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prevalence in networks
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Based on a recent exact differential equation, the time dependence of the SIS prevalence, the average fraction
of infected nodes, in any graph is first studied and then upper and lower bounded by an explicit analytic function
of time. That new approximate “tanh formula” obeys a Riccati differential equation and bears resemblance to the
classical expression in epidemiology of Kermack and McKendrick [Proc. R. Soc. London A 115, 700 (1927)]
but enhanced with graph specific properties, such as the algebraic connectivity, the second smallest eigenvalue
of the Laplacian of the graph. We further revisit the challenge of finding tight upper bounds for the SIS (and SIR)
epidemic threshold for all graphs. We propose two new upper bounds and show the importance of the variance
of the number of infected nodes. Finally, a formula for the epidemic threshold in the cycle (or ring graph) is
presented.
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I. THE MARKOVIAN SIS PROCESS ON A GRAPH

Epidemic spreading processes on graphs are popular to
model diffusion phenomena in real-world networks [1], rang-
ing from biological virus infections, to information spread in
social and communications networks, to cascading failures in
infrastructural networks. However, even one of the simplest
epidemic processes on a graph, the Susceptible-Infected-
Susceptible (SIS) model defined below, is not completely
understood. Mean-field approximations primarily dominate
the analyses in papers, and often their approximate nature
is ignored or forgotten. Yet, in some type of graphs such
as the cycle [2] and the star [3], discrepancies between
mean-field approximations and the Markovian SIS process
can be significant. Starting from a recent exact result [4], we
analyze here the average fraction of infected nodes of the
Markovian SIS process on any graph, trying to understand for
which graphs the mean-field approximation is accurate [5].

We consider an unweighted, undirected graph G containing
a set N of N nodes (also called vertices) and a set L of L links
(or edges). The topology of the graph G is represented by
a symmetric N × N adjacency matrix A. In an SIS epidemic
process [1,6–9] on the graph G, the viral state of a node i at time
t is specified by a Bernoulli random variable Xi(t) ∈ {0,1}:
Xi(t) = 0 for a healthy, but susceptible node and Xi(t) = 1
for an infected node. A node i at time t can be in one of the
two states: infected, with probability Pr[Xi(t) = 1], or healthy,
with probability Pr[Xi(t) = 0] = 1 − Pr[Xi(t) = 1], but sus-
ceptible to the infection. We assume that the curing process per
node i is a Poisson process with rate δ and that the infection
rate per link is a Poisson process with rate β. Obviously, only
an infected node can infect its healthy direct neighbors. Both
the curing and infection Poisson process are independent. The
effective infection rate, sometimes also called the spreading
rate [1], is defined by τ = β

δ
. This description defines the

continuous-time, Markovian SIS epidemic process on a graph
G. We do not consider non-Markovian epidemics [10,11].

*P.F.A.VanMieghem@tudelft.nl.

One of the most intriguing features of the SIS process is
the occurrence of an epidemic threshold at τc: for effective
infection rates τ < τc, the infection dies out exponentially fast
for sufficiently large times, whereas for τ > τc, the infection
stays very long in any sufficiently large network [12,13]
but is eventually wiped out in any finite graph due to the
existence of an absorbing state (the overall healthy state). The
regime of persistent infection (τ > τc), called the metastable
or quasistationary state, is reached rapidly given an initial set
of infected nodes [14] and can last extremely long in large
networks. Only in the limit N → ∞ is the epidemic phase
transition sharp, precisely defining τc, and the infection can
remain forever for τ > τc with a nonzero probability (similar
to a supercritical branching process [15, ch. 12]). For finite
sizes of a network, the phase transition occurs in a τ region
around τc, featuring a positive width that decreases with N

and that complicates the precise definition of τc. In spite of the
crucial importance of the knowledge of the epidemic threshold
τc, for surprisingly few graphs is the scaling of τc with size N

known [3]. The only solid general result is the mean-field lower
bound, τc � τ (1)

c = 1
λ1

, where λ1 is the spectral radius of the
adjacency matrix A of the graph and τ (1)

c refers to the first order
N -intertwined mean-field approximation (NIMFA) [15,16]. A
second order improvement τ (2)

c � τ (1)
c is possible [17], though

at the expense of much larger computations that provide less
insight than the first order NIMFA. As mentioned in Ref. [4],
the lower bound τ (1)

c = 1
λ1

is of great practical use: if the
effective infection rate τ can be controlled such that τ � τ (1)

c or
the network can be designed to lower the spectral radius λ1 of
its graph [18], then the network is safeguarded from long-term,
massive infection. On the other hand, knowing that an infection
will persist almost surely in the network and that the epidemic
process is thus operating above the epidemic threshold can
be of equal importance. The challenge to determine a tight,
but general upper bound for τc (in any graph) is addressed
here.

Explicitly using the properties of the Bernoulli random
variable Xi(t), for which the rather difficult probability
operator Pr [·] can be replaced by the linear expectation
operator E[·] as illustrated earlier [4,17], the exact Markovian
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SIS-governing equation [15,17] for the infection probability
of node i is

dE[Xi(t)]

dt
= E

[
−δXi(t) + β(1 − Xi(t))

N∑
k=1

akiXk(t)

]
.

(1)
The time derivative of the infection probability E[Xi(t)] =
Pr [Xi(t) = 1] of a node i consists of the expectation of two
competing processes in (1), expressed in the Bernoulli random
variable Xi ∈ {0,1}: (a) while node i is infected, i.e., Xi(t), the
node i is cured at rate δ and (b) while node i is healthy, i.e.,
not infected (1 − Xi(t)), all infected neighbors

∑N
k=1 akiXk(t)

of node i try to infect the node i with rate β. We define the
fraction of infected nodes by

S(t ; τ ) = 1

N

N∑
i=1

Xi(t), (2)

where the dependence on the effective infection rate τ has
been made explicit. We denote the average fraction of infected
nodes, also called the prevalence, by

y(t ; τ ) = E[S(t ; τ )] = 1

N

N∑
i=1

Pr [Xi(t) = 1]. (3)

The prevalence obeys the differential equation

dy(t∗; τ )

dt∗
= −y(t∗; τ ) + τ

N
E[w(t∗; τ )T Qw(t∗; τ )], (4)

where t∗ = tδ is the normalized time measured in units of the
average occurring time δ−1, Q = � − A is the Laplacian of
the graph G with � = diag(d1,d2, . . . ,dN ), di is the degree of
node i in G, and the Bernoulli vector w = (X1,X2, . . . ,XN ).
The proof of (4) is included in Appendix A, while a slightly
more general proof for both SIS and SIR is presented in
Ref. [4]. The state w(t ; τ ) at time t depends on the initial
condition, i.e., the state w(0; τ ) at t = 0. In the sequel,
the time and τ dependence as well as the dependence on
the initial condition is sometimes omitted to simplify the
notation. We denote xk the kth eigenvector of the symmetric
N × N Laplacian Q belonging to the eigenvalue μk , ordered
as μ1 � μ2 � · · · � μN−1 � μN = 0. The eigenvectors are
normalized and obey the orthogonality requirement xT

k xm =
δkm, where δkm is the Kronecker delta, which is equal to one,
if k = m, and otherwise δkm = 0. The eigenvector belonging
to the zero eigenvalue μN = 0 equals xN−1 = u√

N
, where

u = (1,1, . . . ,1) is the all-one vector. The second smallest
eigenvalue μN−1 of the Laplacian Q is called by Fiedler [19]
the algebraic connectivity. The eigenvalues of the correspond-
ing N × N adjacency matrix A are λ1 � λ2 � · · · � λN .

Physically we can interpret the term τ
N

E[wT Qw] in (4)
as the force per node that drives the infection. In par-
ticular, introducing the basic Laplacian property zT Qz =∑

l∈L (zl+ − zl−)2 for any real vector z, where the link l

connects the node l+ and node l−, yields

E[wT Qw] = 2
∑
l∈L

E[Xl+ (1 − Xl− )],

illustrating that only links with one end infected con-
tribute to the average fraction of infected nodes. Thus,

w(t∗; τ )T Qw(t∗; τ ) equals twice the cut size, i.e., the number
of links in the cut between infected and healthy nodes in the
graph G at time t∗, so that the maximum increase of the
prevalence, maxt∗

dy(t∗;τ )
dt∗ , is related to the maximum cut size,

whose determination is an NP-complete problem.
We first derive some general considerations on the exact SIS

prevalence differential equation (4) in Sec. II. In Sec. III we
present a new analytic, but approximate, “tanh formula” (13)
for the prevalence in any network in Sec. III, deduced from (4)
and derived in Appendix C. The new approximation (13)
of the prevalence has a surprisingly classical form, which
already appeared in the pioneering paper by Kermack and
McKendrick [20], showing the influence of the underlying
graph on the prevalence, mainly via the algebraic connectivity
μN−1, but also larger eigenvalues of the Laplacian Q. In Figs. 1
and 2, we illustrate the potential of this new formula, in com-
parison with the well-established mean-field approximation
NIMFA. In the second part (Secs. IV and V), we propose new
upper bounds of the exact SIS epidemic threshold τc. Some
mathematical derivations are deferred to the appendices, and
the theorems and lemmas are proved in Appendix D.

