is the all-one matrix, are briefly analyzed
in Sec. III B.

Here, we follow the notation of my book [13]. The
Laplacian Q of G, corresponding to (1), equals

Q =
[

(Q1)n×n+diag[(Bum)i] −Bn×m

−(BT )m×n (Q2)m×m+diag
[(

BT un

)
i

]],
(2)

where Q1 = �1 − A1, Q2 = �2 − A2, and1�k = diag
[(Akuk)i] = diag[di(Gk)] for k = 1,2 and where di(Gk) de-
notes the degree of node i in the graph Gk . The all-one
vector with n components is denoted by un and the subscript
is omitted when the dimension is clear. We call the matrix
(Q1)n×n + diag[(Bum)i] (and similarly for G2) a generalized
Laplacian, whose properties are studied in Refs. [14] and [1].
Only if B is a zero-one matrix, the total number of links in G

equals

L = LG2 + LG1 + uT
n Bn×mum,

where LGk
= 1

2uT Aku is the number of links in Gk .
Any N × N Laplacian matrix Q is symmetric and positive

semidefinite [13] and has a zero row and column sum, which
is equivalent to the eigenvalue equation

Qu = 0

indicating that the smallest eigenvalue is μN = 0, belonging
to the eigenvector xN = u.

III. LAPLACIAN EIGENVALUE EQUATION

We order the eigenvalues of the N × N Laplacian Q as
μ1 � μ2 � · · · � μN−1 � μN = 0 and denote the eigenvec-
tor corresponding to the k-largest eigenvalue by xk . The
kth fundamental weight [15] of any Laplacian equals wk =
uT xk = 0, unless k = N , because eigenvectors are orthogonal,
xT

k xm = δmk . We write an N × 1 vector y as a block vector

y = (yT
1 ,yT

2 )
T

, where y1 is an n × 1 and y2 is an m × 1 vector
corresponding to the block structure of A in (1). Hence, any
eigenvector xk = x = (xT

1 ,xT
2 )

T
of the Laplacian Q of the

interconnected network G with 1 � k < N obeys

uT
n x1 + uT

mx2 = 0 (3)

while the normalization xT x = 1 of the eigenvector x trans-
lates to

xT
1 x1 + xT

2 x2 = 1. (4)

1The diagonal matrix diag(ai), specified by the ith diagonal element,
has the elements a1,a2, . . . ,an on the diagonal.

The Laplacian eigenvalue equation for the eigenvector x =
(xT

1 ,xT
2 )

T
belonging to the eigenvalue μ,[

(Q1)n×n+diag[(Bum)i] −Bn×m

−(BT )m×n (Q2)m×m+diag
[(

BT un

)
i

]][x1

x2

]

= μ

[
x1

x2

]

is equivalent to the set

Q1x1+diag[(Bum)i]x1−Bx2 = μx1

Q2x2 + diag[(BT un)i]x2 − BT x1 = μx2. (5)

The quadratic form of Q has the following property.
Theorem 1. Let y = (yT

1 ,yT
2 )

T
be any real vector, then the

quadratic form yT Qy, where the Laplacian matrix Q is defined
in (2), equals

yT Qy = yT
1 Q1y1 + yT

2 Q2y2 + R(y1,y2), (6)

where

R(y1,y2) =
n∑

i=1

m∑
j=1

Bij ((y1)i − (y2)j )2, (7)

which is always non-negative because Bij � 0.
Since any Laplacian is positive semidefinite, each term in

the Laplacian quadratic form (6) is non-negative. Due to our
assumption B �= O, (7) shows that R(y1,y2) = 0 only if (y1)i =
(y2)j for all possible pairs (i,j ) of nodal interconnections
with positive coupling strength Bij > 0. In particular, when

y = u = (uT
n ,uT

m)
T

, then R(un,um) = 0 independently of the
structure of B [as also follows from (6) because xN = u is
the eigenvector belonging to the zero Laplacian eigenvalue
μN = 0]. As a consequence of R(y1,y2) � 0, we find with y = x

in (6) that any eigenvalue μ of Q belonging to eigenvector
x = (xT

1 ,xT
2 )

T
is lower bounded by

μ � xT
1 Q1x1 + xT

2 Q2x2.

Theorem 6 in Appendix B generalizes Theorem 1 to an m-fold
interconnected network with m � 2.

We may interpret R(y1,y2) in (7) as the total interconnection

energy between G1 and G2 due to the vector y = (yT
1 ,yT

2 )
T

.
In such an interpretation, yT Qy represents the total network
energy for a state vector y. Let us denote the link l = (l+,l−),
where the nodes l+ and l− are the endpoints of the link and
by L the set of all links in G. Then, a basic property (see,
e.g., Ref. [13]) of the (unweighted) Laplacian Q is yT Qy =∑

l∈L (yl+ − yl− )2 and, in the same vein, R(y1,y2) in (7) can be
written as

R(y1,y2) =
∑

l:l+∈G1 and l−∈G2

Bl+l−
[
(y1)l+ − (y2)l−

]2
.

Apart from the trivial Laplacian eigenvector xN = u,
finding nontrivial eigenvectors of Q in (2) is generally difficult,
even if eigenvectors of the networks G1 and G2 are known. A
negative result is Theorem 2.

Theorem 2. The vector y = (uT
n ,0)

T
nor y = (0,uT

m)
T

can
be an eigenvector of Q.
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A. Nontrivial eigenvector and eigenvalue solution

If the interconnected network G with N = m + n nodes
has a special regular structure, we can determine at least two
eigenmodes2 of Q:

Theorem 3. Only if the n × m interconnection matrix B has
a constant row sum equal to μ∗

N
m and a constant column sum

equal to μ∗
N

n, which we call the regularity condition for Bn×m,{
Bum = μ∗ m

m+n
un

BT un = μ∗ n
m+n

um
(8)

then is

x = 1√
N

[√
m
n
uT

n −√ n
m

uT
m

]T
(9)

an eigenvector of Q, defined in (2), belonging to the eigenvalue

μ∗ =
(

1

n
+ 1

m

)
uT

n Bn×mum (10)

and uT
n Bn×mum =∑n

i=1

∑m
j=1 Bij equals the sum of the

elements in B, specifying to the total strength of the inter-
connection between G1 and G2.

