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Various real-world networks interact with and depend on each other. The design of the interconnection between
interacting networks is one of the main challenges to achieve a robust interdependent network. Due to cost
considerations, network providers are inclined to interconnect nodes that are geographically close. Accordingly,
we propose two topologies, the random geographic graph and the relative neighborhood graph, for the design of
interconnection in interdependent networks that incorporates the geographic location of nodes. Differing from the
one-to-one interconnection studied in the literature, one node in one network can depend on an arbitrary number
of nodes in the other network. We derive the average number of interdependent links for the two topologies,
which enables their comparison. For the two topologies, we evaluate the impact of the interconnection structure
on the robustness of interdependent networks against cascading failures. The two topologies are assessed on the
real-world coupled Italian Internet and the electric transmission network. Finally, we propose the derivative of
the largest mutually connected component with respect to the fraction of failed nodes as a robustness metric.
This robustness metric quantifies the damage of the network introduced by a small fraction of initial failures well
before the critical fraction of failures at which the whole network collapses.
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I. INTRODUCTION

In the real world, most networks are interdependent.
For example, power networks depend on communication
networks, where each node in a communication network
controls one or more nodes in a power network, while
each communication node needs power to function [1].
Most infrastructures are interdependent networks, such as
transportation networks, communications, and energy supply
networks. An interdependent network is a network consisting
of different types of networks that interact with each other via
interconnected links [2].

In interdependent networks, a cascade of failures leads to
the first-order (discontinuous) percolation transition, whereas
a second-order (continuous) phase transition characterizes the
collapse of a single network [3,4]. Some types of interdepen-
dent networks also feature a structural transition [5] between
distinguishable and nondistinguishable network components.
The exact transition threshold for such a structural transition
is determined in Ref. [6]. Most previous studies are restricted
to a one-to-one interdependency between networks, where
one-to-one interdependency means that one node in one
network connects to one and only one node in the other
network and vice versa. Boccaletti et al. [4] introduce models
that enable nodes in one network to connect to multiple
nodes in the other network, with a given degree sequence
for interconnections. Moreover, the location of the nodes is
not considered when designing the interconnection between
interdependent networks, although connecting geographically
close nodes is less costly than connecting those that are far
from each other.

We propose two topologies, the random geometric graph
and the relative neighborhood graph, that incorporate the
location of nodes for the design of interconnection in inter-
dependent networks. The advantages of the models are that (i)

*Corresponding author: xiangrongwang88@gmail.com

the interdependency is generalized from one-to-one to one-to-
many interconnectionsand (ii) the sizes of the interdependent
networks are not necessarily equal.

We derive the average number of links for the two
topologies which enables the comparison between simulations
performed on them. For the two topologies, we investigate
the impact of the interconnection structure on the robustness
of the network under node failures. The size of the largest
mutually connected component (the number of functioning
nodes) is employed as a robustness metric. In addition, we
propose the derivative of the largest mutually connected
component with respect to the fraction of failed nodes as a new
robustness metric. The proposed robustness metric quantifies
the damage on the whole network triggered by a small fraction
of nonfunctioning nodes.

The paper is organized as follows. Section II illustrates
two interconnection topologies that incorporate the location
of nodes. Section III presents the cascading failures in
interdependent networks. The simulation results are presented
in Sec. IV and Sec. V concludes the paper.

II. REGION-BASED INTERDEPENDENCY

Consider an interdependent graph G(N,L) with N nodes
and L links consisting of two graphs G1 and G2. The adjacency
matrix A of G can be written as

A =
[

(A1)n×n Bn×m(
BT

)
m×n

(A2)m×m

]
, (1)

where A1 is the n × n adjacency matrix of the graph G1 with n

nodes, A2 is the m × m adjacency matrix of the graph G2 with
m nodes, and B is the n × m interconnection matrix connecting
G1 and G2. The total number of nodes in G is N = n + m. The
interaction between networks G1 and G2 completely relies on
the interconnection matrix B. The design of B is, therefore,
crucial for the interdependent networks to function properly
as a whole.
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FIG. 1. Two topologies for B: (a) random geometric graph and
(b) relative neighborhood graph. Since there is no third node in the
intersection region (marked as yellow), nodes i and j are connected.
Nodes from G1 are represented with filled circles, whereas nodes
from G2 are represented with unfilled circles.

In this paper, we propose two topologies for the intercon-
nection matrix B incorporating the geographical location of
nodes. Associating each node with a coordinate, we analyze
the interconnection matrix B with elements bij in the following
two ways: bij = 1 if

(1) Random geometric graph [7]: the Euclidean distance
dij between node i and node j is smaller than a given
threshold r;

(2) Relative neighborhood graph [8]: there is no third
node in the intersection region of two circles with centers
at nodes i and j with the same radius equal to their Euclidean
distance dij .

Figure 1 shows the two topologies of the interconnection
matrix B.

A. Random geometric graph

A random geometric graph, denoted as Gpij
(N ), consists

of N nodes and two nodes i and j are connected by a link
with probability pij . Consider N independent and identically
distributed nodes in a two-dimensional square with size Z.
Any square with size Z can be normalized [9] to a unit square

i j

x

y

(xi, yi)

1

1(0,0)

(xj, yj)

FIG. 2. Node coordinate.

(Z = 1) without changing the probability pij . For simplicity,
we consider a unit square with size Z = 1. Let (xi,yi) and
(xj ,yj ) be the coordinates for nodes i and j as illustrated in
Fig. 2. Let r � 0 be a non-negative and real number which is
referred to as the radius of a node. The probability pij (r) =
Pr[dij � r] is the probability that the Euclidean distance dij =√

(xi − xj )2 + (yi − yj )2 between two uniformly distributed
nodes i and j is less than or equal to the radius r . The maximum
Euclidean distance between two nodes in a two-dimensional
square with size Z = 1 is

√
2. When r �

√
2, the probability

for nodes i and j being connected is pij = 1 and, thus, the
graph Gpij

(N ) is a complete graph KN .
In Sec. II A 1, we prove a theorem for pij in a general

random geometric graph in a two-dimensional square with
size Z = 1.