II. GOVERNING EQUATION (4) OF THE PREVALENCE

A. Regime τ < τc below the epidemic threshold

Since 1 − Xi � 1, the governing equation (1) is upper
bounded by

dE[Xi]

dt
� E

[
−δXi + β

N∑
k=1

akiXk

]
,

from which the upper bound of the vector w follows as

d

dt∗
E[w(t∗; τ )] � (τA − I )E[w(t∗; τ )].

The solution of this linear differential inequality for the vector
of infection probabilities is

E[w(t∗; τ )] � e(τA−I )t∗E[w(0)]. (5)

For a characteristic polynomial det (A − λI ) =∏s
j=1 (λ − λj )mj , where each eigenvalue λj is different

with multiplicity mj and
∑s

j=1 mj = N , the exponential
matrix function is [21, p. 116]

eAt =
s∑

j=1

{
mj∑
k=1

Zskt
k−1

}
eλs t , (6)

where the matrices Zsk are linearly independent constant
matrices that are polynomials in A. Hence, as also reported
earlier in Refs. [10] and [15, pp. 457–458], the epidemic
dies out in any graph exponential fast in t∗ as O(e(λ1τ−1)t∗ )
for large t∗ when τ < 1

λ1
. However, even below the epidemic

threshold τ < τc, the infection probabilities E[Xi(t)], and thus
the prevalence y(t) also can initially (for small t > 0) increase
due to the factors tk−1 in (6) when the adjacency matrix
A has eigenvalues with multiplicity mj > 1. An increase in
the prevalence y(t) below the epidemic threshold occurs, for
example, in the star graph K1,N−1, where the zero eigenvalue
of the adjacency matrix A has a multiplicity of N − 2.
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The spectral counterpart (B15) of the SIS prevalence gov-
erning equation (4) shows that, if τμk − 1 < 0 for all positive
Laplacian eigenvalues 1 � k � N − 1, thus if τ < 1

μ1
, then

dy(t∗;τ )
dt∗ � 0 and the prevalence y(t∗; τ ) is nonincreasing for

all times t∗. Since N � μ1 > dmax � λ1, a decrease in the
prevalence at any time corresponds with an operation well
below the epidemic threshold τc.

B. Properties of the prevalence y in a connected graph

Multiplying both sides in (4) by et∗yields, after rearrange-
ment,

d

dt∗
{et∗y(t∗; τ )} = et∗ τ

N
E[w(t∗; τ )T Qw(t∗; τ )].

Integrating both sides over [0,t∗] leads to

y(t∗; τ ) = e−t∗y(0; τ )

+ τ

N

∫ t∗

0
e−(t∗−u)E[w(u; τ )T Qw(u; τ )] du. (7)

The integral in (7) is a convolution and seems similar to
the general integral representation of epidemic processes [9].
Although the first term in (7) decreases exponentially fast, we
cannot conclude that the influence of the initial condition dis-
appears as fast as O(e−t∗ ), because also E[w(u; τ )T Qw(u; τ )]
depends on w(0) in a unknown way. The quadratic
non-negative form wT Qw � 0, as illustrated in (B9) in
Appendix B, implies that et∗y(t∗; τ ) is a nondecreasing
function of the time t∗ with only extrema at times when
E[wT Qw] = 0. The average of a non-negative random vari-
able is only zero if the random variable itself is zero. Now,
wT Qw = 0 only if the SIS Markovian process is in either of
two states: the absorbing state and the all-infected state. Only
if the process starts in the absorbing state (a trivial process
in which there is no infection), there holds that wT Qw = 0
for any time t > 0 and E[wT Qw] = 0. In all other cases, the
process cannot remain in a single state so that the average (over
all possible realizations) at a finite time t is E[wT Qw] > 0:
even when each realization of the process starts at a same state,
not all realizations will reach another same state at a time t .
In particular, not all realizations reach the all-infected state
or the absorbing state at the same time. Since E[wT Qw] > 0
[excluding absence of infection, for which y(t∗; τ ) = 0 for all
t∗ � 0], we conclude from (7) that

y(t∗; τ ) > e−t∗y(0; τ ),

so that the prevalence cannot decrease faster than O(e−t∗ ),
limiting the extinction speed of the epidemic in any network.
The lower bound corresponds to the τ = 0 regime in (5). Since
the SIS process has an absorbing state, each realization in a
finite graph will eventually hit the absorbing state. Since the
support of the absorption time in a graph is (0,∞), because a
realization can die out fast while another can remain oscillating
between certain states indefinitely long, we have that

lim
t∗→∞

y(t∗; τ ) = 0,

consistent with the above inequality that tells us that the
prevalence is always positive for finite times.

Let us focus on extremal points at time t∗ = θ , for which
dy(t∗;τ )

dt∗ |
t∗=θ

= 0. By (4), each extremal time point θ satisfies

y(θ ; τ ) = τ

N
E[w(θ ; τ )T Qw(θ ; τ )]. (8)

The previous arguments show that θ → ∞ is an extremal
point. The condition (8) equates at time θ the averages of the
total healing rate δNy(θ ; τ ) (i.e., the total number of infected
nodes that cures per unit time) and the total infection rate
βE[w(θ ; τ )T Qw(θ ; τ )] in the graph G and reflects a temporal
balance between the cut size and the set of infected nodes. The
quadratic form (B14) indicates for τ > 0 that

E

[
w(θ ; τ )T

(
Q − 1

τ
I

)
w(θ ; τ )

]
= 0,

which may seem to suggest that w(θ ; τ ) is “close” to the
eigenvector of Q belonging to the eigenvalue close to τ−1.
However, the resemblance to the eigenvalue equation is
misleading: w is a binary vector, whereas the normalized
eigenvectors of Q possess components with real values in
[−1,1], with at least one negative component (except for
the eigenvector xN = u belonging to eigenvalue μN = 0).
Defining the binary matrix W = wwT and introducing the
Hadamard matrix product, we can write

w(θ ; τ )T
(

Q − 1

τ
I

)
w(θ ; τ ) =

N∑
i=1

N∑
j=1

XiXj

(
Q − 1

τ
I

)
ij

= uT

[
W ◦

(
Q − 1

τ
I

)]
u,

which sums all elements in the filtered matrix W ◦ (Q − 1
τ
I ),

which is a submatrix of (Q − 1
τ
I ), corresponding to the

subgraph of G containing all infected nodes.
Lemma 1. Let the scalar product of the infection state

vector w(t∗) at time t∗ and the Laplacian eigenvector xk

belonging to the k-largest eigenvalue μk be ζk(t∗) = wT (t∗)xk .
At an extremal time point θ , the prevalence is

y(θ ; τ ) = 1

2

(
1 − 1

τμN−1

)
+ 1

2

√(
1 − 1

τμN−1

)2

− 4	(θ )

τμN−1
,

(9)

where

	(t∗) = τμN−1

{
var[S(t∗)] − E[R(t∗)]

NμN−1

}
(10)

and the correction R equals

R(t∗) =
N−2∑
k=1

(μk − μN−1)ζ 2
k (t∗). (11)

Lemma 1, proved in Appendix D 1, specifies y(θ ; τ ) in terms
of a new spectral function 	. If there is a maximum y(θ ; τ ) � 0
for τ < 1

μN−1
, then Lemma 1 indicates that 	(θ ) < 0, whereas

a maximum y(θ ; τ ) for τ > 1
μN−1

implies that 	(θ ) > 0. Thus,
in general, 	(t∗) can be positive as well as negative. As shown
below in Sec. III, the function 	 plays an important role in the
assessment of our new approximate formula for the prevalence.
Moreover, the function 	 strongly depends on the variance
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var[S], another quantity that will appear later in upper bounds
for the epidemic threshold (see, e.g., Theorem 1).