Since each element Bij � 0, the eigenvalue μ∗ in (10) can
only be zero if B = O, in which case the two networks G1

and G2 are disconnected. With N = m + n, we can express
this eigenvalue as

μ∗ = N
uT

n Bn×mum

nm
,

where uT
n Bn×mum

nm
= μ∗

N
is the average coupling strength per

element in B and μ∗
N

m = uT
n Bn×mum

n
is the nodal coupling

strength of each node 1 � i � n in G1 to nodes in G2 and

similarly, μ∗
N

n = uT
n Bn×mum

m
is the nodal coupling strength of

each node 1 � j � m in G2 to nodes in G1. Finally, we may
regard uT

n Bn×mum as the total coupling strength between the
constituent network parts G1 and G2 to form G.

The eigenvector and eigenvalue in Theorem 3 are only
determined by the interconnection matrix B and are inde-
pendent of the structure of G1 and of G2, because each
eigenvector component of x in (9) satisfies Q1x1 = Q1un = 0
and, similarly, Q2x2 = Q2um = 0. If we can control the
coupling strength between G1 and G2, the eigenvalue μ∗ in
(10) can be changed at will. This independence of the network
G1 and G2 property, earlier exploited in Ref. [3] to compute
a particular interconnection strength separating the dynamics
in G1 and G2, forms the major characteristic feature of a
regular interlink interconnected network structure. If there
is no special structure in the interconnection matrix B, then
we may question whether there is a reason to study a block
adjacency matrix of the form (1) instead of a single matrix A.

If B is a zero-one matrix, then the condition in Theorem
3 shows that the interlink degree between a node i ∈ G1 and
a node j ∈ G2 is constant. In other words, any node in G1 is
connected to a same number of nodes in G2 (and vice versa). If
both G1 and G2 have the same number of nodes, n = m, and

2An eigenmode consists of an eigenvector and its corresponding
eigenvalue.

for the particular form B = wIn, the eigenvector x in (9) exists
and we find that μ∗ = 2w (as in Ref. [3]). This particular case
is discussed below in Sec. III B 1.

1. Regularity and eigenstructure

A consequence of Theorem 3 is Corollary 1.
Corollary 1. If the regularity condition (8) on B in Theorem

3 holds, then the N × N Laplacian matrix (2) simplifies to

Q =
[

(Q1)n×n + μ∗ m
N

In −Bn×m

−(BT )m×n (Q2)m×m + μ∗ n
N

Im

]
(11)

and any other eigenvector x = (xT
1 ,xT

2 )
T

of Q, apart from

xN = u and x = 1√
N

[
√

m
n
uT

n −√ n
m

uT
m]

T
, must obey both

uT
n x1 = 0 and uT

mx2 = 0.
If B does not satisfy the regularity condition (8), then

x in (9) cannot be an eigenvector of B, implying that the
eigenvectors x = (xT

1 ,xT
2 )

T
of Q belonging to μ cannot satisfy

uT
n x1 = 0 and uT

mx2 = 0. Thus, the eigenvector property
uT

n x1 = 0 and uT
mx2 = 0 is a fingerprint of the regularity of B

and reflects a notion of uncoupling of Laplacian eigenmodes
of G into those of both G1 and G2.

An interesting implication of Corollary 1 is that any
eigenvector x1 of Q1 belonging to a positive eigenvalue also
satisfies uT

n x1 = 0 (and similar for Q2). Hence, we may ask

whether y = (xT
1 ,xT

2 )
T

is an eigenvector of Q.
Theorem 4. If the following conditions hold:
(i) B satisfies the regularity condition (8) in Theorem 3;
(ii) x1 is an eigenvector of both Q1 and BBT ;
(iii) x2 is an eigenvector of both Q2 and BT B;
(iv) the vectors Bx2 and x1 are parallel, i.e., Bx2 =

[μ(Q1) + μ∗
N

m − ξ ]x1;
(v) the vectors BT x1 and x2 are parallel, i.e., BT x1 =

[μ(Q2) + μ∗
N

n − ξ ]x2;

then x = (xT
1 ,xT

2 )
T

an eigenvector of Q in (11) belonging
to the eigenvalue ξ equal to

ξ = (μ(Q1) + μ(Q2) + μ∗)xT
1 x1 − (μ(Q2) + μ∗

N
n
)

2xT
1 x1 − 1

, (12)

which satisfies either

ξ � max

(
μ(Q1) + μ∗

N
m,μ(Q2) + μ∗

N
n

)
or

ξ � min

(
μ(Q1) + μ∗

N
m,μ(Q2) + μ∗

N
n

)
. (13)

Theorem 4 contains many conditions, which make it hard
for y = (xT

1 ,xT
2 )

T
to be an eigenvector of Q. If Q1 and

BBT commute, then all eigenvectors of Q1 and BBT are
the same [13], but commutativity is an even harder confining
condition. Theorem 4 thus illustrates that eigenmodes of the
(Laplacian) dynamics of the constituent networks G1 and G2

can be directly reflected by the interconnected network G

under the rather stringent requirement and that, apart from
the regularity of B, the conditions (iv) and (v) asks for an
alignment of eigenmodes in G1 and G2. If G1 and G2 are
different networks, such an alignment is likely to occur with
low probability and the eigenmodes of G are expected to show
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a different, unrelated behavior. In other words, special design
or special conditions (in a physical system) are needed to
observe the peculiar transition in the coupling strength or
normalized coupling strength μ∗ in (10), reported earlier in
Refs. [12,16] and further studied in Refs. [3,9].