1. Probability pi j of having a link between nodes i and j

Theorem 1. The probability pij (r) that there is a link lij
between nodes i and j in a random geometric graph in a
two-dimensional unit square is

pij (r) =
{

πr2 − 8
3 r3 + 1

2 r4 0 � r � 1
1
6

{ − 3r4 + (16r2 + 8)
√

r2 − 1 + 12r2
[

arctan
(

2−r2

2
√

r2−1

) − 1
] + 2

}
1 � r �

√
2

.

Proof. The probability pij (r) that there is a link lij between nodes i and j in a square with size Z = 1 is

pij (r) = Pr[(xi − xj )2 + (yi − yj )2 � r2].

Let Z1 = |X1 − X2| and Z2 = |Y1 − Y2| be random variables. The probability distribution function for Z1 is, when 0 � z1 � 1,

F (z1) = Pr[−z1 � X1 − X2 � z1].

Since X1 and X2 are independent uniform random variables, we obtain

Pr[X1 − X2 � z1] =
∫ 1−z1

0

∫ x2+z1

0
dx1dx2 +

∫ 1

1−z1

∫ 1

0
dx1dx2 = 1

2

(
1 − z2

1

) + z1.

Analogously,

Pr[X1 − X2 � −z1] = 1
2 (z1 − 1)2.

With F (z1) = Pr[X1 − X2 � z1] − Pr[X1 − X2 � −z1], we arrive at

F (z1) = −z2
1 + 2z1.
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The probability density function f (z1) = F ′(z1) follows, when 0 � z1 � 1,

f (z1) = 2(1 − z1).

Since Z1 and Z2 are independent and identically distributed, we have

Pr
[
(xi − xj )2 + (yi − yj )2 � r2] =

∫∫
z1

2+z2
2�r2

f (z1)f (z2)dz1dz2.

For 0 � r � 1, we have, after transformation to polar coordinates,

Pr[(xi − xj )2 + (yi − yj )2 � r2] =
∫ r

0

∫ √
r2−z2

2

0
f (z1)f (z2)dz1dz2 = πr2 − 8

3
r3 + 1

2
r4. (2)

Similarly, we find, for 1 < r �
√

2,

Pr[(xi − xj )2 + (yi − yj )2 � r2] =
∫ 1

0

∫ √
r2−1

0
f (z1)f (z2)dz1dz2 +

∫ 1

√
r2−1

∫ √
r2−z2

1

0
f (z1)f (z2)dz1dz2

= 1

3
+ 2r2

[
arctan

(
2 − r2

2
√

r2 − 1

)
− 1

]
+ 8r2 + 4

3

√
r2 − 1 − 1

2
r4. (3)

Combining (2) and (3) establishes Theorem 1. �
Figure 3 shows the probability pij as a function of the radius

r in a random geometric graph Gpij
(N ) with N = 104 nodes.

The simulation shows an excellent agreement with Theorem 1.
From Theorem 1, the average number of links for a random

geometric graph with N nodes is E[L] = (
N

2

)
pij (r).

B. Relative neighborhood graph

A relative neighborhood graph, denoted as RNG(N ),
consists of N nodes and two nodes i and j are connected if
dij � max(dik,djk) for all the other nodes k = 1,2, . . . ,N, k �=
i,j . Figure 4 shows a set of N nodes in a two-dimensional
square with size Z = 1 and its relative neighborhood graph.
In Sec. II B 1, we prove a theorem for the lower bound of the
probability pij of nodes i and j being connected in a general
relative neighborhood graph.

1. Probability pi j of having a link between nodes i and j

Theorem 2. The probability pij that for a relative neigh-
borhood graph there is a link lij between nodes i and j in a

FIG. 3. The probability pij (r) that nodes i and j are connected as
a function of the radius r in a random geometric graph with N = 104

nodes.

two-dimensional square with size Z = 1 is lower bounded by

pij � πcN + 1

c2N (N − 1)
− 2

√
π�(N − 1)

c
3
2 �

(
N + 1

2

) , (4)

where c = ( 2π
3 −

√
3

2 ) and �(x) is the gamma function.
Proof. Given a pair of nodes i and j uniformly distributed

in the square with size Z = 1, let A be the random variable
for the area of the intersection region [marked as yellow in
Fig. 1(b)] of two circles centered at nodes i and j and with dij

as the radius. For a two-dimensional square with size Z = 1,
the area of the square is 1. The probability pij that nodes i

and j being connected equals the probability that all the other
N − 2 nodes are not in the intersection region A:

pij = (1 − A)N−2.

Using the law of total probability [10], we have

pij =
∫ 1

0
(1 − x)N−2fA(x)dx, (5)

where fA(x) is the probability density function of A. The
probability distribution function for the variable A is

FA(x) = Pr[A � x].

Let D be the random variable of the distance between
two nodes. The area [11] of the intersection of two circles

FIG. 4. An example of (a) a set of N nodes and its (b) relative
neighborhood graph.
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can be computed by D2c, where c = ( 2π
3 −

√
3

2 ). When the
intersection is completely in the two-dimensional unit square,
it holds that A = D2c. When the intersection is partially in the
unit square, we have, for ε > 0, that A + ε = D2c and, hence,

FA(x) = Pr[D2c − ε � x] � Pr[D2c � x].

