
PHYSICAL REVIEW E 106, 014308 (2022)

Moment closure approximations of susceptible-infected-susceptible
epidemics on adaptive networks

Massimo A. Achterberg * and Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,

P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 16 February 2022; accepted 29 June 2022; published 25 July 2022)

The influence of people’s individual responses to the spread of contagious phenomena, like the COVID-19
pandemic, is still not well understood. We investigate the Markovian Generalized Adaptive Susceptible-Infected-
Susceptible (G-ASIS) epidemic model. The G-ASIS model comprises many contagious phenomena on networks,
ranging from epidemics and information diffusion to innovation spread and human brain interactions. The
connections between nodes in the G-ASIS model change adaptively over time, because nodes make decisions to
create or break links based on the health state of their neighbors. Our contribution is fourfold. First, we rigorously
derive the first-order and second-order mean-field approximations from the continuous-time Markov chain.
Second, we illustrate that the first-order mean-field approximation fails to approximate the epidemic threshold
of the Markovian G-ASIS model accurately. Third, we show that the second-order mean-field approximation is a
qualitative good approximation of the Markovian G-ASIS model. Finally, we discuss the Adaptive Information
Diffusion (AID) model in detail, which is contained in the G-ASIS model. We show that, similar to most other
instances of the G-ASIS model, the AID model possesses a unique steady state, but that in the AID model,
the convergence time toward the steady state is very large. Our theoretical results are supported by numerical
simulations.
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I. INTRODUCTION

A major open problem in epidemiology is to understand
the effect of people’s personal responses to an epidemic out-
break. For example, an individual can decide to break contact
with other individuals to prevent themselves or others from
contracting the disease. In that case, the local contact network
of the individual is adapted by the spread of the disease [1,2].
One of the first adaptive epidemic models was introduced by
Gross et al. [3], which describes the spread of a susceptible-
infected-susceptible (SIS) epidemic on a network. Each node
in the network is either infected (I) or healthy but susceptible
(S). Each infected node can infect its healthy neighbors with
probability p. Independent of the infection process, infected
individuals can cure with probability r. To model behavior of
individuals, Gross et al. introduces a link rewiring process.
Susceptible nodes may rewire their link with an infectious
neighbor to a randomly chosen susceptible node with prob-
ability w. Gross’s model was analyzed extensively [4–6] and
several other rewiring schemes [7–10] and mean-field meth-
ods [11] have been proposed for adaptive SIS epidemics.
Link-rewiring schemes have also been investigated in other
epidemic models, such as SIR [12] and SIRS models [13].

The seminal work of Gross et al. [3] allows for the rewiring
of links in the network, but the total number of links in
Gross’s model is fixed. However, the number of links in the
contact network varies over time, especially during an ongo-
ing epidemic. Several studies have considered a time-varying
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number of links. Tunc et al. [14] proposed to break links and
automatically restore them after a fixed time. Zhou et al. [15]
investigated growing networks, in which links between sus-
ceptible and infected nodes can be broken. Sahneh et al. [16]
considered the interplay between the disease spread and the
spread of awareness on the disease in a multilayer network.
Kiss et al. [17] introduced a link activation and deactivation
model, also known as the Generalized Adaptive SIS (G-ASIS)
model, which was also independently discovered by Achter-
berg et al. [18]. The G-ASIS model assumes that the links
between nodes can be changed based on two processes. On
the one hand, the link between two nodes can be broken
with a certain probability. On the other hand, another rule
describes the possibility for a link to be created between
two disconnected nodes. The probability for the link-breaking
and link-creation processes is dependent on the current health
state of the two end-nodes of the link. Hence, the underlying
contact network adapts to the spread of the epidemic.

Specific instances of the G-ASIS model have been an-
alyzed in detail. The Adaptive SIS (ASIS) model [19,20]
describes the spread of an epidemic in a population, where
links are broken between susceptible and infected nodes to
reduce the spread of the virus and links are recreated be-
tween susceptible nodes. The Adaptive Information Diffusion
(AID) model, introduced by Trajanovski et al. [21], describes
the propagation of online content. Taking into account the
node’s willingness to receive the information, links can be
created between susceptible and infected nodes. However,
links are removed between susceptible nodes because nodes
lose interest in maintaining their relationship when there is no
news.
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Several properties of the G-ASIS model have been inves-
tigated as well. Kiss et al. [17] explored the accuracy of the
second-order mean-field approximation of the G-ASIS model,
but did not provide any rigorous derivations. Szabó et al. [20]
provided a detailed bifurcation analysis for the second-order
mean-field approximation of the G-ASIS model, but only for
the case that links cannot be broken nor created between two
infected nodes. Szabó et al. additionally proved that the num-
ber of steady states is maximally three and derived conditions
when such number of steady states exists. A variation on the
second-order mean-field approximation of the ASIS model
has been studied by Szabó-Solticzky et al. [22].

Besides exact lower bounds on the epidemic threshold and
implicit solutions for the metastable prevalence [18], no exact
results are known for the Markovian G-ASIS model. The
Markov chain is a linear process, but the number of states
in the Markov chain grows exponentially with the number
of nodes. Several methods are known in the literature to
approximate exponentially large state spaces. One important
method are mean-field approximations, which assume that
the states of (groups of) nodes are uncorrelated. Mean-field
models were widely popularized in network epidemiology by
Pastor-Satorras and Vespignani in 2001, when they illustrated
that in scale-free networks, the epidemic threshold converges
to zero for infinitely large networks [23]. Ever since, many
mean-field methods have been proposed for the static SIS
model, including first-order mean-field [24,25] and second-
order mean-field approximations [26,27]. The accuracy of the
first-order mean-field approximation for the static SIS model
has been investigated [28], but the determination of the ac-
curacy of higher order mean-field approximations remains a
challenging open problem [29].

Motivated by the mean-field approximations on static SIS
networks, we extend the results for adaptive networks. In
particular, we discuss the G-ASIS model, in which the links
of the underlying graph change based on individual deci-
sions of the nodes. Many properties of the G-ASIS model are
hard to compute and approximations are a natural vehicle to
gain further understanding of the key epidemiological proper-
ties. Here, we present a rigorous derivation of the first-order
and second-order mean-field approximations of the G-ASIS
model. First, we explicate the G-ASIS model in Sec. II.
Section III discusses the first-order mean-field approximation
for the G-ASIS model and shows that the first-order mean field
fails to mimic the Markovian G-ASIS model. Contrary to the
first-order mean field, the second-order mean-field approxi-
mation, derived in Sec. IV, is shown to be considerably more
accurate. In Sec. V, both first- and second-order mean-field
approximations are compared with the Markovian G-ASIS
model by numerical simulations. Finally, we present our con-
clusion and outlook in Sec. VI.