2. Regularity and equitable partitions

Any graph G can be partitioned into nonempty subsets
of nodes. The N × 2 community matrix S for a two-layer
interdependent network is

S =
[
un 0
0 um

]
,

where Sij assigns node i to the community or layer j . If
the partition π is equitable (or regular) [13, pp. 22–24], the
quotient matrix Qπ corresponding to the Laplacian Q in (11)
is

Qπ = μ∗

N

[
m −m

−n n

]

from which we verify that QS = SQπ . The eigenvalues of
Qπ are 0 and μ∗, the latter belonging to the eigenvector
xπ = n√

n2+m2 (1, − m
n

). If μπ is an eigenvalue of Qπ belonging
to the eigenvector xπ so that μπxπ = Qπxπ , then, after left
multiplication with S and invoking QS = SQπ , we observe
that

μπSxπ = SQπxπ = QSxπ,

indicating that Sxπ = 1√
N

[
√

m
n
uT

n −√ n
m

uT
m]

T
is an eigen-

vector of Q belonging to μπ = μ∗ and illustrating that
Theorem 3 is actually a consequence of the general theory
of equitable partitions.

3. Regularity and optimality

The eigenvalue μ∗ in (10) as well as the interconnection
energy (7) increases with any element Bij � 0 of the intercon-
nection matrix B. Thus, limiting the increase in the elements
of B seems a natural consequence of the analysis. Shakeri et al.
[17] maximize the algebraic connectivity μN−1, subject to a
constant total interconnection strength uT

n Bn×mum = c, which
is equivalent to a given μ∗ in (10). In particular, Shakeri et al.
[17] consider a special type of interconnected network G1

and G2 with equal number of nodes, thus n = m, and where
the interconnection matrix B = diag(wj ) and wj � 0 is the
interconnection weight or strength between the node j in G1

and its peer (also labeled by j ) in G2. Their Laplacian is

QS =
[

(Q1)n×n + diag(wj ) −diag(wj )
−diag(wj ) (Q2)n×n + diag(wj )

]
.

The vector w = (w1,w2, . . . ,wn) is a non-negative intercon-
nection vector (which they denote by w � 0), on which they
impose a total weight condition, namely wT u = c. Their main
result is

max
w�0
wT u=c

μN−1(QS) is attained for w = c

n
un,

demonstrating that each interlink weight wk = c
n

=
2
N

uT Bu = μ∗
2 is precisely equal, which emphasizes the ex-

tremality of the regularity of B. We add another extremal
property of the nontrivial eigenmode when B is regular:

Theorem 5. Let B satisfy the regularity condition (8) in
Theorem 3. Among all real vectors y = (yT

1 ,yT
2 )

T
satisfy-

ing the normalization yT y = 1, the Laplacian eigenvector
1√
N

[
√

m
n
uT

n −√ n
m

uT
m]

T
in (9) belonging to eigenvalue μ∗

in (10) can attain the highest coupling energy R(y1,y2), defined
in (7).

B. Special interconnection matrices

We assume that B has constant row and column sum,
obeying the regularity condition (8).

1. Individual node to node interconnection B = w I

The interconnection B = wI has been investigated in depth
in Refs. [3,9,12,16,17], where the number of nodes in both G1

and G2 is the same: n = m. Straightforward substitution of
B = wI in (10) shows that μ∗ = 2w (as in Ref. [3], where
w was denoted by p). The total interconnection energy at
eigenfrequency μ follows from (7) as

R(x1,x2) = w

n∑
i=1

[(x1)i − (x2)i]
2 = w(x1 − x2)T (x1 − x2).

In particular, at the eigenfrequency μ∗ = 2w where x1 =
αun and x2 = βun (see Appendix A 3), the computations in
Sec. III A result in

Rμ∗ = wn(α − β)2 = wnα2

(
1 + n

m

)2

= 2w = μ∗.

We remark that, in particular, the conditions (iv) and (v)
in Theorem 4 complicate the determination of additional
eigenmodes of Q, even in this simple case with B = wI .

2. All pair interconnection pattern B = w J

If B = wJ , then

xT
1 Jn×mx2 = xT

1

(
unu

T
m

)
x2 = (uT

n x1
)(

uT
mx2
)
.

With (3), we have

xT
1 Jn×mx2 = −(uT

n x1
)2

.

Explicitly, when x = xN = u, then uT Ju = nm and for the
nontrivial eigenvector x in (9), we find that xT

1 Jn×mx2 = − nm
N

,
which is negative, while for any other Laplacian eigenmode,
it holds that xT

1 Jn×mx2 = 0.
For any eigenvalue μ �= μN = 0, (A1) indicates that

μ(Q) = xT Qx = xT
1 Q1x1 + xT

2 Q2x2

+w
{
mxT

1 x1 + nxT
2 x2 − 2

(
uT x1

)2}
.

The nontrivial eigenvector x in (9) obeys the regularity
condition (8) {

Jn×mum = mun = ξ m
m+n

un

Jm×nun = num = ξ n
m+n

um,

which are eigenvalue equations, so that the eigenvalue μ∗ =
wξ = w(n + m) = wN , which agrees with (10).
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The complement Qc possesses [13] the same eigenvectors
as Q. In case B = J (thus for w = 1), the complement Ac

of A reduces to two not connected graphs Gc
1 and Gc

2, and
the corresponding Laplacian Qc consists of two separate
eigensystems of Qc

1 and Qc
2, and both have the same eigen-

vectors as Q1 and Q2. Thus, for B = J , the knowledge of the
normalized eigenvectors {vk}1�k�n of Q1 and {rl}1�l�m of Q2

is sufficient to construct the eigenvector xkl = [αkv
T
k βlr

T
l ]

T

of Q, where the scalars αk and βl obey α2
k + β2

l = 1 as required
by the normalization in (4). The orthogonality of eigenvectors
demands that xT

klxk′l′ = αkαk′vT
k vk′ + βlβl′r

T
l rl′ = 0, implying

that k �= k′ and l �= l′. From the quadratic form (A1), the
eigenvalues (when at least one x1 �= u) are

μ(Q) = xT Qx = [μk(Q1) + wm]α2
k + [μl(Q2) + wm]β2

l .