For τ > τc, let the time t∗m mark the beginning of the
metastable or quasistationary regime, which can last (very)
long [13]. In general, the prevalence at t∗m is not necessarily
a maximum, because it depends on the initial condition
y(0; τ ) = y0: if y0 > y(t∗m), then y(t∗) may be decreasing
for all t∗ > 0, whereas, if y0 < y(t∗m), then a maximum in
y(t∗) is reached at t∗ = t∗m. In addition, if t∗m corresponds to
the single maximum, then dy(t∗;τ )

dt∗ < 0 for all t∗ > t∗m: during
the metastable regime, the prevalence is strictly decreasing,
although (very) slowly [13], to zero (at t → ∞). The governing
equation (4) then shows that, for all t∗ > t∗m,

y(t∗; τ ) � τ

N
E[w(t∗)T Qw(t∗)],

illustrating that lower bounding the prevalence y is possible in
any graph for τ > τc.

An interesting open question is “given an initial condition
w(0) and a finite graph G, how many extremal points
obeying (8) has the SIS process?” We believe (but cannot
prove) that, in a SIS epidemic process on any connected graph
G with fixed τ , there are no multiple extrema (i.e., more than
two extremal points) for a positive prevalence y. We remark
that the situation when varying the effective infection rate τ is
different: y(t∗; τ ) can have multiple extrema as a function of
τ . Indeed, consider a graph consisting of two complete graphs
Km and Kn with n > m, connected by a path Ph with h hops or
links. When 1

n
� τcKn

< τ < τcKm
� 1

m
, the epidemic spreads

in Kn, but not in Km. Even for τ > 1
m

and initially only a node
in Kn is infected, the epidemic may never reach Km if the path
Ph is long enough. Only if τ >> τcPh

� 1
2 , then both cliques

Km and Kn remain infected for a long time.

III. NEW APPROXIMATE FORMULA FOR
THE SIS PREVALENCE

The governing equation (4) of the prevalence depends on
a quadratic form wT Qw of the Laplacian Q of a underlying
graph G. Introducing spectral graph theory, which supplies
many insights and properties of this quadratic form (see
Appendix B and Refs. [22,23]), leads to a new formula of
the SIS prevalence, which we derive here.

Introducing the expression (B12) for the quadratic form
wT Qw, derived in Appendix B, into the differential equa-
tion (4), with the definition (B13) of R in Lemma 1 and using
E[S − S2] = y − E[S2] and E[S2] = y2 + var[S], yields

dy

dt∗
= (τμN−1 − 1)y − τμN−1y

2 − 	, (12)

where the function 	, specified in (10), is generally a rather
complicated function of t∗ and y(t∗), which we approximate
below. Clearly, if dy

dt∗ = 0, then y(t∗) remains constant and (12)
indicates that, then, 	(t∗) also does not change with time.
Hence, in the metastable state, where dy

dt∗ = ε and ε is very
small and negative, the function 	(t∗) hardly changes with
time t∗.

Suppose that we can bound

cL � 	 � cU ,

where cL and cU are constants, then the prevalence y(t∗) can
be bounded, for the same initial condition y0, by

ỹ(t∗) = 1

2

(
1 − 1

τμN−1

)
+ �

2
tanh

{
τμN−1�

2
t∗

+ arctanh

[2y0 − (1 − 1
τμN−1

)
�

]}
(13)

for c = cL and c = cU , where

� =
√(

1 − 1

τμN−1

)2

− 4c

τμN−1
. (14)

Moreover, ỹ(t∗) from (C6) obeys the Riccati differential
equation (Appendix C):

dỹ

dt∗
= (τμN−1 − 1)ỹ − τμ2

N−1ỹ
2 − c.

For the same initial y(0) = ỹ(0) = y0, the prevalence is
bounded by the relatively simple expression (13){

y(t∗) � ỹ(t∗)|c=cU
if 	 � cU

y(t∗) � ỹ(t∗)|c=cL
if 	 � cL

.

Apart from the fact that ỹ(t∗) in (13) can lower and upper
bound the SIS prevalence y(t∗) as a function of the scaled
time t∗, the formula (13) can be regarded as a time-dependent
approximation for the SIS prevalence, when the constant
c, appearing in �, can be estimated or tuned in certain
time intervals [e.g., when 	 in (10) varies significantly with
time]. The “tanh formula” ỹ(t∗) in (13) depends on the
algebraic connectivity μN−1 and the constant c, that both
reflect properties of the underlying graph G. Appendix C
demonstrates that limt→∞ ỹ(t) = ỹ∞, where

ỹ∞ = 1

2

(
1 − 1

τμN−1

)
+ 1

2

√(
1 − 1

τμN−1

)2

− 4c

τμN−1
,

which only holds for certain values τ , depending on c. Indeed,
the condition (C8) on c in Appendix C translates to

−1 � c � (τμN−1)

4

(
1 − 1

τμN−1

)2

,

so that cL = −1 and cU = (τμN−1)
4 (1 − 1

τμN−1
)
2
. If 1 − 1

τμN−1
<

0 or τ < 1
μN−1

, then c < 0 because ỹ∞ � 0.
The lower bound cL � 	 in the definition (10) leads to a

bound for the effective infection rate

τL � 1

μN−1
(

E[R]
NμN−1

− var[S]
) . (15)

The upper bound 	 � cU implies that y(t∗) � ỹ(t∗)|c=cU
and

ỹ(t∗)|c=cU
is real if the discriminant in (14) is positive:

1

μN−1
(
1 − 2

√
var[S] − E[R]

NμN−1

) � τU . (16)

We observe that the bound (15) for τL is meaningless if
var[S] − E[R]

NμN−1
> 0 or 	 > 0, whereas, if var[S] − E[R]

NμN−1
<

0 or 	 < 0, the bound (16) for τU is unrealistic.
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A. Comparison of the tanh formula (13) with NIMFA

The N -intertwined mean-field approximation (NIMFA)
has been proposed first in Ref. [16], but later in Ref. [5]
a more elegant approach was found that we briefly repeat
here. Introducing the covariance [15, p. 25], Cov[Xi,Xk] =
E[XiXk] − E[Xi]E[Xk] in the governing equation (1) leads
to

dE[Xi]

dt
= −δE[Xi] + β(1 − E[Xi])

N∑
k=1

akiE[Xk]

−β

N∑
k=1

akiCov[Xi,Xk].

In terms of the infection probability of node i, wi(t) =
Pr [Xi(t) = 1] = E[Xi(t)], we have

dwi(t)

dt
= −δwi(t) + β[1 − wi(t)]

N∑
k=1

akiwk(t)

−β

N∑
k=1

akiCov[Xi(t),Xk(t)]. (17)

The first part is recognized as the NIMFA equation [24] in
the mean-field infection probability vi(t) = Pr [X(1)

i (t) = 1]
of node i, where X

(1)
i is the first order (or NIMFA) mean-field

approximation (MFA) of the state Xi of node i,

dvi(t)

dt
= −δvi(t) + β[1 − vi(t)]

N∑
k=1

akivk(t). (18)

For each node i, we may consider βR̃i in (17), where

R̃i =
N∑

k=1

akiCov[Xi(t),Xk(t)] (19)

as the MFA correction term, whose omission in (17)
specifies the impact or accuracy (per node) of MFA.
Clearly, if Cov[Xi(t),Xk(t)] = 0 for each nodal pair (i,k),
then the NIMFA equations (18) are equal to the exact
SIS equations (17). Moreover, as shown in Ref. [25],
Cov[Xi(t),Xk(t)] � 0 for a Markovian SIS and SIR process
on any graph, so that βR̃i � 0 and NIMFA always upper
bounds the viral infection probability (vi � wi) and, thus,
lower bounds the epidemic threshold τc � τ (1)

c = 1
λ1

, where
λ1 is the spectral radius of the adjacency matrix A of the
graph [22].

We compare the NIMFA prevalence y(1)(t∗) =
1
N

∑N
i=1 vi(t∗), where vi(t) obeys the NIMFA equations (18),

and our new approximation, called a “tanh formula” ỹ(t∗)
in (13) for different values of c with simulations of the exact
Markovian SIS process on the same graph.

Figure 1 illustrates the prevalence as a function of time
t∗ = t (for δ = 1) in one realization of an Erdős-Rényi
random graph Gp(N ) with N = 50 nodes and link density
p = 0.4, spectral radius λ1 = 20.85 of the adjacency matrix,
and algebraic connectivity μN−1 = 10.11. The normalized
infection strength x = τ

τ
(1)
c

= λ1τ was chosen in Fig. 1 to
operate below the epidemic threshold τc. Both NIMFA and

FIG. 1. The prevalence as a function of time t∗ = t (for δ = 1)
in one realization of an Erdős-Rényi random graph Gp(N ) with N =
50 nodes and link density p = 0.4, spectral radius λ1(A) = 20.85,
and algebraic connectivity μN−1 = 10.11. The normalized infection
strength x = τ

τ
(1)
c

= λ1(A)τ was chosen to operate below the epidemic

threshold τc. Both NIMFA and the tanh formula in (13) for ỹ(t∗)
with c = 0 are compared with simulations. Initially, only one node
is infected, and 106 realizations of the Markovian SIS process are
simulated to produce an accurate average fraction of infected nodes
y(t∗).

the tanh formula in (13) for ỹ(t∗) with c = 0 are compared
with simulations. Initially, only one randomly chosen node is
infected, and 106 realizations of the Markovian SIS process are
used to produce the average fraction of infected nodes y(t∗).