Applying D2 = (xi − xj )2 + (yi − yj )2 and r2 = x
c

< 1 in (2)
yields

Pr[D2c � x] = πx

c
− 8

3

(x

c

) 3
2 + 1

2

(x

c

)2
.

The probability distribution function is lower bounded by

FA(x) � πx

c
− 8

3

(x

c

) 3
2 + 1

2

(x

c

)2

from which

fA(x) � π

c
− 4

( x

c3

) 1
2 + x

c2
.

Thus, we have for (5)

pij �
∫ 1

0
(1 − x)N−2

[
π

c
− 4

( x

c3

) 1
2 + x

c2

]
dx. (6)

Using the Beta function B(x,y) = ∫ 1
0 ux−1(1 − u)y−1du =

�(x)�(y)
�(x+y) in (6), we establish Theorem 2. �

It has been shown [8] that the relative neighborhood graph
is a superset of the minimum spanning tree. The number L

of links in the relative neighborhood graph with N nodes is
bounded [8] by

N − 1 � L � 3N − 6. (7)

Hence, the link density p = L

(N

2 )
for a relative neighborhood

graph is bounded by 2
N

� p � 6(N−2)
N(N−1) , which shows that the

relative neighborhood graph is a sparse graph: the larger the
size N of the graph, the sparser the graph is. From Theorem 2,
we deduce the lower bound for the average number E[L] of
links

E[L] �
(

N

2

)
pij . (8)

A different lower bound for E[L] is presented in Ref. [12],

E[L] � 0.689N. (9)

Figure 5 shows the average number of links E[L] for
RNG(N ) with N ranging from 50 to 200. Figure 5 shows
that our bound (8) is close to the simulations and outperforms
bound (9).

III. CASCADING FAILURES IN INTERDEPENDENT
NETWORKS

When nodes in one network fail, the interconnection
structure between two networks causes dependent nodes in
the other network also to fail. This may happen recursively
and may invoke a cascading failure until no more nodes fail.
In this section, we investigate the impact of interconnection
topologies on the robustness of interdependent networks
against cascading failures. The robustness is quantified by (i)
the Largest Mutually Connected Component (LMCC) and (ii)

FIG. 5. Number of links for RNG(N ) with N ranging from 50
to 200.

a derivative of the largest mutually connected component with
respect to the fraction of removed nodes.

A. Largest mutually connected component

Differing from the models [3,13,14] where a node from
one network depends on one and only one node from the
other network (one-to-one interconnection), we generalize the
interconnection pattern to one-to-many: A node might depend
on zero or one or more than one node depending on the distance
to other nodes.

In our model, we assume a node n1 in network G1 to be
functional if (i) its interdependent nodes in network G2 are
functioning and (ii) the node belongs to the giant component
of the functional nodes in network G1. Since a node n1 in
G1 may have more than one support node in G2, we assume
two scenarios for n1 being supported by nodes in G2: (i) at
least one of the supported nodes in G2 is functioning and
(ii) all of its supported nodes in G2 are functioning. The same
assumptions are applied to the nodes in network G2.

A random removal of a fraction 1 − q of nodes in network
G1, on one hand, isolates nodes in network G1 and, on the
other hand, causes nodes in network G2 to fail because of
the removed interconnected nodes in G1. The failed nodes
in network G2 isolate nodes from the giant component in
networks G2. The isolated nodes in G2 further introduce
failures in G1 and so on. The cascading failures continue
until no more nodes fail. The remaining set of functional
nodes is referred to as the LMCC. We assume, without loss of
generality, that the fraction 1 − q of nodes is removed from
graph G1.

1. Algorithm description

The metacode for computing the largest mutually connected
component is given in Algorithm 1. The main algorithm
starts at line 3 where n is the number of realizations of G.
Lines 4 to 16 generate an interdependent graph G consisting
of either two Erdős-Rényi (ER) graphs or two Barabási-Albert
(BA) graphs. The interconnection topology is either the
random geometric graph (RGG in line 12) or the relative
neighborhood graph (RNG in line 14). From line 17 to line
22, we compute the largest mutually connected component
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Algorithm 1. AverageLMCC

1: Input: Sizes N1 and N2 for graphs G1 and G2, respectively; The parameter graph specifies G1 and G2 to be ER graphs with link
density p or BA graphs with m; The parameter interconnection specifies B to be RGG with radius r or RNG.

2: Output: Average of the LMCC over n graph instances.
3: for i=1 to n do
4: if graph = ER then
5: G1 ← ER(N1,p) {generate an ER graph where nodes are connected with probability p }
6: G2 ← ER(N2,p)
7: else if graph = BA then
8: G1 ← BA(N1,m) {generate a BA graph where a new node with m links preferentially connects to high degree nodes}
9: G2 ← BA(N2,m)

10: end if
11: if interconnection = RGG then
12: B ← RGG(N1,N2,r) {N1 × N2 interconnection matrix where Bij = 1 if dij < r }
13: else if interconnection = RNG then
14: B ← RNG(N1,N2) {N1 × N2 interconnection matrix where Bij = 1 if dij � max(dik,djk) for all k = 1,2, . . . ,N, k �= i,j}
15: end if

16: G ← [G1 B

BT G2
]

17: N1 ← node labels of G1 in G

18: N2 ← node labels of G2 in G

19: for 1 − q = 0 to N1
N

step 0.01 do
20: endGraph ← CASCADING(G,1 − q,N1,N2)
21: T1−q ← |COMPONENT(endGraph,N1,N2)|
22: end for
23: LMCC[i] ← T

24: end for
25: return mean(LMCC)

after cascading failures triggered by 1 − q removals. Lines 23
and 25 average the largest mutually connected component over
n instances of G. The metacode for function CASCADING
(line 20) and COMPONENT (line 21) is given in Appendix A.