However, in total, there are nm possible ways of constructing
an eigenvector xkl , while there can be only n + m = N

such eigenvectors. But, (A4) requires that μ(Q1) + wm = ξ

and μ(Q2) + wm = ξ , implying either αk = 1 and βl = 0
(and vice versa), leading to the n − 1 eigenvector forms
{[vT

k 0]
T }1�k�n−1 and m − 1 form {[0 rT

l ]
T }1�l�m−1,

apart from xN = u (both vn = un and rm = um) and x in (9).
This computation, in agreement with Theorem 2 and Theorem
4, again underlines the restrictive nature of (A4), that asks
for alignment of eigenvectors of Q1 and Q2. Finally, as a
side effect of concentrating on the Laplacian (and due to
the commutativity of any Laplacian Q and J ), we find that
the eigenmodes of a complete interconnection pattern B = J

seems closely related to no interconnection B = O, which
may seem counterintuitive at first glance.

C. Algebraic connectivity of G

The second smallest eigenvalue μN−1 of the Laplacian
Q is called by Fiedler [18] the algebraic connectivity. The
algebraic connectivity is the most studied eigenvalue of Q

due to its appearance in many phenomena [13]. We derive
several bounds for the algebraic connectivity μN−1(Q) of the
interconnected graph G.

1. Consequence of Theorems 1 and 3

By choosing y1 equal to the kth normalized eigenvector (i.e.,
yT

1 y1 = 1, while yT y = yT
1 y1 + yT

2 y2) of Q1 and y2 equal to
lth normalized eigenvector of Q2, the quadratic form (6) reads

yT Qy = μk(Q1) + μl(Q2) + R(y1,y2).

In particular, confining to the algebraic connectivity where
y1 = xn−1 and y2 = xm−1 are the eigenvectors belonging to
the respective algebraic connectivity μn−1 in G1 and μm−1 in
G2, leads to

yT Qy = μn−1(Q1) + μm−1(Q2) + R(xn−1,xm−1),

where uT
n xn−1 = 0 and uT

mxm−1 = 0 (since eigenvectors are
orthogonal), so that yT uN = 0. In that case, the Rayleigh
inequality yT Qy � μm+n−1(Q)yT y = 2μm+n−1(Q) leads to
the upper bound for the algebraic connectivity of Q,

μN−1(Q) � 1
2 [μn−1(Q1) + μm−1(Q2) + R(xn−1,xm−1)]. (14)

Let us investigate the smallest, nonzero eigenvalue μ,
corresponding to any eigenvector x = (xT

1 ,xT
2 )

T
of Q obeying

uT
n x1 = uT

mx2 = 0 in Corollary 1, a necessary condition for
regularity of B. The Rayleigh inequality [13] demonstrates for
uT

n x1 = 0 that

xT
1 Q1x1 � μn−1(Q1)xT

1 x1

and, similarly for uT
mx2 = 0,

xT
2 Q2x2 � μm−1(Q2)xT

2 x2

with equality only if x1 and x2 are the eigenvector of Q1

and Q2 belonging to the algebraic connectivity, eigenvalue
μn−1(Q1) and μm−1(Q2), respectively. Complementary to the
upper bound (14), the quadratic form (6) leads to the lower
bound (15) for the algebraic connectivity of G with regular
interconnection matrix B,

μN−1(Q) � μn−1(Q1)xT
1 x1 + μm−1(Q2)xT

2 x2+R(x1,x2) � 0

(15)

with 0 < xT
2 x2 = 1 − xT

1 x1 < 1. Combining the upper bound
(14) and the lower bound (15) yields, for a regular intercon-
nection matrix B,

μn−1(Q1)
1

xT
1 x1

+ μm−1(Q2)
1

1−xT
1 x1

+ R(x1,x2)

� μN−1(Q) � μn−1(Q1)

2
+ μm−1(Q2)

2

+R(xn−1,xm−1)

2
. (16)

Even when both G1 and G2 are disconnected (μn−1(Q1) =
μm−1(Q2) = 0), a positive interconnection energy R(x1,x2) >

0 results in a connected interdependent network G (i.e.,
μN−1(Q) > 0). We observe from (16) that, if μn−1(Q1) =
μm−1(Q2), then we obtain the curious inequality

μn−1(Q1) + R(x1,x2) � μN−1(Q) � μn−1(Q1) + R(xn−1,xm−1)

2
,

illustrating that 0 � R(x1,x2) � μN−1(Q) − μn−1(Q) �
R(xn−1 ,xm−1)

2 . The interconnection energy R(x1,x2) for the Fiedler
eigenvector x of Q is smaller than half the interconnection
energy R(xn−1,xm−1) of the individual Fiedler vectors xn−1 of
Q1 and xm−1 of Q2, both belonging to a same algebraic
connectivity μn−1(Q1) = μm−1(Q2).

The scaling of elements in B also causes that the eigenvalue
μ∗ in (10) is not necessarily equal to the second smallest
eigenvalue μN−1. Indeed, by lowering the total coupling
strength uT

n Bn×mum, we can always force μ∗ to be lower
than μN−1(Q), because, from (15), we have that μN−1(Q) �
min (xT

1 x1,x
T
2 x2){μn−1(Q1) + μm−1(Q2)} > 0 for connected

networks G1 and G2. The possibility of modifying the total
coupling strength uT

n Bn×mum leads to consequences elaborated
in Ref. [3], where the coupling strength w in B = wI was
computed so that μ∗ = μN−1(Q).
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2. Interlacing

The interlacing theorem for symmetric matrices [13] tells us that{
μm+i(Q) � μi{Q1 + diag[(Bum)q]} � μi(Q) for any 1 � i � n

μn+j (Q) � μj {Q2 + diag[(BT un)i]} � μj (Q) for any 1 � j � m.