Figure 2 shows the prevalence above the epidemic threshold
τc, for precisely the same graph as in Fig. 1. The value of c in
the tanh formula in (13) was chosen c = −0.055 (for x = 2.08)
and c = −0.06 (for x = 4.17), respectively, in order to closely
approach the simulated metastable prevalence.

Both Figs. 1 and 2 exhibit rather large deviations of both
NIMFA and the tanh formula (13) during the transient phase
(initial regime from t = 0 up to t∗ = t∗m, the start of the
metastable regime). On the other hand, as is well known, the

FIG. 2. The prevalence as a function of time t∗ = t (for δ = 1)
for precisely the same graph as in Fig. 1, with normalized infection
strength x = τ

τ
(1)
c

= λ1(A)τ well above the epidemic threshold τc.
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metastable regime, in which the prevalence is more or less
constant, is much better approached by SIS approximations.
So far, very few papers have investigated the time-dependent
behavior of the prevalence on networks. Since initially one
node is infected, in any graph there is a non-negligible chance
that the outbreak sparked by this this initial node dies out, even
for τ > τc. Moreover, the metastable regime is dependent on
the initial condition (both the number of infected nodes as well
as their location in the graph). We have corrected1 NIMFA
with the probability to die out in Fig. 2, so that the deviations
between simulations and NIMFA are more reasonable.

IV. NEW UPPER BOUNDS FOR THE EPIDEMIC
THRESHOLD FOR GENERAL GRAPHS

The Riccati approximation (13) increases with t∗ as
indicated by (C7) when the condition (C8) on c is satisfied. Due
to the existence of the absorbing state (i.e., the overall-healthy
state), limt∗→∞ y(t∗) = 0, implying that the bound y(t∗) �
ỹ(t∗)|c=cU

can apply only in the time interval [0,t∗m), where
t∗m = θ denotes the start of the metastable regime (for τ > τc)
obeying dy(t∗)

dt∗ |
t∗=t∗m

= 0, and where y(t∗) is increasing. Thus,
when replacing the upper bound 	 � cU , which can hold
for any time point t∗, by max0�t∗�t∗m 	 � cU , the bound (16)
becomes

1

μN−1
{
1 − 2

√
max0�t∗�t∗m

(
var[S] − E[R]

NμN−1

)} � τU .

Since for τ > τU , it follows that y(t∗) � ỹ(t∗)|c=cU
> 0,

meaning that there is in the graph a nonzero average fraction of
infected nodes, and we find an upper bound for the epidemic
threshold [defined as τ � τc : y(t∗,τ ) = 0 for sufficiently
large t∗]

τc � 1

μN−1
{
1 − 2

√
max0�t∗�t∗m

(
var[S] − E[R]

NμN−1

)} .
Since

max
0�t∗�t∗m

(
var[S] − E[R]

NμN−1

)
� max

0�t∗�t∗m
var[S]

1When only node i is infected in the graph G at a certain
time, the continuous-time Markovian SIS epidemic process has two
possibilities: die-out with curing rate δ or grow to two infected nodes,
when node i can infect one of its di neighbors. Hence, the die-out
situation at node i is described by a two-state continuous-time Markov
process with transition rate from one to zero infected nodes equal to
q10 = δ and from one to two infected nodes equal to q12 = βdi , from
which we find [15, pp. 220–221] that, given only node i is infected,
the probability that the epidemic dies out is Pr [die-out] = q01

q01+q12
=

δ
δ+βdi

= 1
1+τdi

. When initially more than one node is infected, the die-
out probability rapidly becomes negligibly small (for τ > τc). As an
approximation, we have replaced here in Fig. 2 the degree of node i by
its average E[D] = p(N − 1) ≈ λ1 so that Pr [die-out] ≈ 1

1+x
, where

x = λ1τ . The probability to reach the metastable state in NIMFA,
corrected for die-out, is y(1)(τ ) Pr [no die-out] ≈ y(1)(τ )(1 − 1

1+x
).

Finally, in a regular graph with degree r = λ1, the NIMFA prevalence
is y(1)(τ ) = 1 − 1

x
and the corrected prevalence (to prevent die out

when initially one node is infected) is about (1 − 1
x

)
2
.

and max0�t∗�t∗m var[S] � maxt�0 var[S(t ; τ )], we arrive at the
following:

Theorem 1. For any graph, the SIS epidemic threshold is
upper bounded by

τc � 1

μN−1{1 − 2
√

maxt�0 var[S(t ; τc)]} . (20)

Unfortunately, the variance var[S(t ; τ )] of the number of
infected nodes in the metastable state is difficult to determine,
although Theorem 1 shows how essential var[S(t ; τ )] is.
Equality in (20) holds for the complete graph KN [see Ref. [15,
p. 456] and (31) below] at an extremal time t∗ = θ . The upper
bound τc � 2

μN−1
, proved by Ganesh et al. [26], indicates that,

for KN ,

var[S(θ ; τc)] � 1
16 ,

which is substantially smaller than the maximum possible2

variance of 1
4 . The sharpest possible upper bound occurs when

maxt∗ var[S(t∗; τc)] = 0 in (20), leading to

τc � 1

μN−1
, (21)

which is violated for the complete graph KN , because there is
only one graph, KN , for which μN−1 = N > λ1 = N − 1.

When combining the hypothetical upper bound (21) with
the lower bound τc � τ (1)

c = 1
λ1

, then we would find that, for
any graph except for the complete graph KN , the SIS epidemic
threshold is bounded by

1

λ1
� τc � 1

μN−1
. (22)

For dense graphs, where both the spectral radius λ1 and the
algebraic connectivity μN−1 are large, the difference 1

μN−1
−

1
λ1

, can be small, whereas roughly the opposite holds for sparse
graphs. For example, for a cycle C, the lower and upper bound
in (22) lie far apart: the spectral radius is λ1 = 2 and the
algebraic connectivity [22, p. 123] equals (μC)N−1 = 4 sin2 π

N
,

so that 1
(μC )N−1

= O(N2) for large N , whose scaling with N

is substantially larger than the epidemic threshold deduced
in Refs. [2,27,28]. While the upper bound (22) is correct in
many sparse graphs, we now demonstrate that it cannot hold
in general (even excluding KN ). If the upper bound (22) is
true, then there would exist finite graphs for which the spectral
radius λ1 equals the algebraic connectivity μN−1, and, for those
graphs, (22) would return the exact SIS epidemic threshold,
for any size N . For those graphs, which we call “λ1 = μN−1

graphs,” the NIMFA epidemic threshold τ (1)
c is also exact. For

any graph excluding KN , it holds that μN−1 � dmin (see, e.g.,
Ref. [22, p. 82]), while dmin � dav � λ1. For any nonregular
graph, the minimum degree is strict smaller than the average
degree, dmin < dav , so that μN−1 � dmin < λ1. Hence, there

2Since the random variable S ∈ [0,1] in (2), we find, for all p � 1,
that Sp � S. The variance of S, var[S] = E[S2] − (E[S])2, is upper
bounded, using E[Sp] � E[S] for p = 2, by var[S] � y − y2, where
y = E[S], as defined in (3). The maximum of the function y − y2

equals 1
4 and occurs at y = 1

2 , and hence, var[S] � 1
4 .
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do not exist “λ1 = μN−1 nonregular graphs.” On the other
hand, regular graphs with degree r possess a spectral gap
λ1 − λ2 = μN−1 and λ1 = r is an integer. Then “λ1 = μN−1

regular graphs” must possess a zero second eigenvalue of the
adjacency matrix, λ2 = 0, which is satisfied only for complete
multipartite graphs. In general but excluding KN , the second
largest adjacency eigenvalue is positive, λ2 > 0, if and only
if the graph is not complete multipartite [29, Sec. 3.4]). For
regular complete multipartite graphs, all of its parts must to be
equal. In conclusion, the only “λ1 = μN−1 regular graphs” are
regular complete multipartite graphs of the form K{n1,n2,...,nm},
where each part n1 = n2 = · · · = nm = n and nm = N . An
example is the regular complete bipartite graph Kn,n with 2n =
N , whose NIMFA prevalence y∞ is analytically known [16]
(and that, as a curiosity, represents the exact SIS Markov graph
as shown in Ref. [30] with n = 2N−1). Physically, as mentioned
earlier, the SIS epidemic threshold of the phase transition is
only “zero-one sharp” when N → ∞ and any finite graph
will exhibit a small (but nonzero) τ region that characterizes
the transition in the prevalence. In summary, the hypothetical
upper bound (21) is not correct for finite “λ1 = μN−1 graphs,”
and likely also not in other dense graphs.