II. THE G-ASIS MODEL

Throughout this work, we use terminology and notation
from epidemiology to introduce and explain various concepts,
but the results also apply to general spreading phenomena,
ranging from gossips, political preferences, opinions, infor-
mation spread in the human brain, raising awareness about

FIG. 1. An overview of the processes in the G-ASIS model.
We show a random example for the link-breaking and link-creation
mechanisms, where the link is broken between susceptible and in-
fected nodes and is created between two susceptible nodes. All
possible updating rules for the link-breaking and link-creation mech-
anisms are specified in Table I.

a particular event, innovation spread, cascading failures, and
other spreading processes.

We consider a population of N individuals, represented by
a graph G where N is the set of N nodes and L is the set of
L links. Each node represents a particular individual from the
population and each link represents the connection between
two individuals. The underlying graph G is considered simple,
such that the graph G can be represented as an adjacency
matrix A, whose elements ai j indicate the existence (ai j = 1)
or nonexistence (ai j = 0) of a link between individuals i and
j. We assume that G is undirected, such that the adjacency
matrix A is symmetric. We consider a closed population with
a fixed number N of individuals (nodes), thus without births
and deaths nor migration from or to our population. The
“health state” of node i at time t is denoted by the Bernoulli
random variable Xi(t ), which equals Xi(t ) = 1 if individual i
is infected at time t , and Xi(t ) = 0 if the individual is healthy,
but susceptible. The spread of the epidemic is governed by
two processes. Infectious individuals may infect susceptible
individuals via a Poisson process with rate β if the two nodes
are connected [ai j (t ) = 1] at time t . Independent of the infec-
tion process, infected individuals can cure with Poisson rate δ.
The curing process is a nodal process and is not influenced by
the network dynamics, in contrast to the infection process that
requires a link between an infected and a susceptible node.

The G-ASIS model [18] assumes that the contact graph
changes based on two independent processes: link-breaking
and link-creation. The link between node i and j at time
t is described by the Bernoulli random variable ai j (t ). The
link ai j between node i and j can be broken with Poisson
rate ζi j . The link-creation process is also a Poisson process
with rate ξi j that creates a link between node i and j. Both
the link-breaking and link-creation process are dependent on
the health state Xi(t ) and Xj (t ) of the nodes i and j. One
possible example is that links can be created only between
susceptible-susceptible pairs and links are broken between
susceptible-infected pairs to prevent the spread of the dis-
ease. We assume that the infection, curing, link-breaking, and
link-creation processes are all independent Poisson processes,
whose combined dynamics can be described by a continuous-
time Markov chain. Throughout the remainder of this work,
we drop the explicit time-dependence of the random variables
Xi and ai j for brevity. A schematic overview of the G-ASIS
model is shown in Fig. 1.
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Most papers on the G-ASIS model so far have assumed
that each link in the network changes over time according
to the link-breaking and link-creation mechanisms. However,
a more general formulation of the G-ASIS model is as fol-
lows. We denote the set of permanently nonexisting links
in the network by L0 and the set of permanently existing
links by L1. These links do not adhere to the link-creation

and link-breaking mechanisms but instead are nonexistent
and always existent, respectively, for all times. The remain-
ing set of links Ladaptive = L \ {L0 ∪ L1} evolve according to
the link-creation and link-breaking mechanisms. We denote
the number of links of each type by L0, L1, and Ladaptive,
respectively.

The governing equations for the G-ASIS model [18] are

d E[Xi]

dt
= E

[
−δiXi + (1 − Xi )

N∑
j=1

βi jXjai j

]
, (1a)

d E[ai j]

dt
=

{
E[−ζi jai j fbr(Xi, Xj ) + ξi j (1 − ai j ) fcr(Xi, Xj )], if (i, j) ∈ Ladaptive,

0, otherwise, (1b)

where fbr and fcr specify the link-breaking and link-creation process, respectively. All six nontrivial updating rules for the
link-breaking fbr and link-creation fcr mechanisms have been identified in Ref. [18]. The six updating rules can be written as

f (Xi, Xj ) = a + b(Xi + Xj ) + cXiXj, (2)

where a, b, c ∈ Z. The parameters a, b, and c of the six nontrivial updating rules are listed in Table I. Using Eq. (2), the governing
equations (1) become

d E[Xi]

dt
= E

[
−δiXi + (1 − Xi )

N∑
j=1

βi jXjai j

]
, (3a)

d E[ai j]

dt
=

{
E{−ζi jai j[abr + bbr(Xi + Xj ) + cbrXiXj ) + ξi j (1 − ai j )(acr + bcr(Xi + Xj ) + ccrXiXj]}, if (i, j) ∈ Ladaptive,

0, otherwise. (3b)

Equations (3a) and (3b) describe the most general version
of the G-ASIS model with heterogeneous infection, curing,
link-breaking, and link-creation rates. The fact that some links
do not adhere to the link-breaking and link-creation dynamics
(that either remain existent or nonexistent for all times) is
reflected by the last line of Eq. (3b).

If the link-breaking rate ζi j = 0 and the link-creation rate
ξi j = 0 for all nodes i, j, then the process simplifies to the
SIS process on a static network. On the contrary, if fbr =
fcr = 1, then the network dynamics is decoupled from the
disease dynamics. An extensive analysis for this example of
epidemic spreading on temporal networks was provided by
Kiss et al. [17]. We emphasize that general temporal networks
are not necessarily governed by independent link-breaking
and link-creation mechanisms, but instead follow more com-
plex patterns, including temporal correlations and cluster
formation.

III. FIRST-ORDER MEAN-FIELD APPROXIMATION

Even though the Markovian G-ASIS model (3) is a simple
description of spreading processes on adaptive networks, its
analysis is difficult. Each of the 36 instances of the G-ASIS
model can be described by a Markov chain with 2N+Ladaptive

states, which makes the computation for any connected graph
with more than N = 20 nodes infeasible. Only in some special
cases, like the adaptive complete graph and the adaptive star
graph [30], the huge state space can be reduced using equi-
table partitions [31].

For all other graphs, the huge state space of the Markov
chain can be approximated using mean-field approximations.

Mean-field approximations constitute of one or more clo-
sure relations, which describe how the higher-order moments
of the random variables in the process are approximated
by lower-order moments of these random variables [32].
In contrast to the linear Markovian equations, the resulting
mean-field equations are nonlinear. Mean-field approxima-
tions induce an error, but also significantly reduce the
dimensionality of the process [33].