In particular, for the algebraic connectivity, the interlacing
theorem states{

μm+n−1(Q) � μn−1{Q1 + diag[(Bum)q]} � μn−1(Q)
μn+m−1(Q) � μm−1{Q2 + diag[(BT un)i]} � μm−1(Q)

so that the algebraic connectivity μm+n−1(Q) = μN−1(Q) of
the interconnected graph G is upper bounded by

μN−1(Q) � min (μn−1(Q1 + diag((Bum)q)),

μm−1(Q2 + diag((BT un)i))).

If diag((Bum)q) = bmI , then μn−1(Q1 + diag((Bum)q)) =
bm + μn−1(Q1) (and similar for the the graph G2), so that

μN−1(Q) � min[bm + μn−1(Q1),bn + μm−1(Q1)].

If we assume in addition that bm = bn = w, then

μN−1(Q) � w + min[μn−1(Q1),μm−1(Q1)].

The regime in which μN−1(Q) � max [μn−1(Q1),μm−1(Q1)]
is related to superdiffusion and is possible for a certain
interconnection strength w (see, e.g., Ref. [3]).

IV. CONCLUSION

As shown in Sec. III A, we believe that a regular inter-
connection matrix B with constant row sum and column sum
(based on the theory of equitable partitions) is adequate to
engineer or approach interdependent networks. For a regular
interconnection matrix B, there always exist a nontrivial
eigenvector (Theorem 3), which only depends on B and whose
eigenvalue can be controlled via the interconnection strength
(sum of all elements in B). This special eigenmode gives rise

to remarkable physical properties as illustrated in Ref. [3] and
references therein. The fact that the interconnection matrix
B is usually defined with real elements simplifies, besides
the determination of the coupling strength between potentially
different networks G1 and G2, also the flexibility to shape or
control the topological structure of B: an arbitrary number
of links from node i ∈ G1 to G2 can be used as long as the
sum of their interconnection strength

∑m
j=1 Bij is constant for

each node i in G1. The constraint to construct a matrix with
a constant row sum (and column sum) is more realistic for
a real matrix than for a matrix with zero-one elements. In
the latter case, the constraints on B would imply that each
node i in G1 (and vice versa for G2) has the same number of
links to nodes in G2, which in many real-world cases is not
justifiable. However, even for a real interconnection matrix
B, the regularity constraint means that each node i in G1 is
coupled to nodes in G2 with equal strength. If an equal strength
coupling is not defendable, the study of the interconnected
network G can hardly benefit from the knowledge of its
constituent parts G1 and G2, because, as shown here, the
eigenmodes of G are hardly related to those of G1 and G2.
Thus, to some extent and from a graph theoretical point of
view, such a network G can better be analyzed as a single
(though weighted) network.
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APPENDIX A: PROOFS

1. Proof of Theorem 1

Proof. The quadratic form yT Qy equals

yT Qy = [yT
1 yT

2

][(Q1)n×n + diag((Bum)i) −Bn×m

−(BT )m×n (Q2)m×m + diag((BT un)i)

][
y1

y2

]

= [yT
1 yT

2

][ ((Q1)n×n + diag((Bum)i))y1 − Bn×my2

((Q2)m×m + diag((BT un)i))y2 − (BT )m×ny1

]

= yT
1 (Q1)n×ny1 + yT

1 diag((Bum)i)y1 − yT
1 Bn×my2 + yT

2 (Q2)m×my2 + yT
2 diag((BT un)i)y2 − yT

2 (BT )m×ny1.

Since (yT
1 By2)

T = yT
2 BT y1 is a scalar, whose transpose is equal to itself, (yT

1 By2)
T = yT

1 By2 and we arrive at

yT Qy = yT
1 Q1y1 + yT

2 Q2y2 + yT
1 diag((Bum)i)y1 + yT

2 diag((BT un)i)y2 − 2yT
1 Bn×my2, (A1)

where ⎧⎪⎨
⎪⎩

yT
1 diag((Bum)i)y1 =∑n

r=1

(∑m
j=1 Brj

)
(y1)2

r

yT
2 diag((BT un)i)y2 =∑m

q=1

(∑n
i=1 Biq

)
(y2)2

q

yT
1 Bn×my2 =∑n

i=1

∑m
j=1 Bij (y1)i(y2)j .
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Hence, the interconnection part in (A1) equals

R(y1,y2) = yT
1 diag((Bum)i)y1 + yT

2 diag((BT un)i)y2 − 2yT
1 Bn×my2 =∑n

i=1

∑m
j=1 Bij

{
(y1)2

i + (y2)2
j − 2(y1)i(y2)j

}
from which (7) follows. �

2. Proof of Theorem 2

Proof. The eigenvalue equation in (5) reduces with x1 = y1

and x2 = 0 to{
Q1y1 + diag[(Bum)i]y1 = μy1

BT y1 = 0,

where

0 = BT y1 =
n∑

i=1

Bik(y1)i for 1 � k � m,

while, for 1 � i � n,

diag[(Bum)i]y1 = (y1)i

m∑
j=1

Bij .

The condition (BT )m×ny1 = 0 expresses that y1 is orthogonal
to each of the m column vectors of Bn×m. Since Bij � 0 and
B �= O, the condition BT y1 = 0 shows that y1 �= un. �

If y1 �= un, then the vector y = (yT
1 ,0)

T
can be an

eigenvector of Q, for example when B = J as shown in
Sec. III B 2.