We provide another upper bound for the SIS epidemic
threshold, by invoking the Motzkin-Straus Theorem [31]
stating that (

1 − 1

ω

)
= max

x∈S
xT Ax, (23)

where the simplex S contains all vectors x that lie in the
hyperplane uT x = 1 and possesses non-negative components
and where ω is the clique number in a graph G, defined as the
size of the largest clique in G. Evidently, ωKN

= N and in any
other graph than KN , the clique size ω � dmax.

Theorem 2. The SIS epidemic threshold is upper bounded
by

τc � 1

dmin − N
(
1 − 1

ω

)√
maxt�0 var[S(t,τc)]

(24)

in any graph, for which the right-hand side in (24) is positive.
Theorem 2 is proved in Appendix D 2. The upper bound

in (24) is minimized when var[S] = 0,

τc � 1

dmin
. (25)

For the cycle (or ring) with ω = dmin = 2, the upper bound (25)
does not apply (see Sec. V C), implying that there must exist
a value of τ > 1

dmin
= 1

2 for which var[SC] > 1
N2 (1 − 1

τ/2 )
2

for

sufficiently large N . The maximum possible bound var[S] = 1
4

in (24) yields

τc � 1

dmin − N
2

(
1 − 1

ω

) (26)

for dense graphs where dmin > N
2 (1 − 1

ω
). In particular, for

the complete graph KN where ω = N , (26) becomes (τc)KN
�

2
N−1 , which is not bad at all!

Since μN−1 � dmin (excluding KN ), the upper bound (25)
is sharper than (21). However, in contrast to (21), the more

confining condition on var[S] � ( dmin

2N(1− 1
ω

)
)
2
(1 − 1

dminτ
)
2

in the

proof of Theorem 2 must be satisfied.
In conclusion, Theorems 1 and 2 return valuable bounds

on the SIS epidemic threshold in dense graphs. Unfortunately,
for sparse graphs, most real-world networks are sparse, the
general theory is hardly useful, illustrating the need for
sophisticated methods (as developed, e.g., by Liggett [2,32]
for infinite d lattices).

V. REGULAR GRAPHS

For regular graphs with degree r , the maximum average
fraction of infected nodes equals3 [15, p. 456]

y∞; regular(τ ) = 1

N

E
[
wT

∞Aw∞
]

r − 1
τ

, (27)

where w∞ corresponds to the extremal point θ at which
dy(t∗;τ )

dt∗ |
t∗=θ

= 0, explained in Sec. II. For sufficiently large N

and τ > τc, (27) accurately approximates the average fraction
of infected nodes in the metastable state of the SIS process.
Equation (27) shows that y∞; regular(τ ) � 0 only if τ � 1

r
,

which corresponds to the NIMFA lower bound for the epidemic
threshold. The NIMFA prevalence, denoted by a superscript
(1), equals [15, p. 465]

y
(1)
∞; regular(τ ) = 1 − 1

rτ
.

A. The cycle (or ring)

The SIS epidemic threshold (τc)C in the ring is still
unknown [33]. As reported by Neal [34], the best bounds
so far for an infinitely large ring, are 1.539 � (τc)C � 1.942,
due to Liggett [2], where the upper bound 1.942 is the largest
zero [2] of the polynomial 4x3 − 7x2 − 2x + 1 and the lower
bound 1.539 is much better than the NIMFA lower bound
(τ (1)

c )
C

= 1
2 . Via a new method [28] based on the survival time,

the epidemic threshold of the ring or cycle C (with degree
r = dmin = 2) is shown to be (τc)C = fC (N)

dmin
, where fC(N ) is a

slowly increasing function of N . In particular, fC(500) ≈ 2.8
and fC(1000) ≈ 3. By extensive simulations, Ricardo and de
Mendonca [27] found the estimate limN→∞ fC (N)

2 ≈ 1.649,
which is remarkably close to the Riemann-zeta function ζ (s) =∑∞

n=1
1
ns evaluated at s = 2, namely, ζ (2) = π2

6 ≈ 1.645.
Theorem 3. The SIS epidemic threshold in the cycle C (or

ring) is

(τc)C = 1

2(1 − 2
√

ξ )
, (28)

where ξ = Cov[X1∞,X2∞] is the SIS covariance between two
neighboring nodes in the metastable state.

Proof. The adjacency matrix for the ring or cycle C

is AC = E + E−1, where E is the elementary circulant

3Since Q = rI − A, (4) reduces to y∞ = τ

N
E[wT

∞rw∞ −
wT

∞Aw∞]. With E[wT
∞rw∞] = rNE[S∞] = rNy∞, we arrive

at (27).
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matrix [22, p. 116], so that

wT Aw =
N∑

i=1

N∑
j=1

Xi(AC)ijXj

=
N∑

i=1

XiX(i+1) mod N +
N∑

i=1

XiX(i−1) mod N,

and 0 mod N is here equal to N . Further, in the metastable
state, we have that, due to symmetry,

E[XiX(i+1) mod N ] = E[XiX(i−1) mod N ] = E[X1∞X2∞],

for each node i, so that E[wT
∞Aw∞] = 2NE[X1∞X2∞].

Rewritten with E[X1∞X2∞] = E[X1∞]E[X2∞] + ξ , where
ξ = Cov[X1∞,X2∞], and with y∞;C = E[X1∞] = E[X2∞],
as

E
[
wT

∞Aw∞
] = 2N

[
y2

∞;C(τ ) + ξ
]

and substituted into (27) yields

y∞;C(τ ) = 2
(
y2

∞;C(τ ) + ξ
)

2 − 1
τ

from which

y2
∞;C(τ ) −

(
1 − 1

2τ

)
y∞;C(τ ) + ξ = 0.

Solving the quadratic equation, taking into account that
y∞;C(0) = 0 and limτ→∞ y∞;C(τ ) = 1, yields

y∞;C(τ ) = 1

2

(
1 − 1

2τ

)
+
√[

1

2

(
1 − 1

2τ

)]2

− ξ . (29)

Similarly as for the complete graph KN , derived in Ref. [15,
p. 457], a positive discriminant is required for a realistic
y∞;C(τ ) � 0, leading to (28). �

It remains to find an analytic expression for ξ =
Cov[X1∞,X2∞] in terms of N . However, using the estimate
(τc)ring = 1.64896 of Ref. [27] in (28) leads to ξ = 0.121375,
which is about half of the maximum4 possible 1/4.

B. Application of the Motzkin-Straus Theorem

Invoking (B16) deduced from the Motzkin-Straus Theo-
rem [31] in Appendix B into (27) yields

y∞; regular(τ ) � N
1 − 1

ω

r − 1
τ

E
[
S2

∞
]
,

which is, with E[S2
∞] = y2

∞; regular(τ ) + var[S∞], rewritten as

y2
∞; regular(τ ) −

(
r − 1

τ

)
N
(
1 − 1

ω

)y∞; regular(τ ) + var[S∞] � 0.

4As shown in [15, p. 26], any pair of random variables X and Y

obeys the inequality Cov[X,Y ] �
√

var[X]var[Y ]. Since X1∞ and
X2∞ possess the same distribution, we arrive at Var[X] � 1

4 for a
Bernoulli random variable X.

Provided the discriminant is non-negative, equivalent to

var[S∞] �
[ (

r − 1
τ

)
2N
(
1 − 1

ω

)]2

and which agrees with Theorem 2, the solution of the quadratic
inequality (using similar arguments as for the ring above)
yields

y∞; regular(τ ) � r

2N
(
1 − 1

ω

)(1 − 1

rτ

)

+
√√√√[ r

2N
(
1 − 1

ω

)(1 − 1

rτ

)]2

− var[S∞].

(30)

The lower bound (30) for the prevalence is sharpened in two
extreme cases: (a) the complete graph KN [15, p. 456]

y∞;KN
(τ ) = 1

2

(
1 − 1

Nτ

)

+
√[

1

2

(
1 − 1

Nτ

)]2

− var[S∞;KN
] (31)

and (b) the ring in (29).
For τ → ∞, where y∞; regular(τ ) → 1 and Var[S∞] → 0,

the inequality (30) leads to Wilf’s bound [35] for the clique
number, ω � 1

1− λ1
N

for λ1 = r , in which equality is reached for

the complete graph KN .