A common mean-field approximation for static networks
is the Heterogeneous Mean-Field (HMF) approximation [23],
which is a first-order mean-field approximation that addition-
ally considers a topological approximation by aggregating all
nodes with the same degree in the same group. The HMF
approximation is extended to adaptive networks by Marceau
et al. [11] for a link rewiring model and by Demirel et al. [34]
for growing networks. The approximation by Marceau et al.
not only considers the number of neighbors of each node, but
also includes the number of infected neighbors in the mean-

TABLE I. All updating rules for the link-breaking and link-
creation mechanisms in the G-ASIS model. The table has been
adopted from Ref. [18].

Rule f a b c Gate

XiXj 0 0 1 AND
1 − XiXj 1 0 −1 NAND

(1 − Xi )(1 − Xj ) 1 −1 1 NOR
1 − (1 − Xi )(1 − Xj ) 0 1 −1 OR

(Xi − Xj )2 0 1 −2 XOR
1 − (Xi − Xj )2 1 −1 2 XNOR
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field approximation, thereby improving on the standard HMF
approximation. We expect that a similar HMF approximation
can be derived for the G-ASIS model using the framework of
Devriendt and Van Mieghem [25].

However, the HMF approximation appears inferior [35] to
the first-order mean-field approximation without any topo-
logical approximation, also known as the N-Intertwined
Mean-Field Approximation (NIMFA) [36]. Thus, we focus on
NIMFA from here onwards. NIMFA assumes that any pair

of random variables Xi, Xj , and ai j is independent (hence,
uncorrelated):

E[XiXj] = E[Xi]E[Xj], E[Xiai j] = E[Xi]E[ai j],

E[XiXjai j] = E[Xi]E[Xj]E[ai j],

for all i �= j. The first-order mean-field equations for G-ASIS
are then given by

d E[Xi]

dt
= −δiE[Xi] + (1 − E[Xi])

N∑
j=1

βi jE[Xj]E[ai j], (4a)

d E[ai j]

dt
=

⎧⎨
⎩

−ζi jE[ai j](abr + bbr(E[Xi] + E[Xj]) + cbrE[Xi]E[Xj])
+ξi j (1 − E[ai j])(acr + bcr(E[Xi] + E[Xj]) + ccrE[Xi]E[Xj]), if (i, j) ∈ Ladaptive,

0. otherwise.
(4b)

Although the number of equations in Eq. (4) is N + Ladaptive

and not N , we call Eq. (4) the adaptive N-Intertwined Mean-
Field Approximation (aNIMFA), because of the analogy to
the NIMFA equations for static networks [36]. Contrary to the
NIMFA equations for the static SIS model, aNIMFA is not
necessarily an upper bound for the Markovian dynamics.

The steady state of the NIMFA equations and the
metastable state of the Markov process show similar behav-
ior for sufficiently large networks and for effective infection
rates τ = β/δ above the epidemic threshold [37]. For adaptive
networks, however, we will show that the steady state of
the first-order mean-field approximations, like aNIMFA, and
the metastable state of the Markov process deviate signifi-
cantly. One of the reasons is as follows. The curing process
in the SIS model only involves the state of the node it-
self. Any mean-field method will therefore exactly capture
the curing process, because the assumed independence of
random variables is irrelevant for the curing process. On
the contrary, the joint probability of infection of n nodes
in network epidemics depends on the joint probabilities of

infection of n + 1 nodes. Any mean-field method, irrespective
of its order (smaller than N), will approximate the infection
process and induce an approximation error. However, the link-
breaking and link-creation processes involve the state of a link
plus the states of the adjacent nodes. By using a first-order
mean-field approximation, the link-creation and link-breaking
processes will be approximated. In Sec. IV, we will construct
a second-order mean-field approximation that only involves
the approximation of the infection process and exactly cap-
tures the link-breaking and link-creation processes.

A. First-order mean field on the complete graph

The inaccuracy of the first-order mean-field approximation
is exemplified by the easiest case, in which the infection,
curing, link-breaking and link-creation rates are homogeneous
parameters and the adaptive graph Ladaptive is the complete
graph, such that L0 = L1 = ∅. Then, the aNIMFA equa-
tions become

d E[Xi]

dt
= −δE[Xi] + β(1 − E[Xi])

N∑
j=1, j �=i

E[Xj]E[ai j], (5a)

d E[ai j]

dt
= −ζE[ai j](abr + bbr(E[Xi] + E[Xj]) + cbrE[Xi]E[Xj])

(5b)
+ ξ (1 − E[ai j])(acr + bcr(E[Xi] + E[Xj]) + ccrE[Xi]E[Xj]).

If the initial prevalence is the same for every node and the initial link-density is the same for every link, then Eq. (5) can be
simplified. Introducing the average fraction of infected nodes, also known as the prevalence, as y = 1

N

∑N
i=1 E[Xi], the average

link density z = 1
N (N−1)

∑N
i=1

∑N
j=1 E[ai j], rescaling time by t̃ = tδ, defining τ = β/δ, ζ̃ = ζ/δ, ξ̃ = ξ/δ and introducing the

normalized effective infection rate x = τ (N − 1), we obtain (dropping the tildes)

d y

dt
= −y + x(1 − y)yz, (6a)

d z

dt
= −ζ z(abr + 2bbry + cbry

2) + ξ (1 − z)(acr + 2bcry + ccry
2). (6b)
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After substituting one of the 36 instances of the G-ASIS
model, the two differential equations (6) with the parame-
ters τ, ζ , and ξ provide a first-order mean-field description
of the G-ASIS model. The steady-state prevalence y∞ and
the steady-state link density z∞ of Eq. (6) are presented in
Theorem III.1.

Theorem III.1. The steady states (y∞, z∞) of Eq. (6) are
the real-valued solutions of the cubic equation

ccrxy3
∞ + (2bcrx − ccrx + ccr + cbrω)y2

∞
+ (2bcr + acrx − 2bcrx + 2bbrω)y∞
+ (acr + abrω − acrx) = 0, (7)

where ω = ζ/ξ is the effective link-breaking rate and z∞
follows as

z∞ = 1

x(1 − y∞)
(8)

or the steady state equals the trivial (all-healthy) steady state

y∞ = 0

z∞ =
{ acr

abrω+acr
, if acr �= 0 or abr �= 0,

free variable, otherwise.
(9)

Proof.
See Appendix A. �

Although for abr = acr = 0, there are infinitely many steady
states with prevalence y∞ = 0 and link density z∞, we will
continue to call those states the trivial steady state, in line
with classical SIS epidemics on static networks.

The existence of the trivial steady state y∞ = 0 is illus-
trated by Theorem III.1. In addition to the trivial steady state,
we show in Theorem III.2 that at least one nontrivial steady
state exists for all instances in the G-ASIS model.