3. Proof of Theorem 3

Proof. If x1 = αun and x2 = βum are parts of the eigen-
vector xT = (xT

1 ,xT
2 ) of Q not equal to x = u, then the

orthogonality condition (3) yields β = −α n
m

, while the nor-
malization (4) leads to α2n + β2m = 1. The latter is an
ellipse in the variables α and β around the origin with axis

1√
n

and 1√
m

, while the former is a line through the origin.
Their intersection results in two possible points (α,β) as in
Ref. [19]:

α = ±
√

m

nN
β = ∓

√
n

mN
(A2)

but the two resulting eigenvectors are the same (apart from
the factor −1). In order for xT = (αuT

n ,βuT
m), with α and β

defined in (A2), to be an eigenvector of Q belonging to the
eigenvalue μ∗, x must obey the eigenvalue equation (5){

αdiag[(Bum)i]un − βBum = μ∗αun

βdiag[(BT un)i]um − αBT un = μ∗βum.

Since diag[(Bum)i]un = Bum and diag[(BT un)i]um = BT un,
we have {

Bum = μ∗ α
α−β

un

BT un = −μ∗ β

α−β
um.

With α
α−β

= m
m+n

and β

α−β
= − n

m+n
, we arrive at the regularity

condition (8), which means with N = m + n that B must
have a constant row equal to μ∗ m

N
and column sum equal to

μ∗ n
N

. With these eigenvector parts x1 = αun and x2 = βum,

the quadratic form (A1) becomes

μ∗ = xT Qx = α2uT
n diag[(Bum)i]un + β2uT

mdiag[(BT un)i]um

− 2αβuT
n Bn×mum

= (α − β)2uT
n Bn×mum.

Finally, with β = −α n
m

and α2 = m
nN

, we arrive at (10). �

4. Proof of Corollary 1

Proof. If Theorem 3 holds, it follows from (8) that

diag[(Bum)i] = μ∗ m

N
In and diag[(BT un)i] = μ∗ n

N
Im

leading to (11). Any other eigenvector x of Q must be
orthogonal to the above two eigenvectors xN = u and

1√
N

[
√

m
n
uT

n −√ n
m

uT
m]

T
and must obey

{
uT

n x1 + uT
mx2 = 0

muT
n x1 − nuT

mx2 = 0
⇔
{[

1 1
m −n

][
uT

n x1

uT
mx2

]
= 0. (A3)

Since the determinant in (A3) is −(m + n) = −N �= 0, any
other eigenvector must obey both uT

n x1 = 0 and uT
mx2 = 0. �

5. Proof of Theorem 4

Proof. The eigenvalue equation Qx = ξx for Q in (11)
becomes with (5){

(Q1)n×nx1 + μ∗ m
m+n

x1 − Bn×mx2 = ξx1

(Q2)m×mx2 + μ∗ n
m+n

x2 − (BT )m×nx1 = ξx2.

Since x1 is an eigenvector Q1, then Q1x1 = μ(Q1)x1 (and
similar for x2 and Q2), we obtain{

Bn×mx2 = (μ(Q1) + μ∗
N

m − ξ
)
x1

(BT )m×nx1 = (μ(Q2) + μ∗
N

n − ξ
)
x2.

(A4)

After left multiplying the first equation by BT and using the
second in (A4), we find the eigenvalue equations{

BT Bx2 = ζx2

BT x1 = (μ(Q2) + μ∗
N

n − ξ
)
x2,

where

ζ =
(

μ(Q1) + μ∗

N
m − ξ

)(
μ(Q2) + μ∗

N
n − ξ

)
. (A5)

Alternatively, left multiplying the second equation by B and
using the first in (A4) leads to{

Bx2 = (μ(Q1) + μ∗
N

m − ξ
)
x1

BBT x1 = ζx1.
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Hence, we have demonstrated the conditions in Theorem 4: x1

is an eigenvector of both Q1 and BBT and x2 is an eigenvector
of both Q2 and BT B, while, in addition, the vector Bx2 and
x1, as well as BT x1 and x2, are parallel.

The remainder concentrates on the determination of the
eigenvalue ξ . By left multiplying the first equation in (A4) by
xT

1 (and similar for the second equation), we obtain3

xT
1 Bx2

xT
1 x1

= μ(Q1) + μ∗

N
m − ξ

and
xT

2 BT x1

xT
2 x2

= μ(Q2) + μ∗

N
n − ξ (A6)

and since the scalar xT
1 Bx2 = xT

2 BT x1, we find that4(
μ(Q1) + μ∗

N
m − ξ

)
xT

1 x1 =
(

μ(Q2) + μ∗

N
n − ξ

)
xT

2 x2.

The normalization (4) leads to the eigenvalue ξ of Q in (12).
Furthermore, we see that ζxT

1 x1 = x1BBT x1 = ‖BT x1‖2
2 and

ζxT
2 x2 = x2B

T Bx2 = ‖Bx2‖2
2 so that5

ζ = ‖BT x1‖2
2 + ‖Bx2‖2

2 � 0

and (A5) indicate that either μ(Q1) + μ∗ m
N

� ξ and μ(Q2) +
μ∗ n

N
� ξ or μ(Q1) + μ∗ m

N
� ξ and μ(Q2) + μ∗ n

N
� ξ .

Combined, we find that the eigenvalue ξ of Q obeys (13). �

6. Proof of Theorem 5

Proof. If Bmax = max1�i�n;1�j�m Bij is the maximum
element of the interconnection matrix B, then the coupling
energy R(y1,y2) for any real vector y = (yT

1 ,yT
2 )

T
in (7) is upper

bounded by

R(y1,y2) � Bmax

n∑
i=1

m∑
j=1

((y1)i − (y2)j )2 = BmaxR(y1,y2)|B=J ,

which is rewritten as

R(y1,y2)

Bmax
� m

n∑
i=1

(y1)2
i + n

m∑
j=1

(y2)2
j − 2

n∑
i=1

(y1)i

m∑
j=1

(y2)j

= m‖y1‖2 + n‖y2‖2 − 2
(
uT

n y1
)(

uT
my2
)
.