C. Brief overview on upper bounds for τc

To the best of our knowledge, very few general (and
nontrivial) upper bounds exist for the SIS epidemic threshold
τc. Bogũna et al. [36] have proposed a physically relevant
procedure to find a tight upper bound for τc; however, their
upper bound is not mathematically rigorous. Ganesh et al. [26]
demonstrated that τc � 1

η
, where the isoperimetric constant η

is related [22, p. 95] to the algebraic connectivity μN−1 by
η � μN−1

2 , so that τc � 1
η

� 2
μN−1

. Hence, their upper bound is

better than 2
μN−1

.
When rewriting (8) as

τ−1 = E[w(θ ; τ )T Qw(θ ; τ )]

Ny(θ ; τ )
,

we can define the epidemic threshold τc as that value of τ

for which the order parameter y(θ ; τ ) approaches zero from
above:

τ−1
c = lim

y(θ ;τ )↓0

E[w(θ ; τ )T Qw(θ ; τ )]

Ny(θ ; τ )
.

An upper bound for the SIS epidemic threshold, proven in
Ref. [4], is the following:

Theorem 4. Let

εG = lim
y∞↓0

max
(k,l)∈L

Pr [Xk = 1|Xl = 1],

where the involved quantities such as the prevalance y∞ and
the node k’s infectious state Xk are computed in the metastable
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state. Then the SIS epidemic threshold τc in graph G is upper
bounded by

τc � 1

dmin(1 − εG)
. (32)

Theorem 4 emphasizes, via εG, the role of the joint
probability of infection at end nodes of a same link. Earlier
in Refs. [15, p. 458] and [4], unfortunately, an error has been
made, which we would like to correct here. The argument that
“the conditional probability εG in Theorem 4 can be upper
bounded by εG � εKN

, because just at the onset of infection
(y ↓ 0), the maximum conditional infection probability εG on
a link (k,l) in the graph G is largest in the complete graph KN”
is false (it should be “smallest”), as well as the ensuing upper
bound based on KN , for any graph,

τc � 1

dmin

[
1 + O

(
1√
N

)]
. (33)

In other words, in some regular graphs such as the cycle (see
Theorem 3), the epidemic threshold τc can be factors larger
than 1

dmin
, contradicting (33).

VI. SUMMARY

A new approximation ỹ(t∗) in (13) for the time-varying SIS
prevalence has been proposed, which seems accurate, provided
the value of c in � in (14) can be estimated closely. The analytic
nature of the new approximation ỹ(t∗) in (13) allows very fast
computations of the prevalence y(t∗) at each time t∗ and may
serve as an approximate tool to model time-dependent aspects,
such as the average time to reach the metastable state, given
some initial infected fraction y(0). A deeper investigation of
the tanh formula in (13), in comparison with NIMFA, and
of the function 	 in (10) for different types of graphs stands
on the agenda of future work.

After a study of the time dependence of the SIS prevalence,
two general upper bounds for the SIS epidemic threshold [(21)
and (24)] and specific ones for regular graphs are added that,
unfortunately, still contain an unknown variance, which cannot
be ignored in general (see also Lemma 1 and Ref. [25]). The
differential equation of var[S], derived in Ref. [37],

d

dt∗
var[S] = −2var[S] + 2τ

N
E[(S − E[S])wT Qw]

+ 1

N

(
y + τ

N
E[wT Qw]

)
, (34)

may lead to further progress, although third order moments in
S appear.
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APPENDIX A: PROOF OF THE BASIC
DIFFERENTIAL EQUATION (4)

Summing the SIS governing equation (1) over all nodes
i and omitting the time-dependence in Xi(t) to shorten the
equations yields

dE
[∑N

i=1 Xi

]
dt

= E

[
−δ

N∑
i=1

Xi + β

N∑
k=1

N∑
i=1

akiXk − β

N∑
k=1

N∑
i=1

akiXiXk

]
,

and, after letting t∗ = tδ and τ = β

δ
and using that the degree

dk =∑N
i=1 aki , and written in terms of the prevalence (3), we

obtain

dy(t∗; τ )

dt∗ = −y(t∗; τ ) + E

[
τ

N

N∑
k=1

dkXk − τ

N

N∑
k=1

N∑
i=1

akiXiXk

]
.

If we define the vector w(t) = (X1,X2, . . . ,XN ) of random
variables and the degree vector D with ith vector component
the degree di of node i, then

dy(t∗; τ )

dt∗
= −y(t∗; τ ) + τ

N
E[DT w(t∗) − wT (t∗)Aw(t∗)].

(A1)
We write the degree vector as D = �u, where � =
diag(d1,d2, . . . ,dN ) so that

DT w − wT Aw = uT �w + wT �w − wT �w − wT Aw

= (u − w)T �w + wT (� − A)w.

Now, u − w is the (random) vector with noninfected nodes
and

(u − w)T �w =
N∑

j=1

(1 − Xj )djXj =
N∑

j=1

(
Xj − X2

j

)
dj = 0

because Xj = X2
j as Xj ∈ {0,1}. Introducing the Laplacian

Q = � − A of the graph G, we arrive at the differential
equation (4) for the average fraction of infected nodes y

expressed as a quadratic form of the Laplacian Q. �

APPENDIX B: THE QUADRATIC FORM zT Qz

An analysis of the Laplacian quadratic form in an intercon-
nected (or multilayer) network is presented in Ref. [23].

1. z is a real vector

Since the eigenvectors of Q constitute an orthogonal basis,
we can write any N × 1 real vector z as a linear combination
of eigenvectors x1,x2, . . . ,xN of Q,

z =
N∑

k=1

αkxk,

where αk = zT xk . Then

zT Qz =
N∑

k=1

N∑
m=1

αkαmxT
k Qxm =

N−1∑
k=1

α2
kμk (B1)
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because the Laplacian eigenvalue μN = 0 and

zT z =
N∑

k=1

α2
k = 1

N
(uT z)2 +

N−1∑
k=1

α2
k . (B2)

Since Q is positive semidefinite (all eigenvalues μk � 0),
we find from (B1) the set of lower bounds

zT Qz �
∑
k∈K

α2
kμk,

where K is a set with at most N − 1 different integers k ∈
[1,N − 1], and also,

μN−1

N−1∑
k=1

α2
k � zT Qz � μ1

N−1∑
k=1

α2
k ,

which leads, with (B2), to

μN−1 � zT Qz

zT z − 1
N

(uT z)2
� μ1 (B3)

with equality in the upper bound for z = x1 and in the
lower bound for z = xN−1. The lower bound is essentially the
Rayleigh inequality [22, p. 73] for the algebraic connectivity
μN−1.

2. w is a binary vector

The vector w is a so-called binary vector, because each
component wk = Xk is either zero or one. For such vectors,
we observe with (2) that

wT w =
N∑

k=1

X2
k =

N∑
k=1

Xk = uT w = NS.

Let us consider the eigenvector decomposition

w =
N∑

k=1

ζkxk, (B4)

where ζk = wT xk and, explicitly,

ζk =
N∑

j=1

Xj (xk)j =
∑

n∈[1,N]:Xn=1

(xk)n (B5)

= −
∑

m∈[1,N]:Xm=0

(xk)m = −
N∑

j=1

(1 − Xj )(xk)j ,

where the latter follows from uT xk = 0 for 1 � k < N . When
Xj = 1 or Xj = 0 for all j , then ζk = 0 for 1 � k < N . The

particular case for k = N with eigenvector vector xN = u√
N

equals

ζN = wT xN = 1√
N

wT u =
√

NS

and

w = S u +
N−1∑
k=1

ζkxk, (B6)

where the average over all nodes of
∑N−1

k=1 ζkxk = 0 (due
to orthogonality uT xk = 0 for 1 � k < N ). After taking the
expectation of both sides, we find for the j -component
(corresponding to node j ) that

E[Xj ] = y +
N−1∑
k=1

E[ζk](xk)j ,

which expresses the nodal probability of infection E[Xj ] =
Pr [Xj = 1] in terms of the average fraction y of infected nodes
(at zero frequency μN = 0) and a correction due to the higher
eigenfrequencies (μk > 0).

Applying (B2) yields5

N−1∑
k=1

ζ 2
k = uT w − 1

N
(uT w)2 = N (S − S2), (B7)

which demonstrates that
∑N−1

k=1 ζ 2
k tends to zero for S → 0 as

well as for S → 1. Since S ∈ [0,1] so that S − S2 � 1
4 , we find

that (ζ 2
k )av = 1

N

∑N−1
k=1 ζ 2

k � 1
4 , indicating that the arithmetic

average squared coefficient (ζ 2
k )av is rather small, especially in

comparison with ζ 2
N = NS2. Only a little can be said6 about

the expectation E[ζ 2
k ].