Theorem III.2. For each instance of the G-ASIS model,
there is a nonempty (x, ω)-region where at least one nontrivial
steady state exists.

Proof.
See Appendix B. �

Theorem III.2 guarantees that the introduction of
link-breaking and link-creation mechanisms to the
standard SIS model is not able to destroy the endemic
state completely. Moreover, the following relation for
the epidemic threshold τ (1)

c follows from the proof of
Theorem III.2.

Corollary III.3. For G-ASIS instances whose link-
breaking fbr(y) and link-creation fcr(y) mechanisms do not
have coinciding zeros (see part (ii) in Proof 1 in Appendix B

for details), the first-order mean-field epidemic threshold
equals

τ (1)
c = 1

N − 1

acr + abrω

acr
.

In the sequel, we consider some example instances of the
G-ASIS model.

B. The ASIS model

The Adaptive SIS (ASIS) model was introduced by Guo
et al. [19] to describe the tendency of healthy people to prevent
themselves from contracting the disease by avoiding contact
with infected individuals. In the ASIS model, links can be
broken between susceptible and infected nodes to prevent the
disease from spreading and links can be created between sus-
ceptible nodes. The link-breaking rule equals fbr = (Xi − Xj )2

and the link-creation rule fcr = (1 − Xi )(1 − Xj ). Substituting
the model parameters of ASIS (see Table I) in Eq. (7) yields

xy3
∞ + (1 − 3x − 2ω)y2

∞ + (−2 + 3x + 2ω)y∞ + (1 − x)

= 0. (10)

The solution y∞ = 1 is not a valid steady state [according to
Eq. (6a)] and can be removed. Dividing the polynomial in
Eq. (10) by y∞ − 1, reduces to the quadratic equation

xy2
∞ + (1 − 2x − 2ω)y∞ + (x − 1) = 0,

whose solutions are

y∞ = 1 − 1 − 2ω

2x
±

√(
1 − 2ω

2x

)2

+ 2ω

x
. (11)

The positive branch of Eq. (11) is infeasible, because y∞
would be larger than one. For the steady-state solution y∞
to exist, the expression under the square root in Eq. (11)
must be nonnegative and y∞ must be bounded between zero
and one. If one of these criteria is exactly satisfied, thus the
expression under the square root is zero or y∞ is either zero
or one, then the resulting condition exactly specifies when
the solution y∞ exists or not. In other words, the existence
of y∞ is described by a bifurcation parameter, also known as
the epidemic threshold. Using the relation x = τ (N − 1), the
epidemic threshold for the ASIS model follows as

τ (1),ASIS
c = 1

N − 1
,

and is independent of the effective link-breaking rate ω. To
summarize, the solution is

y∞ =
{

1 − 1−2ω
2τ (N−1) −

√[
1−2ω

2τ (N−1)

]2 + 2ω
τ (N−1) , τ � τ (1),ASIS

c = 1
N−1 ,

0, always.
(12)

The steady-state solutions y∞ are shown for various ω values
in Fig. 2. Applying linear stability analysis, we find that the
all-healthy state y∞ = 0 is stable for τ � τc and is unstable
otherwise. If it exists, then the endemic state is always stable.

C. The AID model

The Adaptive Information Diffusion (AID) model was in-
troduced by Trajanovski et al. [21] to describe the spread
of information. In the AID model, nodes represent people
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FIG. 2. The transcritical bifurcation in the first-order mean-field
ASIS model with N = 40 and ξ = 0.5. The epidemic threshold τc is
fixed for varying effective link-breaking rates ω, which contrasts the
Markovian ASIS model, where the epidemic threshold τc appears to
scale linearly with the effective link-breaking rate ω.

who transmit news to their connected neighbors. Links are
created between susceptible (informationless) nodes and in-
fected (informative) nodes to enhance the spread of the news.
Links are removed between susceptible nodes because both
nodes are unaware of the news. The link-breaking rule is fbr =
(1 − Xi )(1 − Xj ) and the link-creation rule fcr = (Xi − Xj )2.
Substituting the parameters from the AID model (see Table I)
into Eq. (7) yields

−2xy3
∞ + (4x − 2 + ω)y2

∞ + (2 − 2x − 2ω)y∞ + ω = 0.

As before, the solution y∞ = 1 is an invalid steady state.
By removing y∞ = 1, the cubic equation simplifies to the
quadratic equation

2xy2
∞ + (−2x + 2 − ω)y∞ + ω = 0,

whose solutions are

y∞ = 2x + ω − 2 ±
√

(2x + ω − 2)2 − 8xω

4x
. (13)

FIG. 3. The saddle-node bifurcation in the first-order mean-field
AID model with N = 40 and ξ = 0.5. The epidemic threshold τc

moves over the blue line as the effective link-breaking rate ω in-
creases. The Markovian AID model has a nearly constant epidemic
threshold τc, but the mean-field AID threshold linearly depends on
the effective link-breaking rate ω.

The epidemic threshold τc can be determined by checking
when the steady-state solution y∞ is bounded between zero
and one and is real-valued. The epidemic threshold follows as

τ (1),AID
c =

1
2 (ω + 2) + √

2ω

N − 1
. (14)

The bifurcation diagram for the AID model is shown in Fig. 3.
The main difference between the ASIS and the AID model
is that the epidemic threshold in the AID model increases
for increasing ω, whereas the epidemic threshold remains
constant for the ASIS model. The steady-state solution y∞
is zero below the epidemic threshold and is nonzero at the
epidemic threshold:

y∞
(
τ (1),AID

c

) = ω + √
2ω

ω + 2 + √
8ω

.

To summarize, the solution is

y∞ =
{

2τ (N−1)+ω−2±
√

[2τ (N−1)+ω−2]2−8τ (N−1)ω
4τ (N−1) , τ � τ (1),AID

c = 1
2 (ω+2)+√

2ω

N−1 ,

0, always.
(15)

The bifurcation diagram in Fig. 3 shows two nontrivial steady
states, of which one the upper one is stable and the other is
unstable. The stability of each branch was determined using
linear stability analysis. The trivial steady state is always
stable for the AID model. The existence of the two nontriv-
ial steady states is illustrated in Fig. 4 using varying initial
conditions.

An intriguing observation is that the prevalence of the AID
model below the epidemic threshold τc is zero whereas it
is nonzero while approaching the epidemic threshold from
above. Similar behavior was, e.g., observed in rewiring mod-
els for SIR epidemics [38].