We elaborate on two special values of 1 − q, i.e., 0 and N1
N

.
For 1 − q = 0, we assume LMCC = 1. We encounter a special
scenario that there exists nodes without supporting nodes
before any removals, as shown in Fig. 6, due to their location
being far from nodes in the other network. We assume such
nodes are alive until they are isolated from their own network.
When 1 − q = N1

N
, the nodes in graph G1 are completely

removed. Nodes in G2 have no supporting nodes from G1 and
thus also fail. Hence, there is no largest mutually connected
component and LMCC = 0.

Figure 7 exemplifies Algorithm 1 when G1 and G2 are
complete graphs and the interconnection matrix is B = J ,
where J is the all one matrix representing all-to-all intercon-
nections. We assume that a node is alive if at least one of its

G1

G2

FIG. 6. An interdependent network with nodes having no inter-
connected nodes.

supporting nodes is alive. Figure 7 shows that when 1 − q = 0,
the interdependent network is fully connected and LMCC = 1.
With the increase of 1 − q removals, LMCC decreases linearly
with 1 − q. The slope of the line is −1. When 1 − q = N1

N
(0.5

in Fig. 7), the nodes in graph G1 are completely removed and
LMCC = 0.

B. Derivative for the largest mutually connected component

In the real world, a network that completely collapses is a
disaster for network providers. To avoid the disaster, under-
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FIG. 7. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are complete graphs and the interconnection matrix
is B = J .
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standing the impact of the failure of a relatively small fraction,
e.g., 10%, of nodes is significant for network providers.
We theoretically approach the robustness of interdependent
networks under a small fraction of failures by investigating
the derivative of the largest mutually connected component
close to 1 − q = 0. We suggest that this derivative can be
used as a robustness measure of a network indicating the
extent of damage on networks when a small fraction of nodes
initially fails. The smaller the absolute derivative is, the higher
robustness the network exhibits.

Starting from the derivative in a single network in
Sec. III B 1, we move step by step towards the derivative in
interdependent networks with one-to-many interconnection in
Sec. III B 3.

1. Derivative of the largest connected component
for a single network

Given the probability generating function ϕD(z) of the
degree D of an arbitrary node, the probability generating
function ϕ(Dl+−1) of the degree of an end node l+ reached

by following an arbitrarily chosen link l is ϕ′
D (z)

ϕ′
D(1) , see Ref. [10].

Let ϕCl+ (z) be the generating function of the size Cl+ of
components that are reached by following a random link l

towards one of its end nodes l+. If we choose a random
node n in G and let n = l−, then we reach a component with
generation function ϕCn

(z) by following the link l towards the
other end node l+. If a node in the graph is occupied uniformly
at random with probability q, then the probability generating
functions ϕCl+ (z) and ϕCn

(z) follow [10]

ϕCl+ (z) = 1 − q + qzϕ(Dl+−1)[ϕCl+ (z)]

ϕCn
(z) = 1 − q + qzϕD[ϕCl+ (z)].

Let S be the fraction of nodes in the largest connected
component. Since ϕCn

(z) generates the probability distribution
of Cn excluding the giant component and with ϕCn

(1) = 1, we
have that [10]

S = 1 − ϕCn
(1) = q − qϕD[ϕCl+ (1)],

where

ϕCl+ (1) = 1 − q + qϕ(Dl+−1)[ϕCl+ (1)]. (10)

The derivative of the largest connected component S with
respect to q is

dS

dq
= 1 − ϕD(u) − qϕ′

D(u)u′,

where u = ϕCl+ (1). The derivative of (10) follows

u′ = ϕ(Dl+−1)(u) + qϕ′
(Dl+ −1)(u)u′ − 1.

Combining u+q−1
q

= ϕ(Dl+−1)(u) = ϕ′
D (z)

ϕ′
D(1) and ϕ′

D(1) = E[D],
we arrive at

dS

dq
= S

q
− E[D](u − 1)(u − 1 + q)

q[1 − qϕ′
(Dl+ −1)(u)]

. (11)

When graph G is a large ER random graph, there holds to a
good approximation [10, p. 39] that ϕD(z) = ϕ(Dl+−1)(z) =

FIG. 8. Largest connected component as a function of the fraction
of removed nodes in Erdős-Rényi graphs Gp(N ).

eE[D](z−1). In that case, the derivative dS
dq

in (11) can be
simplified, with u = 1 − S, to

dS

dq
= S

q(1 − E[D](q − S))
.

Figure 8 shows the straight line y = − dS
dq

|
1−q= 1

N

(1 − q) + 1

and simulations of the largest mutually connected component.
The straight line with slope − dS

dq
|
1−q= 1

N

shows a good

estimation for the largest mutually connected component when
a small fraction 1 − q of nodes is removed.

2. Derivative for interdependent networks with one-to-one
interconnection

Let uA = ϕCl+ (1) for graph G1 and uB = ϕCl+ (1) for graph
G2. For interdependent networks with one-to-one interconnec-
tion, we have

uA = ϕ(Dl+−1)[1 − q(1 − uB)(1 − uA)]. (12)

Analogously,

uB = ϕ(Dl+−1)[1 − q(1 − uA)](1 − uB).

A randomly chosen node in G1 belongs to the largest mutually
connected component if (i) the node is occupied with prob-
ability q, (ii) the node with probability 1 − ϕCG1

(1) belongs
to the giant component in G1, and (iii) the corresponding
dependent node with probability 1 − ϕCG2

(1) belongs to the
giant component in G2. When graphs G1 and G2 are two large
ER random graphs Gp(N ) with approximate Poisson degree
distribution, we have ϕD(z) = ϕ(Dl+−1)(z) = eE[D](z−1). Thus,
ϕCG1

(1) = uA and ϕCG2
(1) = uB . The fraction S of nodes in

the largest mutually connected component follows

S = q(1 − uA)(1 − uB), (13)

where

uA = e−qE[D](uA−1)(uB−1),

uB = e−qE[D](uA−1)(uB−1). (14)
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FIG. 9. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Erdős-Rényi random graphs Gp(N ) with N = 50
and the average degree E[D] = 6. The interdependency is one to
one. The results are averaged over 104 realizations of interdependent
graphs.