Next, the quadratic form (B1) becomes

wT Qw =
N−1∑
k=1

ζ 2
k μk (B8)

and shows, since all Laplacian eigenvalues μk > 0 for 1 �
k � N − 1 in a connected graph, that

wT Qw � 0, (B9)

where equality is possible only if all ζ 2
k = 0. In view of (B7),

only if all Xi = 0 (corresponding to the overall healthy or
absorbing state and w = 0) or all Xi = 1 (all nodes are infected
and w = u), then wT Qw = 0, but wT Qw > 0 in any other
situation. Invoking (B3) yields the lower bound

wT Qw � μN−1N (S − S2), (B10)

while the upper bound

wT Qw � μ1N (S − S2) (B11)

5Since the complement Bernoulli vector wc = u − w is orthogonal
to w, (B7) also follows after executing the scalar product wT wc = 0
using (B6).

6We can show that
∑N

k=1 (E[ζk])2 =∑N

m=1 (E[Xm])2.
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seems rather weak,7 because w has no negative components so
that w is more aligned to xN = u than to any other eigenvector
of Q. Introducing from (B7)

ζ 2
N−1 = N (S − S2) −

N−2∑
k=1

ζ 2
k

yields

wT Qw = μN−1N (S − S2) + R,

where the correction R in (11) is

R =
N−2∑
k=1

(μk − μN−1)ζ 2
k .

Alternatively, after Abel summation [22, p. 56], we obtain

wT Qw =
N−2∑
k=1

⎛⎝ k∑
j=1

ζ 2
j

⎞⎠(μk − μk+1) + μN−1

N−1∑
j=1

ζ 2
j .

Using (B7) shows that

wT Qw = μN−1N (S − S2) + R, (B12)

where another expression of the correction R is

R =
N−2∑
k=1

⎡⎣ k∑
j=1

ζ 2
j (t∗)

⎤⎦(μk − μk+1). (B13)

Since the eigenvalue gaps μk − μk+1 � 0 and
∑k

j=1 ζ 2
j � 0,

each term in the sum in (B13) as well as in (11) is non-negative,
demonstrating that R � 0. Only for the complete graph KN

are the nonzero Laplacian eigenvalues all equal to μk = N for
1 � k < N , so that RKN

= 0. Moreover, the complete graph
KN is the only graph that has two distinct eigenvalues [22, p.
45]. For all other graphs, R > 0 provided 0 < S < 1, because
ζk = 0 for 1 � k < N if S = 1 or S = 0. Applying the upper
bound (B11) and wT Qw � L to (B12) shows that

R � min ({μ1 − μN−1}N (S − S2),L − μN−1N (S − S2)).

Sharper upper bounds of R for an arbitrary graph are currently
not available.

We rewrite (4) with y = E[S] and S = 1
N

wT w as

dy(t∗; τ )

dt∗
= 1

N
E[w(t∗; τ )T (τQ − I )w(t∗; τ )], (B14)

which is the expectation of a quadratic form of the matrix τQ −
I . Introducing the spectral decomposition of the Laplacian
Q =∑N

k=1 μkxkx
T
k yields

dy

dt∗
= 1

N

N∑
k=1

(τμk − 1)E
[(

xT
k w
)2]

= 1

N

N∑
k=1

(τμk − 1)E
[
ζ 2
k

]
.

7We can prove another upper bound wT Qw � L.

With ζN = √
NS, we have

dy

dt∗
= 1

N

N−1∑
k=1

(τμk − 1)E
[
ζ 2
k

]− E[S2]. (B15)

3. A lower bound from the Motzkin-Straus Theorem

The condition uT x = 1 in the Motzkin-Straus Theorem
requires a scaling of w = ζx, so that NS = wT u = ζxT u = ζ

and with (23), we have

wT Aw = N2S2xT Ax � N2S2

(
1 − 1

ω

)
, (B16)

which leads to the lower bound:

wT Qw = wT �w − wT Aw �
N∑

i=1

diXi − N2S2

(
1 − 1

ω

)
.

(B17)

APPENDIX C: A RICCATI DIFFERENTIAL EQUATION

Consider the Riccati differential equation

dy

dt
= ay − by2 − g(t), (C1)

where we assume that g(t) is an arbitrary function, not
depending on y. This differential equation has been solved
in [38], when a and b are time-dependent functions, but
where g(t) = 0, to model SIS epidemics on the complete
graph with time-varying rate functions. In their seminal
paper [20], Kermack and McKendrick exactly solve the
differential equations for SIR epidemics in a homogeneous
population (i.e., complete graph) with constant rates β and δ

dx

dt
= −βxy

dy

dt
= βxy − δy

dz

dt
= δy,

where x,y,z denotes the number of susceptible, infected and
removed items in the population of size N = x + y + z. A key
observation in Ref. [20] is that

dx

dz
= −τx

whose solution is log x(t)
x0

= −τz(t) [since z(0) = 0]. Writing
y = N − x − z in the last SIR differential equation and
introducing x = x0e

−τz yields

dz

dt
= δ(N − x0e

−τz − z) (C2)

and integrated with t∗ = δt

t∗ =
∫ z

z0

du

N − x0e−τu − u
.

Since the integral is not analytically known, Kermack and
McKendrick approximate e−τz = 1 − τz + 1

2τ 2z2 + O(z3)
in (C2) to obtain

dz

dt∗
= N − x0 + (x0τ − 1)z − x0τ

2

2
z2,

which is of the form (C1) with constant g(t) = N − x0, whose
solution (C6) appears in Ref. [20] and is reviewed in Ref. [8,
Sec. 2.3].
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A Ricatti differential equation can be reduced to a second
order linear differential equation. For, let y = αv and (C1)
becomes

dv

dt
= av − bαv2 − g(t)

α
,

and we choose bα = 1, so that α = 1
b

and

dv

dt
+ v2 = av − bg(t).

Let v = u′
u

, then v′ = u′′
u

− (u′)2

u2 so that v′ + v2 = u′′
u

, and we
obtain the linear, second order differential equation

u′′ − au′ + bg(t)u = 0 (C3)

with

y = 1

b

u′

u
. (C4)

It is questionable whether a general solution of the differ-
ential equation (C3) for an arbitrary function g(t) can be found
in analytic form. However, if g(t) = c, where c is a constant,
then u′′ − au′ + bcu = 0 can be solved. Indeed, let u = ezt ,
then substitution into the differential equation (C3) yields

(z2 − az + bc)ezt = 0,

which is satisfied for z1 = 1
2 (a + √

a2 − 4bc) and z2 =
1
2 (a − √

a2 − 4bc). If bc = z1z2 > 0, then both z1 and z2 have
the same sign. The general solution of (C3) is

u = u1e
z1t + u2e

z2t .

The corresponding solution (C4) for y becomes

y(t) = 1

b

z1 + u2
u1

z2e
(z2−z1)t

1 + u2
u1

e(z2−z1)t
, (C5)

where z2 − z1 = −√
a2 − 4bc. The initial condition y(0) =

y0 determines u2
u1

= − by0−z1

by0−z2
, so that, with bc = z1z2,

y(t) = z1y0 − c − (z2y0 − c)e−t
√

a2−4bc

by0 − z2 − (by0 − z1)e−t
√

a2−4bc
.

After introducing the expressions for z1 and z2, we find, in
terms [39] of the hyperbolic tangent tanh (x) = e2x−1

e2x+1 ,

y(t) = y0

1 + (a− 2c
y0

)√
a2−4bc

tanh t
2

√
a2 − 4bc

1 + (2by0−a)√
a2−4bc

tanh t
2

√
a2 − 4bc

,

which can be further simplified with tanh (x + y) =
tanh (x)+tanh (y)

1+tanh (x) tanh (y) and defining

ϒ =
√

a2 − 4bc

to

y(t) = a

2b
+ ϒ

2b
tanh

[
t

2
ϒ + arctanh

(
2by0 − a

ϒ

)]
. (C6)

An alternative and shorter derivation of (C6) when g(t) =
c, follows from direct integration of the differential equa-

tion (C1): ∫ y

y0

du

au − bu2 − c
= t.

With au − bu2 − c = ϒ2

4b
{1 − [ 2b

ϒ
(u − a

2b
)]

2}, we obtain

t =
∫ y

y0

du

ϒ2

4b

{
1 − [ 2b

ϒ

(
u − a

2b

)]2}
= 2

ϒ
arctanh

2b

ϒ

(
u − a

2b

)∣∣∣∣y
y0

,

and inversion (i.e., solving for y) leads to (C6).
The derivative of (C6) is

dy(t)

dt
= ϒ2

4b
sech2

[
t

2
ϒ + arctanh

(
2by0 − a

ϒ

)]
. (C7)

Suppose we define the metastable state when dy(t)
dt

� ε = 10−γ

(e.g., for γ � 3), then an estimate for the time to reach the
metastable state is approximately

tmetastable(ε) = 2

ϒ

{
arccosh

(√
ϒ2

4bε

)
− arctanh

(
2by0 − a

ϒ

)}
.