D. The ABN model

The Adaptive Brain Network (ABN) model describes in-
formation transport in the human brain [18]. Nodes represent
different areas in the human brain and links specify the
connections between the brain regions. The nodes can be
active (infected) or inactive (healthy). From a control sys-
tem point of view, the human brain incorporates two brain
operational principles: (a) Hebbian learning, where two ac-
tively communicating nodes continuously try to improve their
communication channel (i.e., increasing the weight of their
link, known as their synaptic strength) and (b) homeostatic
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FIG. 4. Numerical solutions of the first-order mean-field AID
model using different initial conditions for the fraction of infected
nodes, z(0) = 0.5, ξ = ζ = 0.1, and τ = 3

N−1 . As indicated by the
bifurcation diagram in Fig. 3, there are two stable steady states:
y∞ = 0 and y∞ ≈ 0.5. There is also an unstable steady state at
y∞ ≈ 0.35.

plasticity [39], which reduces the interaction strength between
two connected nodes to prevent a positive coupling generated
by Hebbian learning. The ABN model considers homeostatic
plasticity to be the primary link-adaptation mechanism. Other
G-ASIS instances may be used to describe Hebbian learning.

Thus, the ABN model assumes that links can be created
between susceptible (inactive) nodes and links are removed
between infected (active) nodes. The link-breaking rule is
fbr = XiXj and the link-creation rule is fcr = (1 − Xi )(1 −
Xj ). Substituting the parameters of the ABN model (see
Table I) yields

xy3
∞ + (1 − 3x + ω)y2

∞ + (3x − 2)y∞ + (1 − x) = 0. (16)

Unfortunately, like many instances of the G-ASIS model,
the cubic equation (16) cannot be further simplified. Using
Corollary III.3, the epidemic threshold τc follows as

τ (1),ABN
c = 1

N − 1
, (17)

which agrees with the numerical results from Fig. 5. The
results are similar to the static SIS and ASIS model, which
show the existence of a stable endemic steady state above
the epidemic threshold. The stability of the all-healthy state
changes at the epidemic threshold from stable to unstable,
leading to a transcritical bifurcation, as visualized in Fig. 5.

FIG. 5. The transcritical bifurcation in the first-order mean-field
ABN model with N = 40 and ξ = 0.5. The epidemic threshold τc

remains constant as the effective link-breaking rate ω increases,
which is in agreement with the Markovian ABN model.

IV. SECOND-ORDER MEAN-FIELD APPROXIMATION

The first-order mean-field approximation, discussed in
Sec. III, assumes that any pair of random variables is uncor-
related. In this section, we derive a higher order mean-field
approximation, which assumes that pairs, triplets, etc., of ran-
dom variables are uncorrelated.

Confining ourselves to homogeneous infection, curing,
link-breaking, and link-creation rates and all links in the graph
adhere to the link-breaking and link-creation mechanisms, the
governing equations (3) simplify to

d E[Xi]

dt
= E

[
−δXi + β(1 − Xi )

N∑
j=1

Xjai j

]
, (18a)

d E[ai j]

dt
= E{−ζai j[abr + bbr(Xi + Xj ) + cbrXiXj]

+ ξ (1 − ai j )[acr + bcr(Xi + Xj ) + ccrXiXj]}.
(18b)

Using the closure relation

E[XiXj] ≈ E[Xi]E[Xj], (19)

the following governing equations can be derived (see
Appendix C for the derivation)

d y

dt
= τ

N − 1

2
zSI − y,

d zSS

dt
= zSI − τ (N − 2)zSSI + ξSS

[
N

N − 1
(1 − y)2 − 1

N − 1
(1 − y) − zSS

]
− ζSSzSS,

(20)
d zII

dt
= τ zSI + τ (N − 2)zISI − 2zII + ξII

(
N

N − 1
y2 − 1

N − 1
y − zII

)
− ζIIzII,

d zSI

dt
= −(1 + τ )zSI + τ (N − 2)zSSI − τ (N − 2)zISI + 2zII + ξSI

[
2N

N − 1
y(1 − y) − zSI

]
− ζSIzSI,
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where y denotes the fraction of infected nodes, zSS, zSI,
and zII denote the fraction of links in the graph between
susceptible-susceptible (S-S), susceptible-infected (S-I), and
infected-infected (I-I) pairs of nodes, respectively. Finally, zSSI

and zISI denote the fraction of connected S-S-I and I-S-I triples
in the graph, respectively. Any other triples are irrelevant,
because S-S pairs and S-I pairs can only be infected by an
external infected node, not by an external susceptible node.
The external infected node must be connected to one of the
susceptible nodes in the original node pair, leading to the
triplet S-S-I or I-S-I.

Many possible closure relations exist, but in Eq. (20), the
advantage of our closure relation (19) becomes clear: The
unknown variables zSSI and zISI are related to the infection rate
τ only. Using other closure relations than Eq. (19) would
lead to an additional approximation of the link-breaking and
link-creation processes, which undoubtedly increases the ap-
proximation error.

As closure relations for zSSI and zISI, we use the closure rela-
tions from the static SIS model [3,17,26,40], which is derived
as follows. We assume that the number of I-S-I triplets equals

the number of links between susceptible and infected (S-I)
nodes, multiplied by the average number of links between
the susceptible node from the considered S-I pair and the
remaining infected nodes in the network. The latter equals
the number of S-I links divided by the number of susceptible
nodes:

1

2
N (N − 1)(N − 2)zISI ≈ 1

2
N (N − 1)zSI ·

1
2 N (N − 1)zSI

N (1 − y)
.

The same holds for zSSI, except that the infected node can
connect to both susceptible nodes of the S-S node pair:

1

2
N (N − 1)(N − 2)zSSI ≈ 1

2
N (N − 1)zSS ·

1
2 N (N − 1)zSI

1
2 N (1 − y)

,

which can be simplified to

zISI ≈ 1

2

N − 1

N − 2

z2
SI

1 − y
, zSSI ≈ N − 1

N − 2

zSSzSI

1 − y
. (21)

Using the closure relations (21), we obtain a second-order
mean-field approximation of the G-ASIS model:

d y

dt
= τ

N − 1

2
zSI − y,

d zSS

dt
= zSI − τ (N − 1)

zSSzSI

1 − y
+ ξSS

[
N

N − 1
(1 − y)2 − 1

N − 1
(1 − y) − zSS

]
− ζSSzSS,

(22)
d zII

dt
= τ zSI

(
1 + N − 1

2

zSI

1 − y

)
− 2zII + ξII

(
N

N − 1
y2 − 1

N − 1
y − zII

)
− ζIIzII,

d zSI

dt
= −(1 + τ )zSI + τ (N − 1)

zSI

1 − y

(
zSS − 1

2
zSI

)
+ 2zII + ξSI

[
2N

N − 1
y(1 − y) − zSI

]
− ζSIzSI.