3Since uT
n x1 = 0 and uT

mx2 = 0, it follows from (A4) that{
uT

n Bn×mx2 = 0
uT

m(BT )m×nx1 = 0.

Thus, the scalar uT
n Bx2 = xT

2 (uT
n B)T = xT

2 BT un = 0 (and similarly
uT

mBT x1 = xT
1 Bum = 0) and these scalar products are compatible

with the regularity condition (8).
4Combining one of the equations in (A6) and the quadratic form

(6) alternatively leads to (12). If xT
1 x1 = 1

2 = xT
2 x2, then it must hold

that μ(Q1) − μ(Q2) = μ∗
N

(n − m).
5Since xT

1 Bx2 = xT
2 BT x1, a non-negative ζ also follows from (A6)

after multiplying both equations.

Given the constraint on the norm, ‖y1‖2 + ‖y2‖2 = ‖y‖2 = 1
implying that ‖y1‖2 � 1 and ‖y2‖2 � 1, then

R(y1,y2)

Bmax
� N − 2

(
uT

n y1
)(

uT
my2
)
.

If either y1 is orthogonal to un (thus uT
n y1 = 0) or uT

my2 = 0
as in any other eigenmode of Q (Corollary 1), we observe that
the right-hand side reduces to

R(y1 ,y2)

Bmax
� N . On the other hand,

if y1 = αun and y2 = βum as in Theorem 3 where αβ = − 1
N

,
the right-hand side is maximized,

R(αun,Bum)

Bmax
� N + 2

nm

N
� 3

2
N

because6 2nm
N

� N
2 . Hence, we conclude that, among

all eigenmodes of Q and, hence,7 among all possi-
ble normalized vectors y = (yT

1 ,yT
2 )

T
, the eigenmode x =

1√
N

[
√

m
n
uT

n −√ n
m

uT
m]

T
belonging to the eigenvalue μ∗

in Theorem 3 can obtain the highest possible coupling
energy. �

APPENDIX B: m-FOLD INTERCONNECTED NETWORK

We extend the analysis to m interconnected networks with
adjacency matrix

A =

⎡
⎢⎢⎢⎢⎣

A1 B12 B13 · · · B1m

B21 A2 B23 · · · B2m

B31 B32 A3 · · · B3m

...
...

...
. . .

...
Bm1 Bm2 Bm3 · · · Am

⎤
⎥⎥⎥⎥⎦,

where Ak is the adjacency matrix of the graph Gk with nk

nodes and Bij is the ni × nj matrix interconnecting Gi and Gj .
The total number of nodes in G is N =∑m

k=1 nk . We confine
ourselves to symmetric adjacency matrices A = AT as well as
AT

k = Ak for any subgraph Gk of G. One of the consequences
of symmetry is that (Bji)nj ×ni

= BT
ij and Bjj = Onj ×nj

. The
corresponding Laplacian Q = � − A of G equals

Q =

⎡
⎢⎢⎢⎢⎣

Q1 + C1 −B12 −B13 · · · −B1m

−B21 Q2 + C2 −B23 · · · −B2m

−B31 −B32 Q3 + C3 · · · B3m

...
...

...
. . .

...
−Bm1 −Bm2 −Bm3 · · · Qm + Cm

⎤
⎥⎥⎥⎥⎦,

(B1)

where the diagonal matrix Ck = diag(
∑m

j=1 (Bkjunj
)
q
) and

unk
is the nk × 1 all-one vector. The Laplacian Qk = �k − Ak

of subgraph Gk has diagonal elements equal to the degree of
its nodes, which is the number of intralinks incident to a node,
without the interconnection links that are specified by the Ck

matrix.

6Combine N 2 = (n + m)2 and (m − n)2 � 0.
7Each N × 1 vector y can be written as a linear combination of

eigenvectors of Q.
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The block vector y = (yT
1 ,yT

2 , . . . ,yT
m)

T
is normalized so

that yT y = 1 and
m∑

j=1

yT
j yj = 1. (B2)

Theorem 6. Let y = (yT
1 ,yT

2 , . . . ,yT
m)

T
be any real vector,

then the quadratic form yT Qy of the Laplacian (B1) of

m interconnected networks equals

yT Qy =
m∑

i=1

yT
i Qiyj + Rm, (B3)

where

Rm =
m∑

i=1

yT
i Ciyj −

m∑
i=1

m∑
j=1

yT
i Bij yj =

m∑
i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(Bij )rq{(yi)r − (yj )q}2, (B4)

which is always non-negative because Bij � 0.
Proof. The quadratic form yT Qy is

yT Qy = [yT
1 yT

2 · · · yT
m

]
⎡
⎢⎢⎣

Q1 + C1 −B12 · · · −B1m

−B21 Q2 + C2 · · · −B2m

...
...

. . .
...

−Bm1 −Bm2 · · · Qm + Cm

⎤
⎥⎥⎦
⎡
⎢⎢⎣

y1

y2
...

ym

⎤
⎥⎥⎦

= [yT
1 yT

2 · · · yT
m

]
⎡
⎢⎢⎢⎣

(Q1 + C1)y1 −∑m
j=2 B1j yj

(Q2 + C2)y2 −∑m
j=1;j �=2 B2j yj

...
(Qm + Cm)ym −∑m−1

j=1 Bmjyj

⎤
⎥⎥⎥⎦

=
m∑

i=1

yT
i (Qi + Ci)yi −

m∑
i=1

m∑
j=1;j �=i

yT
i Bij yj .

With the convention that Bjj = O, the quadratic form reads

yT Qy =
m∑

i=1

yT
i Qiyj +

m∑
i=1

yT
i Ciyj −

m∑
i=1

m∑
j=1

yT
i Bij yj .