If a2 − 4bc < 0, then ϒ is imaginary and (C6) becomes,
with tanh(ix) = i tan (x),

y(t) = a

2b
+ |ϒ |

2b
tan

[
− t

2
|ϒ | + arctan

(
2by0 − a

|ϒ |
)]

,

illustrating that poles occur at t =
−2√

4bc−a2 [π
2 + kπ − arctan ( 2by0−a√

4bc−a2 )] for k ∈ Z, which is
clearly not physical. Hence, we confine ourselves to the
case where ϒ = √

a2 − 4bc is real and positive. In order for√
a2 − 4bc to be real, we require that a2

4b
� c. The maximum

value, c = a2

4b
, in which case u = u1e

a
2 t + u2te

a
2 t , leads to

y = 1

b

u′

u
= a

2b

(
1 +

2
a

u2
u1

1 + u2
u2

t

)
,

which tends slowly to y∞ = a
2b

.
We investigate the impact of the real number c on y(t), given

that b and
√

a2 − 4bc are positive. The relations (C5) and (C6)
show that limt→∞ y(t) = y∞ = z1

b
. When c = 0, then z1 = a

and z2 = 0. If c < 0, then
√

a2 − 4bc > 0 and both roots z1

and z2 are real but have opposite sign, z1 > 0 > z2, because
z1z2 = bc < 0. The more negative c is, the larger

√
a2 − 4bc

and z1, as well as the faster y tends to y∞ = z1
b

. Since y∞ � 1
and y∞ = z1

b
, we find that −c � b − a. Combining the two

constraints on c gives

a − b � c � a2

4b
. (C8)

The derivative (C7) is positive if ϒ2 = a2 − 4bc > 0.
If a < 0 and

√
a2 − 4bc > 0, then still z1 > z2. If c > 0,

both z1 and z2 are negative, as well as y∞ = z1
b

, which cannot
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represent an average fraction of nodes. If c < 0, then z2 < 0,
but z1 > 0 so that y∞ = z1

b
is physically possible.

APPENDIX D: PROOFS OF THEOREMS AND LEMMAS

1. Proof of Lemma 1

At an extremal time point t∗ = θ , where dy

dt∗ |t∗=θ
= 0, it

follows from (B15) with E[S2] = y2+ var[S] that

y2(θ ) = 1

N

N−1∑
k=1

(τμk − 1)E
[
ζ 2
k (θ )

]− var[S(θ )].

Clearly, for τ < 1
μ1

< τc, the right-hand side is nonpositive,
indicating that the only possible solution is y(θ ) = 0, cor-
responding to θ → ∞. We split the summation into two
parts,

y2(θ ) = 1

N
(τμN−1 − 1)E

[
ζ 2
N−1(θ )

]
+ 1

N

N−2∑
k=1

(τμk − 1)E
[
ζ 2
k (θ )

]− var[S(θ )].

Introducing from (B7)

ζ 2
N−1 = N (S − S2) −

N−2∑
k=1

ζ 2
k

yields after some manipulations and recognizing (11) of the
correction R

y2(θ ) −
(

1 − 1

τμN−1

)
y(θ ) + var[S(θ )]

= 1

N

N−2∑
k=1

(
μk

μN−1
− 1

)
E
[
ζ 2
k (θ )

]
= E[R(θ )]

NμN−1
� 0.

With the definition (10) of 	(θ ) = τμN−1{var[S(θ )] −
E[R(θ)]
NμN−1

}, we obtain the quadratic inequality

y2(θ ) −
(

1 − 1

τμN−1

)
y(θ ) + 	(θ )

τμN−1
= 0,

whose solution for y(θ ) is (9). �

2. Proof of Theorem 2

Introducing the lower bound (B17) into (4) yields

dy

dt∗
� −y + τ

N
E

⎡⎣ N∑
j=1

djXj

⎤⎦− τN

(
1 − 1

ω

)
E[S2].

Using
∑N

j=1 djXj � dminNS, E[S2] = (E[S])2 + var[S], and
E[S] = y, we end up with

dy

dt∗
� (τdmin − 1)y − Nτ

(
1 − 1

ω

)
y2

−Nτ

(
1 − 1

ω

)
var[S], (D1)

which is a Ricatti differential inequality associated to (C1).
Appendix C demonstrates that, if

max
t�0

var[S(t,τ )] � (τdmin − 1)2

4N2τ 2
(
1 − 1

ω

)2
and τ > 1

dmin
, then a nonzero average fraction of infected nodes

(after a sufficiently long time)

y∞ � 1

2Nτ
(
1 − 1

ω

) ((τdmin − 1) +
√

T )

with

T = (τdmin − 1)2 − 4N2τ 2

(
1 − 1

ω

)2

var[S∞(τ )].

The requirement for a positive discriminant T leads to (24),
because then we are sure that y∞ > 0, which implies that the
epidemic threshold lies below this value, proving Theorem 2.
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Complex Networks, London Mathematical Society Lecture
Node Series, Vol. 369 (Cambridge University Press, Cambridge,
2010).

052312-13

http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1103/RevModPhys.87.925
http://dx.doi.org/10.1214/aop/1176988285
http://dx.doi.org/10.1214/aop/1176988285
http://dx.doi.org/10.1214/aop/1176988285
http://dx.doi.org/10.1214/aop/1176988285
http://dx.doi.org/10.1103/PhysRevE.87.012811
http://dx.doi.org/10.1103/PhysRevE.87.012811
http://dx.doi.org/10.1103/PhysRevE.87.012811
http://dx.doi.org/10.1103/PhysRevE.87.012811
http://dx.doi.org/10.1103/PhysRevE.91.032812
http://dx.doi.org/10.1103/PhysRevE.91.032812
http://dx.doi.org/10.1103/PhysRevE.91.032812
http://dx.doi.org/10.1103/PhysRevE.91.032812
http://dx.doi.org/10.1103/PhysRevLett.110.108701
http://dx.doi.org/10.1103/PhysRevLett.110.108701
http://dx.doi.org/10.1103/PhysRevLett.110.108701
http://dx.doi.org/10.1103/PhysRevLett.110.108701
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816
http://dx.doi.org/10.1103/PhysRevE.87.062816


P. VAN MIEGHEM PHYSICAL REVIEW E 93, 052312 (2016)

[13] P. Van Mieghem, Decay towards the overall-healthy state in SIS
epidemics on networks, arXiv:1310.3980 (2013).

[14] R. van de Bovenkamp and P. Van Mieghem, Time to metastable
state in SIS epidemics on graphs, in Third International
IEEE Workshop on Complex Networks and Their Applications,
November 23–27, Marrakesh, Morocco (2014).

[15] P. Van Mieghem, Performance Analysis of Complex Networks
and Systems (Cambridge University Press, Cambridge, 2014).

[16] P. Van Mieghem, J. Omic, and R. E. Kooij, Virus spread in
networks, IEEE/ACM Trans. Netw. 17, 1 (2009).

[17] E. Cator and P. Van Mieghem, Second order mean-field SIS
epidemic threshold, Phys. Rev. E 85, 056111 (2012).

[18] P. Van Mieghem, D. Stevanović, F. A. Kuipers, C. Li, R. van
de Bovenkamp, D. Liu, and H. Wang, Decreasing the spectral
radius of a graph by link removals, Phys. Rev. E 84, 016101
(2011).

[19] M. Fiedler, Algebraic connectivity of graphs, Czech. Math. J.
23, 298 (1973).

[20] W. O. Kermack and A. G. McKendrick, A contribution to the
mathematical theory of epidemics, Proc. R. Soc. London A 115,
700 (1927).

[21] F. R. Gantmacher, The Theory of Matrices, Vol. II (Chelsea
Publishing Company, New York, 1959).

[22] P. Van Mieghem, Graph Spectra for Complex Networks
(Cambridge University Press, Cambridge, 2011).

[23] P. Van Mieghem, Interconnectivity structure of a general
interdependent network, Phys. Rev. E 93, 042305 (2016).

[24] P. Van Mieghem, The N-Intertwined SIS epidemic network
model, Computing 93, 147 (2011).

[25] E. Cator and P. Van Mieghem, Nodal infection in Markovian SIS
and SIR epidemics on networks are non-negatively correlated,
Phys. Rev. E 89, 052802 (2014).
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