We would like to intuitively justify Eq. (22), whereby we
focus on the equation for the fraction of links between S-S
pairs zSS; the other equations follow analogously. The term
ξSS[ N

N−1 (1 − y)2 − 1
N−1 (1 − y) − zSS] was added for the fol-

lowing reason. The number of S-S links in the network
increases with Poisson rate ξSS based on the number of nonex-
isting links between pairs of susceptible nodes. Given the
number of susceptible nodes N (1 − y), the maximum number
of S-S links is 1

2 [N (1 − y)][N (1 − y) − 1]. Knowing that the
maximum number of links equals 1

2 N (N − 1), the maximum
fraction of S-S links equals N

N−1 (1 − y)2 − 1
N−1 (1 − y). How-

ever, we should subtract the fraction of currently active S-S
links, which is given by zSS. Additionally, by breaking S-S
links with Poisson rate ζSS, the number of S-S links should
decay exponentially to zero, so we subtract by ζSSzSS. The other
terms are related to the curing and infection process, which we
will not explain here.

We derived the second-order mean-field model (22) from
the original Markovian model (18) by the following three
main steps: (i) we have considered homogeneous parameters
and a complete adaptive graph, (ii) we have assumed that the
states of any pair of nodes Xi and Xj are independent [see
Eq. (19)] and (iii) we have approximated the infection process

according to Eq. (21). The variables zISI and zSSI describe three
connected I-S-I and S-S-I triplets, consisting of three random
variables for the nodal states and two random variables for
the intermediate links. Then zISI and zSSI are approximated in
Eq. (21) by zSI and y, which are composed of three and one
random variable, respectively. Thus, approximation (iii) is a
third-order approximation. At first sight, approximation (ii)
in Eq. (19) seems to be a first-order closure relation, because
we assume no correlation between any two random variables.
However, the states Xi and Xj of the two nodes i and j do
not directly influence each other, but can only propagate via
the intermediate link ai j , which itself is a stochastic variable.
Thus, we argue that (ii) is actually a second-order closure
relation. We conclude that our approximation (22) is a second-
order adaptive mean-field approximation.

A. Second-order mean-field approximations in the literature

Our second-order mean-field approximation (22) is not
new, but was introduced by Kiss et al. [17] and further an-
alyzed in Refs. [20,22]. Our contribution constitutes of a
rigorous derivation of this second-order approximation, start-
ing from the 2N+Ladaptive Markov equations (18) toward the
second-order mean-field approximation, which we presented
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in Appendix C and in the previous subsection. We additionally
analyze specific instances of the G-ASIS model in detail by
comparing their first- and second-order mean-field approxi-
mations.

Our notation for the second-order mean-field equa-
tions (22) differs from other notations from the literature
[3,17,22]. Most works use [SS], [II], and [SI] to represent
(twice) the average number of links between susceptible-
susceptible, infected-infected nodes and susceptible-infected
nodes, respectively. First, we believe that definitions should
be intuitive and should describe the actual number of links;
not twice that value. Second, to bring the definitions of zSS, zSI,
and zII in line with the definition of the prevalence y, which
is the average fraction of infected nodes, we have chosen to
normalise all definitions in Eq. (C1) by the maximum number
of links, such that zSS, zSI and zII specify the fraction of links
rather than the absolute number of links.

Our second-order mean-field approximation (22) is equiv-
alent to the formulation in Kiss et al. [17]. This follows by
introducing [I] and [S] as the number of infected (susceptible)
nodes and [SS] and [II] as twice the number of links between
S-S and I-I node pairs, [SI] as the number of S-I links, the
link-breaking rate ω, link-creation rate α, curing rate τ , and
applying the following transformations to Eqs. (4.1)–(4.4)
from Kiss et al. [17]:

[I] := Ny,

[S] := N (1 − y),

[SS] := N (N − 1)zSS,

[SI] := 1

2
N (N − 1)zSI,

[II] := N (N − 1)zII,

ωab := ζab,

αab := ξab,

γ := 1,

where a, b are any combination of S and I , then we exactly
recover the second-order mean-field approximation (22).

A small difference between Ref. [17] and our work is the
chosen closure relation. Kiss et al. [17] and also Szabó et al.
[20] consider

[ABC] ≈ n − 1

n

[AB][BC]

[B]
,

where A, B, and C are random variables and n is the average
number of links per node. We consider the simple case where
n is sufficiently large, such that (n − 1)/n ≈ 1.

B. Analysis of the second-order mean field

We proceed our analysis of the second-order mean-field
approximation by computing the steady states of Eq. (22).

Theorem IV.1. The steady states of system (22) are the all-
healthy state

y∞ = zII,∞ = zSI,∞ = 0,

zSS,∞ =
{

ξSS

ζSS+ξSS
, if ζSS �= 0 or ξSS �= 0,

free variable, otherwise,
(23)

FIG. 6. The transcritical bifurcation in the second-order mean-
field ASIS model with N = 40 and ξ = 0.5. The epidemic threshold
τc increases linearly with the effective link-breaking rate ω, which is
in compliance with the Markov model.

or are the solution of the cubic equation

α1y3
∞ + α2y2

∞ + α3y∞ + α4 = 0, (24)

where the coefficients α1, α2, α3, and α4 depend on the effec-
tive infection rate τ , the link-breaking rate ζ , the link-creation
rate ξ , and the choice of the link-breaking and link-creation
mechanisms and are given in Eq. (D9) in Appendix D.

Proof.
See Appendix D. �

Although our model (22) is equivalent to Szabo et al. [20],
we find a cubic equation (24) for the nontrivial steady states
whereas they find a fourth-order equation (see Eq. (11) in
Ref. [20]). Actually, the trivial steady state x = 0 is a solu-
tion of their Eq. (11). After removing x = 0, their Eq. (11)
simplifies to our Eq. (24).

Equation (23) was obtained earlier for the Markovian
G-ASIS model below the epidemic threshold [18] and for
the mean-field model in Sec. III. Hence, the all-healthy
state from all mean-field approximations is in compli-
ance with the all-healthy state of the Markovian G-ASIS
model.

Theorem IV.1 states that the all-healthy state y∞ = 0 cor-
responds to a steady-state S-S link density zSS,∞, which was
earlier reported in Ref. [18, Eq. (9)] and Ref. [20, Eq. (12)]
as

zSS,∞ = ξSS

ζSS + ξSS

. (25)

References [18,20] omitted the case ζSS = ξSS = 0, which is a
viable option (see Table I with all link-updating rules) and the
evaluation of ζSS = ξSS = 0 in Eq. (25) is infeasible. The cor-
rect result for the mean-field approximations and the Markov
model below the epidemic threshold is reflected by Eq. (23).