Since (yT
i Bij yj )

T = yT
j BT

ij yi = yT
j Bjiyi and a scalar satisfies (yT

i Bij yj )
T = yT

i Bij yj , we have that yT
i Bij yj = yT

j Bjiyi and

m∑
i=1

m∑
j=1

yT
i Bij yj = 2

m∑
i=1

i−1∑
j=1

yT
i Bij yj = 2

m∑
i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(
Bij

)
rq

(yi)r
(
yj

)
q
.

Moreover,

m∑
i=1

yT
i Ciyi =

m∑
i=1

yT
i diag

⎛
⎝ m∑

j=1

(Bijunj
)q

⎞
⎠yi =

m∑
i=1

m∑
j=1

yT
i

⎛
⎝diag

⎛
⎝ nj∑

q=1

(
Bij

)
rq

⎞
⎠

r

⎞
⎠yi =

m∑
i=1

m∑
j=1

ni∑
r=1

nj∑
q=1

(
Bij

)
rq

(yi)
2
r

=
m∑

i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(
Bij

)
rq

(yi)
2
r +

m∑
i=1

m∑
j=i

ni∑
r=1

nj∑
q=1

(
Bij

)
rq

(yi)
2
r

and

m∑
i=1

m∑
j=i

ni∑
r=1

nj∑
q=1

(Bij )rq(yi)
2
r =

m∑
j=1

j∑
i=1

ni∑
r=1

nj∑
q=1

(Bij )rq(yi)
2
r =

m∑
i=1

i∑
j=1

nj∑
r=1

ni∑
q=1

(Bji)rq(yj )2
r

=
m∑

i=1

i∑
j=1

ni∑
q=1

nj∑
r=1

(Bij )qr (yj )2
r =

m∑
i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(Bij )rq(yj )2
q .
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Combining all,

m∑
i=1

yT
i Ciyj −

m∑
i=1

m∑
j=1

yT
i Bij yj =

m∑
i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(Bij )rq
{
(yi)

2
r + (yj )2

q − 2(yi)r (yj )q
}

=
m∑

i=1

i−1∑
j=1

ni∑
r=1

nj∑
q=1

(Bij )rq
{
(yi)r − (yj )q

}2
,

which is (B4). Finally, the quadratic form is (B3). �
If y = xN = u√

N
(and thus yi = uni√

N
) is the eigenvector belonging to the zero eigenvalue of Q, then QxN = 0 expresses that

the row sum of any Laplacian is zero. Since all terms in (B3) are non-negative, we conclude each term must be zero. We know
that yT

i Qiyj = 0 if yi = αiuni
for an arbitrary constant αi . However, Rm in (B4) is only zero, if each term in the sum in (B4) is

zero, which requires that each yi = 1√
N

uni
, consistent with xN = u√

N
.

Nontrivial eigenvector and eigenvalue solution

The goal in this section is to generalize Theorem 3 to an
m-layer interconnected graph. If each interconnection matrix
Bij is regular (i.e., with constant row sum and constant column
sum), then the m × m quotient matrix Qπ follows from Q in
(B1), in which each block matrix is replaced by a real number
equal to the row sum of that block matrix. All eigenvalues of
Qπ (and corresponding eigenvectors, after a transformation
by the community matrix S as shown in Sec. III A) are also
eigenmodes of Q.

In particular, if yi = αiuni
for an arbitrary constant αi as

suggested by Theorem 3, then yT
i Qiyj = 0, but Rm is then

positive, equal to yT Qy > 0, and

Rm =
m∑

i=1

i−1∑
j=1

{αi − αj }2
ni∑

r=1

nj∑
q=1

(Bij )rq

=
m∑

i=1

i∑
j=1

{αi − αj }2uT
ni
Bijunj

.

The normalization (B2) of the y vector then indicates that

m∑
j=1

α2
i ni = 1, (B5)

which represents a ellipsoid in the m-dimensional space around
the origin. If y is an eigenvector, then the orthogonality of
eigenvectors requires that yT u = 0,

m∑
j=1

αini = 0 (B6)

represent a plane through the origin and orthogonal to the
vector (n1,n2, . . . ,nm) containing the sizes (number of nodes)
in the subgraphs of G. The intersection of the ellipsoid (B5) and
the plane (B6) determines the possible vectors (α1,α2, . . . ,αm).

Before proceeding, we must verify whether y =
(α1u

T
n1

,α2u
T
n2

, . . . ,αmuT
nm

) with not all αi constant or zero

can be an eigenvector of Q that satisfies Qy = μy for some
positive μ. We execute Qy,

⎡
⎢⎢⎢⎣

Q1 + C1 −B12 · · · −B1m

−B21 Q2 + C2 · · · −B2m

...
...

. . .
...

−Bm1 −Bm2 · · · Qm + Cm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

α1un1

α2un2

...
αmunm

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

α1C1un1 −∑m
j=2 B1jαjunj

α2C2un2 −∑m
j=1;j �=2 B2jαjunj

...

αmCmunm
−∑m−1

j=1 Bmjαjunj

⎤
⎥⎥⎥⎥⎦.

With

Ckunk
= diag

⎛
⎝ m∑

j=1

(Bkjunj
)q

⎞
⎠unk

=
m∑

j=1

diag((Bkjunj
)q)unk

=
m∑

j=1

Bkjunj

we find that block row k equals

αkCkunk
−

m∑
j=1

Bkjαjunj
=

m∑
j=1

(αk − αj )Bkjunj
.

Let us assume that αk �= 0, because there must be at least of
the αj be different from zero (and not all αj = c). In order
for this kth block vector to be the kth block eigenvector of Q,
there must hold, for some nonzero ξ , that8

m∑
j=1

(
αk − αj

)
Bkjunj

= ξαkunk
.

This requirement is, in general, difficult to verify.
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