The derivative of the largest mutually connected component
with respect to q in (13) is

dS

dq
= (1 − uA)(1 − uB)

−q

[
(1 − uB)

duA

dq
+ (1 − uA)

duB

dq

]
.

The derivative for uA in (12) follows as

duA

dq
=

−ϕ′
(Dl+ −1)(uA)(1 − uA)2

1 − 2q(1 − uA)ϕ′
(Dl+−1)(uA)

.

For ER random graphs, we have that ϕ′
(Dl+−1)(uA) = E[D]uA.

Thus,

duA

dq
= −E[D]uA(1 − uA)2

1 − 2quA(1 − uA)E[D]
.

With (1 − uA)(1 − uB) = S
q

and uA = uB from (14), we arrive
at

dS

dq
= S

q(1 − 2E[D](
√

Sq − S))
. (15)

Figure 9 shows the straight line y = − dS
dq

|
1−q= 1

N

(1 − q) + 1

with slope computed from (15) and simulations of the largest
mutually connected component for coupled ER random graphs
Gp(N ). Again, the straight line with slope − dS

dq
|
1−q= 1

N

shows a

good estimation for the largest mutually connected component
when a small fraction 1 − q of nodes is removed.

3. Fraction of largest mutually connected component
with one-to-many interconnections

Assume that a node is alive if at least one of its interdepen-
dent nodes is alive. Theorem 3 presents the fraction S1 and S2

of the largest mutually connected component for network G1

and G2, respectively.
Theorem 3. Consider an interdependent network consisting

of two graphs G1 and G2. The interconnection topology

between graphs G1 and G2 is the random geometric graph.
The fraction Si (i = 1,2) of the largest mutually connected
component as a function of 1 − q removals is approximated by

S1 = q
[
1 − ϕCG1

(1)
]{1 − (1 − pij )[1−ϕCG2

(1)]N }, (16)

S2 = [
1 − ϕCG2

(1)
]
[1 − (1 − pij )q[1−ϕCG1

(1)]N ], (17)

with

ϕCG1
(1) = ϕDG1

{1 − q[1 − (1 − pij )(1−uB )N ](1 − uA)}
ϕCG2

(1) = ϕDG2
{1 − [1 − (1 − pij )q(1−uA)N ](1 − uB)}

and

uA = ϕ(Dl+−1){1 − q[1 − (1 − pij )(1−uB )N ](1 − uA)}
uB = ϕ(Dl+−1){1 − [1 − (1 − pij )q(1−uA)N ](1 − uB)},

where pij is the probability that there is a link lij between
node i in graph G1 and node j in graph G2. 1 − ϕCG1

(1) is the
fraction of nodes belonging to the giant component in graph
G1 and 1 − ϕCG2

(1) in graph G2.
Proof. For network G1, a node i is occupied with proba-

bility q. The node i is supported with at least one node with
probability 1 − (1 − pij )(1−uB )N , where (1 − pij )(1−uB )N is the
probability that node i does not connect to any nodes in the
giant component in graph G2. Therefore, (12) is modified to

uA = ϕ(Dl+−1){1 − q[1 − (1 − pij )(1−uB )N ](1 − uA)}.
Analogously, for network G2,

uB = ϕ(Dl+−1){1 − [1 − (1 − pij )q(1−uA)N ](1 − uB)}.
Since we do not remove nodes from graph G2 at the
beginning of the removal, nodes in graph G2 are occupied
with probability 1. After cascading failures, a node in G1

is in the largest mutually connected component if (i) the
node is occupied with probability q, (ii) the node with
probability 1 − ϕCG1

(1) belongs to the giant component in
G1, and (iii) at least one of the corresponding dependent
node with probability {1 − (1 − pij )[1−ϕCG2

(1)]N } belongs to
the giant component in G2. A node in G2 is in the largest
mutually connected component if (i) the node with probability
1 − ϕCG2

(1) belongs to the giant component in G2 and (ii)
at least one of the corresponding dependent nodes with
probability [1 − (1 − pij )q[1−ϕCG1

(1)]N ] belongs to the giant
component in G1. �

When graphs G1 and G2 are two large ER random graphs
with ϕD(z) = ϕ(Dl+−1)(z) = eE[D](z−1), (16) and (17) can be
simplified to

S1 = q(1 − uA)[1 − (1 − pij )(1−uB )N ], (18)

S2 = (1 − uB)[1 − (1 − pij )q(1−uA)N ], (19)

with

uA = eE[D1]q[1−(1−pij )(1−uB )N ](uA−1),

uB = eE[D2][1−(1−pij )q(1−uA)N ](uB−1). (20)

Figures 10(a) and 10(b) show the simulation results and
S1 and S2 in (18) and (19) in coupled ER graphs with inter-
connection of random geometric graph with radius r = 0.2.
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FIG. 10. Largest mutually connected component as a function of the fraction of removed nodes in interdependent networks. The coupled
graphs are Erdős-Rényi graphs Gp(N ) with N = 50 and the average degrees E[D1] = 6 and E[D2] = 8. The interconnection topology is the
random geometric graph with r = 0.2. The results are averaged over 103 realizations of interdependent graphs.