Unfortunately, Eq. (24) cannot be further simplified
without considering specific link-breaking and link-creation
mechanisms. Thus, performing a stability analysis or con-
structing steady-state solutions is hard for the general case.
For the case ζII = ξII = 0, Szabó et al. [20, Theorem 2] derived
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a formula for the epidemic threshold:

τc = ζSI + ξSI + 1

(N − 1) ξSS

ξSS+ζSS
+ NξSI

.

For specific instances of the G-ASIS model, we will provide
an extensive analysis as follows. We use Maple to analytically
compute the steady states of the cubic equation (22) for each
of the 36 instances in the G-ASIS model. If the solutions
remain very tedious, then we determine the (three) steady
states numerically.

C. The ASIS model

We revisit the ASIS model, in which links can be broken
between infected-susceptible pairs and links can be cre-
ated between susceptible nodes. Hence, the link-breaking
rule is fbr = (Xi − Xj )2 and the link-creation rule is fcr =
(1 − Xi )(1 − Xj ). Or, in the formulation of this section,
ζSI = ζ , ξSS = ξ and ζII = ζSS = ξII = ξSI = 0. Substituting the
model parameters of the ASIS model into Eq. (24), we
find

(Nτ )y3
∞ + (−3Nτ + τ + ξω + 1 − 2ω)y2

∞ + (3Nτ − 2τ − 2ξω − 2 − 2ω)y∞ + (−Nτ + τ + ξω + 1) = 0. (26)

Equation (26) has y∞ = 1 as a solution, which is an invalid steady state according to Eq. (22). We can remove the solution
y∞ = 1 from Eq. (26) to find

(Nτ )y2
∞ + (−2Nτ + τ + ξω + 1 − 2ω)y∞ + (Nτ − τ − ξω − 1) = 0,

whose solution is

y∞ = 1 − τ + 1 + ξω − 2ω

2τN
± 1

2τN

√
(τ + 1 + ξω − 2ω)2 + 8τNω. (27)

As before, the solution y∞ must be real-valued and bounded between zero and one. Then only the negative branch of Eq. (27)
appears a valid solution. Moreover, we can derive the epidemic threshold as

τ (2),ASIS
c = 1 + ξω

N − 1
. (28)

To sum up, we find

y∞ =
{

1 − τ+1+ξω−2ω

2τN − 1
2τN

√
(τ + 1 + ξω − 2ω)2 + 8τNω, for τ � τ (2),ASIS

c = 1+ξω

N−1 ,

0, always.
(29)

For various values of the effective link-breaking rate ω, Fig. 6 shows the bifurcation diagram for the steady-state prevalence
y∞. The epidemic threshold τc in Eq. (28) scales linearly in the effective link-breaking rate ω = ζ/ξ , which is also illustrated
in Fig. 6. In contrast to the first-order mean-field threshold τ (1),ASIS

c = 1
N−1 , the second-order mean-field threshold τ (2),ASIS

c =
1+ξω

N−1 appears to show the correct linear scaling of the Markovian epidemic threshold [18,19]. Hence, the second-order mean-
field approximation is superior to the first-order mean-field approximation for estimating the epidemic threshold τc. We further
elaborate on this observation in Sec. V.

D. The AID model

As a second example, we revisit the Adaptive Information Diffusion (AID) model. Similar to the ASIS model, we derive the
steady states of Eq. (22) by inserting the parameters of the AID model. After the removal of the invalid steady state y∞ = 1, we
obtain the following solutions for the steady-state prevalence:

y∞ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2Nτ−ξω+2−ω±
√

(2Nτ+ξω−2+ω)2−8Nτω

2Nτ (2−ξω) , for 0 < ω < ωAID
c and τ � τ (2),AID

c

(
ωAID

c

)
,

1 − 2Nτ−ξω+2−ω−
√

(2Nτ+ξω−2+ω)2−8Nτω

2Nτ (2−ξω) , for ω � ωAID
c and τ > τ (2),AID

c ,

0, always,

(30)

where we used the effective link-breaking rate ω = ζ/ξ . We emphasize that ζ > 0 and ξ > 0, otherwise the G-ASIS model
would not be adaptive. We may compute the epidemic threshold τc explicitly in terms of the effective link-breaking rate ω,

τ (2),AID
c (ω) =

{
1+ ω

2 − ξω

2 +√
ω(2−ξω)

N , for 0 < ω � ωAID
c ,

1+ 1
ξ

N , for ω > ωAID
c ,

(31)

and the steady-state prevalence y∞ at the epidemic threshold equals

y∞
(
τ = τ (2),AID

c

) =
{

1 − 4−2ξω+2
√

ω(2−ξω)
[2+ω−ξω+2

√
ω(2−ξω)](2−ξω)

, for 0 < ω � ωAID
c ,

0, for ω > ωAID
c .

(32)
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FIG. 7. The bifurcation diagram for the second-order mean-field
AID model with N = 40 and ξ = 0.5. The critical effective link-
breaking rate equals ωAID

c = 8
3 ≈ 2.67. For 0 < ω � ωc, there is a

saddle-node bifurcation at τc and a transcritical bifurcation at x = 3.
For ω > ωc, the bifurcation type is a transcritical. The blue line is a
parametric curve from 0 to ωc, where ωc is given by Eq. (33).

The critical point ωc follows by solving limω↑ωc τ (2),AID
c (ω) =

limω↓ωc τ (2),AID
c (ω) in Eq. (31), which leads to

ωAID
c (ξ ) = 2

ξ (ξ + 1)
. (33)

Figure 7 depicts, as shown by the solution (30), three re-
gions of solutions: (I) For ω < ωAID

c and τ < τ (2),AID
c , the

only solution is the trivial, all-healthy solution. Then, (II) by
applying a fixed 0 < ω < ωAID

c , there are three solutions for
τ (2),AID

c � τ � τc(ωAID
c ), of which the upper and lower stable

branches are shown in solid lines and the unstable middle
branch by dotted lines. Furthermore, there is only one non-
trivial stable solution for large infection rates τ > τc(ωAID

c ).
Finally, (III) we consider the case ω > ωc. For τ � τc the
only steady state is the all-healthy state. The location of
the epidemic threshold is fixed (in terms of the effective
link-breaking rate ω). Above the threshold τ > τc, the only
stable steady state is the endemic state. Mostly importantly,
the second-order mean-field AID model states that the epi-
demic threshold τ (2),AID

c converges to a constant value while
the effective link-breaking rate ω → ∞. This contrasts the
first-order mean-field approximation from Sec. III, where the
epidemic threshold τc increased up to infinity in the limit of
the effective link-breaking rate ω to infinity. Further consider-
ations are given in Sec. V.