Since uA and uB are functions of q, computing the derivatives
of uA and uB with respect to q in (20) is complicated. The
derivatives of S1 and S2 with respect to q in (18) and (19) are
even more complex. Therefore, we numerically compute the
derivative dSi

dq
(i = 1,2) based on (18) and (19). Figures 10(c)

and 10(d) show the simulation results and a straight line y =
− dSi

dq
|
1−q= 1

N

(1 − q) + 1(i = 1,2). In Figs. 10(c) and 10(d),

the straight line with slope − dSi

dq
(i = 1,2) obtained from

Theorem 3 shows a good approximation for the simulations
for a small fraction of removals.

For the assumption that a node is alive if all its dependent
nodes are alive, the results are given in Appendix B.

IV. SIMULATION RESULTS

In this section, we investigate the impact of two inter-
connection topologies, the random geometric graph and the
relative neighborhood graph, on the robustness of interdepen-
dent networks against cascading failures. The robustness is
quantified by the LMCC when a fraction 1 − q of nodes are
removed.

We simulate a twofold interdependent network consisting
of two ER graphs Gp(N ) or two BA graphs. We consider two
scenarios for a node being supported by the coupled network:
(i) at least one dependent node alive and (ii) all the dependent
nodes alive. Each node has randomly assigned coordinates
0 � xi � 1 and 0 � yi � 1.

A. Random geometric graph as interconnection

The interconnection topology between two graphs is the
random geometric graph with radius r . Figure 11 shows
the largest mutually connected component as a function of
the fraction 1 − q of the removed nodes from G1. The
interdependent network consists of two Erdős-Rényi graphs
Gp(N ) with N = 50 and the average degree E[D] = 6. We
assume a node is supported by its interconnected nodes when
at least one of the interconnected nodes is alive.

For a given radius r , the LMCC in Fig. 11 first decreases
almost linearly with the increase of the fraction of removed
nodes. Then, the LMCC experiences a first-order phase
transition which differs from second-order phase transition in
a single network also observed in Ref. [3] with one-to-one
interconnection. Moreover, the largest mutually connected
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FIG. 11. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Erdős-Rényi graphs Gp(N ) with N = 50 and the
average degree E[D] = 6. The radius r in the random geometric
graph is ranging from 0.1 to

√
2. The simulations are averaged over

the results from 1000 interdependent graphs.

component decreases with the decrease of the radius r . For
example, when a fraction 0.2 of nodes are removed, we have
LMCC = 0.79 for r = √

2 and LMCC = 0.69 for r = 0.1.
The reason is that with the decrease of r , a node tends to have
less interconnection nodes which increases the probability for
a node to fail due to the failures of its interconnection nodes.

Figure 12 shows the largest mutually connected component
as a function of the fraction of the removed nodes in coupled
Barabási-Albert graphs. We assume a node alive when at
least one of the interconnected nodes is alive. Coupled BA
graphs have less distinguishable LMCC for different radius
r compared to coupled ER graphs. The reason is twofold:
(i) BA graphs are robust to random failures and (ii) when we
increase the radius r , a node tends to have more than one
interconnections.
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FIG. 12. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Barabási-Albert with N = 500 and the average
degree E[D] = 6. The radius r in the random geometric graph
is ranging from 0.05 to

√
2. The results are averaged over 103

realizations of interdependent graphs.
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FIG. 13. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Erdős-Rényi graphs Gp(N ) with N = 50 and the
average degree E[D] = 6. The radius r in the random geometric
graph ranges from 0.1 to 0.16. The results are averaged over 103

realizations of interdependent graphs.

Figure 13 shows the largest mutually connected component
as a function of the fraction of the removed nodes in
coupled Erdős-Rényi graphs. A node is alive when all of
the interconnected nodes are alive. The LMCC in Figure 13
decreases dramatically fast with the increase of the fraction
of removed nodes. With the increase of the radius r , LMCC
decreases even faster. When r = 0.2, the failure of 2% of the
nodes collapses the whole interdependent network.

Figure 14 shows the largest mutually connected component
as a function of the fraction of the removed nodes in coupled
Barabási-Albert graphs. A node is alive when all of the
interconnected nodes are alive. For a small radius r , LMCC
decreases slowly with the increase of the fraction of removed
nodes because (i) BA graphs are robust to random failures and
(ii) failures are less likely propagating to another network with
small interconnections resulting from small r . However, for
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FIG. 14. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Barabási-Albert with N = 500 and the average
degree E[D] = 6. The radius r in the random geometric graph ranges
from 0.01 to 0.04. The results are averaged over 103 realizations of
interdependent graphs.
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FIG. 15. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Erdős-Rényi graphs Gp(N ) with N = 50 and
the average degree E[D] = 6. The interconnection topology is the
relative neighborhood graph. The results are averaged over 103

realizations of interdependent graphs.

a larger radius r , LMCC decreases fast with the increase of
removals 1 − q.

B. Relative neighborhood graph as interconnection

To compare the interconnection structure of the relative
neighborhood graph and the random geometric graph, we
simulate the two topologies with the same interlink density
derived in Theorems 1 and 2. Figures 15 and 16 show
the largest mutually connected component as a function of
the fraction 1 − q of the removed nodes in interdependent
networks. The interdependent network consists of two Erdős-
Rényi graphs with N = 50 and the average degree E[D] = 6
in Fig. 15 and consists of two Barabási-Albert graphs with
N = 500 and the average degree E[D] = 6 in Fig. 16.
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FIG. 16. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are Barabási-Albert graphs with N = 500 and the av-
erage degree E[D] = 6. The interconnection topology is the relative
neighborhood graph. The results are averaged over 103 realizations
of interdependent graphs.

For both the assumptions of at least one interdependent node
alive and all interdependent nodes alive, Fig. 15 shows that the
interconnection structure of the random geometric graph is
more robust compared to that of the relative neighborhood
graph. An explanation is that interconnected links are evenly
distributed in relative neighborhood graph, whereas in a
random geometric graph, the interconnected links might be
highly connect to few nodes depending on the location of
nodes.

In Fig. 16, the interdependent graph with coupled BA
graphs shows comparable results with coupled ER graphs.
Random geometric graph performs much better than a relative
neighborhood graph when at least one interlinks alive. For the
assumption of all interlinks alive, a random geometric graph
is also more robust than a relative neighborhood graph.

C. Real-world networks

To demonstrate the effectiveness of the two interconnection
topologies, we interconnect two real-world coupled infrastruc-
tures in Italy [1,15] by the random geometric graph and the
relative neighborhood graph and investigate their robustness
under cascading failures.

One network is the Italian high-bandwidth backbone of the
Internet consisting of N = 39 nodes and L = 50 links. The
other network is the Italian high-voltage electrical transmission
network consisting of N = 310 nodes and L = 347 links
(excluding the double links). Given the geographical locations
of the nodes in the Internet and in the electrical network, we
generate interconnection topologies of the random geometric
graph and the relative neighborhood graph as shown in
Figs. 17 and 18.

Figure 19 shows the largest mutually connected component
as a function of the fraction of removed nodes in coupled
real-world networks. The interconnection topologies are the
random geometric graph and the relative neighborhood graph
with the same link density. For the assumption of at least
one interlink alive, Figure 19 shows that the interconnection
topology of the random geometric graph is more robust than
that of the relative neighborhood graph. However, the relative
neighborhood graph is more robust than the random geometric
graph for the assumption of all interlinks alive.

FIG. 17. Coupled Italian electrical transmission network (blue)
and the Italian backbone of the Internet (red) with the interconnection
topology of the random geometric graph.
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FIG. 18. Coupled Italian electrical transmission network (blue)
and the Italian backbone of the Internet (red) with the interconnection
topology of the relative neighborhood graph.

V. CONCLUSION

In this paper, we investigate two interconnection topologies
for interdependent networks that incorporate the locations of
nodes. The two topologies generalize the one-to-one intercon-
nection to an arbitrary number of interconnections depending
on the locations of nodes. We analyze the properties of the two
topologies and the impact of the two interconnection structures
on robustness of interdependent networks against cascading
failures. Specifically, the derivation of the number of links
in the two topologies enables the comparison of robustness
performance between the two topologies. In particular, the
random geometric graph provides the flexibility for network
providers to determine the link density of interconnection in
order to achieve the desired robustness level. The relative
neighborhood graph, often used in wireless networks [16] to
provide optimal coverage with least energy consumption, as
an interconnection structure is less robust compared to the
random geometric graph.

In addition, we propose the derivative of the largest
mutually connected component as a new robust metric which
addresses the impact of a small fraction of failed nodes.
To avoid the collapse of the whole network, the proposed
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FIG. 19. Largest mutually connected component as a function
of the fraction of removed nodes in interdependent networks. The
coupled graphs are the Italian high-bandwidth backbone of the
Internet and the Italian high-voltage electrical transmission network.
The interconnection topologies are the random geometric graph and
the relative neighborhood graph with the same link density.

robustness metric quantifies the damage of networks triggered
by a small fraction of failures, significantly smaller than
the fraction at the critical threshold, that corresponds to the
collapse of the whole network.

ACKNOWLEDGMENT

This research is supported by the China Scholarship
Council. We thank T. M. Ouboter, D. T. H. Worm, and Huijuan
Wang for providing us the interdependent network data set of
Italy.

APPENDIX A: ALGORITHMS: CASCADING
AND COMPONENT

Algorithm 2 describes the function of cascading failures in
interdependent networks. Lines 3 to 5 initialize a flag vector
with flag = 1 if a node is not removed, otherwise flag = 0.
Lines 6 to 9 remove the desired fraction 1 − q of nodes and
set flag = 0 for removed nodes. Due to the interconnection
structure, the initial failures cause dependent nodes to fail
executed by lines 13 to 26. As specified in line 18, a node u

in G1 is removed if it does not belong to the largest mutually
connected component CG1 or it loses all the dependent nodes.
The same rule is applied for a node in G2 as shown in
line 23. Lines 18 and 23 correspond to the scenario of at
least one interdependent node alive. The failure of a node u

may introduce further failures and may invoke a cascading
failure (line 11 is true). The cascading process is terminated if
no more nodes fail and delNodes (in line 12) is not changed.
Line 28 returns the resulting graph after removing all the failed
nodes.

Algorithm 3 extracts the largest mutually connected com-
ponent from a given graph G. In line 3, we first obtain all
the connected components Ci of G with sizes in descending
order. Then lines 4 to 9 return the first connected component
that includes nodes both in G1 and G2.

APPENDIX B: ALL INTERLINKS ARE ALIVE

Theorem 4. Consider an interdependent network consisting
of two graphs G1 and G2. The interconnection topology
between graphs G1 and G2 is the random geometric graph.
Assume a node is alive when all of its interdependent nodes
are alive. The fraction Si(i = 1,2) of the largest mutually
connected component as a function of 1 − q removals is
approximated by

S1 = q
[
1 − ϕCG1

(1)
]

exp
[−pijNϕCG2

(1)
]
, (B1)

S2 = [
1 − ϕCG2

(1)
]

exp
{
pijN

[
q − qϕCG1

(1) − 1
]}

, (B2)

where

ϕCG1
(1) = ϕDG1

[1 − q exp(−pijNuB)(1 − uA)]

ϕCG2
(1) = ϕDG2

{1 − exp[pijN (q − quA − 1)](1 − uB)}
and

uA = ϕ(Dl+−1)[1 − q exp(−pijNuB)(1 − uA)]

uB = ϕ(Dl+−1){1 − exp[pijN (q − quA − 1)](1 − uB)},
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Algorithm 2. Function CASCADING(G, 1 − q,N1,N2)

1: Input: Graph G and fraction of removal 1 − q; Sets N1,N2 of nodes in G1 and G2, respectively
2: Output: endGraph: a graph after removing all the failed nodes from G

3: for each node u ∈ G do
4: flag[u] ← 1
5: end for
6: for i = 1 to �(1 − q)N� do
7: G ← G\{u1,u2, · · · ,ui} {ui is a randomly chosen node from graph G1}
8: flag[u1,u2, · · · ,ui] ← 0;
9: end for

10: delNodes ← 1
11: while delNodes �= 0 do
12: delNodes ← 0
13: for each node u ∈ G do
14: LMCC ← COMPONENT(G,N1,N2)
15: CG1 ← N1 ∩ LMCC
16: CG2 ← N2 ∩ LMCC
17: N [u] ← get neighbors of u

18: if u ∈ N1 and (u /∈ CG1 or N [u] ∩ CG2 = ∅) and flag[u]=1 then
19: endGraph ← G\{u}
20: flag[u] ← 0
21: delNodes ← 1
22: G ← endGraph
23: else if u ∈ N2 and (u /∈ CG2 or N [u] ∩ CG1 = ∅) and flag[u]=1 then
24: repeat lines 18–21
25: end if
26: end for
27: end while
28: return endGraph

where pij is the probability that there is a link lij between
node i in graph G1 and node j in graph G2. 1 − ϕCG1

(1) is the
fraction of nodes belonging to the giant component in graph
G1 and 1 − ϕCG2

(1) in graph G2.
Proof. For a node n in G1 with k dependent nodes in G2,

the probability that all the dependent nodes are alive follows
∞∑

k=0

Pr[DB = k](1 − uB)k,

which can be written as the generating function ϕDB
(1 − uB)

of DB with parameter 1 − uB . Assuming DB follows a
binomial distribution, it holds [10] that ϕDB

(1 − uB) =
exp (−E[DB]uB) for a large interconnection matrix B. When
B is the random geometric graph, the degree distribution
of DB follows a binomial distribution [7] with average

degree E[DB] = pijN . Therefore, the probability that all
the dependent nodes in G2 of a node n in G1 are alive is
exp (−pijNuB).

The self-consistent equation for uA in interdependent
network with one-to-many interconnection follows

uA = ϕ(Dl+−1)[1 − q exp(−pijNuB)(1 − uA)],

where q is the probability for a node n to be occupied, and
exp (−pijNuB) is the probability that all the interdependent
nodes of a node n in G1 belong to the giant component in
graph G2. Analogously,

uB = ϕ(Dl+−1){1 − exp[pijN (q − quA − 1)](1 − uB)}.
Since we do not remove nodes from graph G2 at the beginning,
nodes in graph G2 are occupied with probability 1. The

Algorithm 3. Function COMPONENT(G,N1,N2)

1: Input: Graph G; Sets N1,N2 of nodes in G1 and G2, respectively
2: Output: Largest mutually connected component LMCC
3: Get connected components C1, C2, . . . , CN of G ordered as |C1| � . . . � |CN |
4: for i = 1 to N do
5: if Ci ∩ N1 �= ∅ and Ci ∩ N2 �= ∅ then
6: LMCC ← Ci

7: break
8: end if
9: end for

10: return LMCC

042315-12



MODELING REGION-BASED INTERCONNECTION FOR . . . PHYSICAL REVIEW E 94, 042315 (2016)

1.0

0.8

0.6

0.4

0.2

L
ar

ge
st

 m
ut

ua
ll

y 
co

nn
ec

te
d 

co
m

po
ne

nt

0.50.40.30.20.10.0
Fraction of removed nodes

Coupled ER graphs
N1 = N2 = 50
E[D1] = 6, E[D2] = 8
radius = 0.02
all interlinks alive

 Simulation of S1 
 S1 in (B1)

1.00

0.99

0.98

0.97

0.96

0.95

0.94L
ar

ge
st

 m
ut

ua
ll

y 
co

nn
ec

te
d 

co
m

po
ne

nt

0.50.40.30.20.10.0
Fraction of removed nodes

Coupled ER graphs
N1 = N2 = 50
E[D1] = 6, E[D2] = 8
radius = 0.02
all interlinks alive

 Simulation of S2

 S2 in (B2)

FIG. 20. Largest mutually connected component as a function of the fraction of removed nodes in interdependent networks. The coupled
graphs are Erdős-Rényi graphs Gp(N ) with N = 50 and the average degrees E[D1] = 6 and E[D2] = 8. The interconnection topology is the
random geometric graph with r = 0.02. The results are averaged over 104 realizations of interdependent graphs.

probability exp [pijN (q − quA − 1)] represents that all the
dependent nodes of a node in G2 are occupied and belong to
the giant component in G1. �

For the scenario of all interdependent nodes alive,
Figs. 20(a) and 20(b) show the simulation results and S1 and S2

in (B1) and (B2) in coupled ER graphs with interconnection of
random geometric graph with radius r = 0.02. Figures 20(c)

and 20(d) show the simulation results and a straight line
y = − dSi

dq
|
1−q= 1

N

(1 − q) + 1(i = 1,2), where the derivative
dSi

dq
(i = 1,2) is numerically computed based on (B1) and (B2).

In Figs. 20(c) and 20(d), the straight line with slope − dSi

dq
(i =

1,2) obtained from Theorem 4 shows a good approximation
for the simulations for a small fraction of removals.
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