The second-order mean-field approximation was primarily
derived to gain a deeper understanding of the Markovian
G-ASIS model. Trajanovski et al. [21] observed spuri-
ous oscillations for the Markovian AID model, indicating
some kind of instability of the stochastic process. We
argue here, albeit hand-waving in nature without provid-
ing any rigorous proof, that the metastable state does not
fail to exist, but there actually exist two metastable states
simultaneously.

Our first reason to believe in the existence of two
metastable states, is that the numerical evaluation of the exact,
quadratic formula of the prevalence y, provided in Eq. (4)
from Ref. [21], reveals that not zero, but two nontrivial so-

lutions y1 and y2 exist for the metastable prevalence y. We
plot the prevalence y and the computed prevalences y1 and
y2 in Fig. 8, where y and y1 overlap nearly perfectly in the
metastable state. We emphasize that the computed prevalences
y1 and y2 are only exact in the metastable state (when all
time-derivatives are zero) and not in the transient regime.
Our second reason is more technical and is provided in
Appendix E.

The behavior before arrival at the steady state is charac-
terized by the bi-metastability phenomenon; the probability to
leave the all-healthy state and the endemic state is both very
low. Hence, we believe that the two Markovian prevalences y1

and y2 from Fig. 8 are similar to the two nontrivial prevalences
of the second-order mean-field approximation from Fig. 7,
where y1 corresponds to the stable upper branch and y2 to
the unstable (dashed) lower branch of the second-order mean-
field approximation.

Figure 8(a) shows that, starting the process near the en-
demic state, results in a fast convergence toward the endemic
state. Additionally, the infection probability distribution in
Fig. 8(b) depicts a bell-shaped curve around y ≈ 0.85. How-
ever, starting with half of the population infected and an
empty graph, Fig. 8(c) shows that the convergence toward the
endemic state takes a longer time. At t = 500, the process
from Fig. 8(c) has not yet converged, because the infec-
tion probability distribution in Fig. 8(d) is not yet equal to
Fig. 8(b).

We provide an example of a much longer convergence
time in Fig. 9. Since our simulations involve only N = 40
nodes, we believe that for larger networks for some parameter
values, the convergence time1 might be longer than any feasi-
ble simulation time. The long convergence times in the AID
model contrast the static SIS model and most other instances
of the G-ASIS model, whose convergence times are generally
much shorter. The consequence is that most AID epidemic
outbreaks on large networks never arrive at the metastable
state. Hence, the AID model cannot be fully understood from
its steady-state distribution alone and research should focus
on its time-dependent behavior.

Figure 9(a) additionally shows y(t ) ± σ (t ), where σ (t )
is the standard deviation of the prevalence y(t ) at time t .
The spread around the prevalence y is large, because the
time-dependent infection probabilities Pr[y = j/N], plotted in
Fig. 9(b), depicts a composition of two bell-shaped curves;
one at y = 0 and another at y ≈ 0.7.

The metastability of the all-healthy state is caused by
the link-breaking and link-creation mechanisms of the AID
model, which break links between susceptible nodes and cre-
ate links between susceptible-infected pairs. The all-healthy
state corresponds to zero infected nodes and an empty graph.
For an outbreak to occur, links must be created and the disease
must spread simultaneously, whereas outbreaks in the SIS,

1To analyze the exact average convergence time, one possible
method is to analyze the eigenvalues of the underlying Markov chain,
as was done for ε-SIS dynamics on static networks [41]. Unfortu-
nately, an eigenvalue analysis for the Markovian G-ASIS model is
infeasible due to the exponentially large state space, not even for the
complete adaptive graph [30].
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FIG. 8. Illustration of the two metastable states in the AID model with N = 40, τ = 0.25, ζ = 0.5, and ξ = 0.1 for (a), (c) the time-varying
prevalence y(t ) and (b), (d) the prevalence distribution Pr[y(t ) = j/N] at time t = tend where j is the number of infected nodes. The upper
plots (a), (b) start with a complete graph and all nodes infected whereas the bottom row (c), (d) initiates with an empty graph and half of
the population infected. The results are averaged over 1000 simulations and the computed prevalences y1 and y2 are based on the quadratic
equation (4) from Ref. [21], but are only exact in the endemic state. We believe that y1 is stable and y2 is an unstable solution, analogous to the
second-order mean-field solution from Fig. 7. We refer to Sec. V for a description of our simulation method.

FIG. 9. An example of very long convergence times in the AID model with N = 40, τ = 0.18, ζ = 0.5, and ξ = 0.1. The simulations
are initiated with an empty graph and a single infected node and the results are averaged over 1500 simulations. Subfigure (a) shows the
time-dependent prevalence y(t ), the computed solutions y1 and y2 and the black curves indicate the prevalence y(t ) plus/minus one standard
deviation σ (t ). Subfigure (b) shows the prevalence distribution at t = 1000 and t = 5000.
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FIG. 10. The phase diagram for the second-order mean-field AID
model with N = 40 and ξ = 0.5. In region (I) only the disease-free
state exists, in (III) there exists a unique stable endemic state (and
the disease-free state is unstable) and in (II), there are two nontrivial
steady states, of which one is stable and the other unstable. The all-
healthy state is stable as well.

ASIS, and ABN model are initiated with a single infected
node and a completely connected graph, which allows for an
easier spread of the disease, because the links already exist in
the graph.

We finalize our analysis of the second-order mean-field
AID model by showing the phase diagram in Fig. 10. In region
(I), the only steady state is the disease-free state. Region
(II) is the bistable region, where one endemic state and the
all-healthy state are stable and another unstable endemic state
exists. In region (III), there is a unique, stable steady state and
the all-healthy state is unstable.

E. The ABN model

The steady states of the ABN model satisfy the cubic
equation

(Nτξω + 2Nτ )y3
∞ + (−3Nτξω − 6Nτ + 2τξω + 2τ

− 2τω + 2 + 2ω)y2
∞

+ (3Nτξω + 6Nτ − 4τξω − 4τ + 2τω − ξω − 4)y∞
+ (−Nτξω − 2Nτ + 2τξω + 2τ + ξω + 2) = 0.

Unfortunately, the cubic equation cannot be further simplified.
A numerical approximation of the steady-state prevalence y∞
is shown in Fig. 11. The epidemic threshold τc is approx-
imately located at τc ≈ 1/(N − 1) for all network sizes N ,
link-breaking rates ζ , and link-creation rates ξ .

V. NUMERICAL SIMULATIONS

In this section, we compare the Markovian G-ASIS model
with the first-order mean-field approximation from Sec. III
and second-order mean-field approximation from Sec. IV. We
perform many independent Monte Carlo simulations of the
Markovian G-ASIS model, whereby we use the sampled-time
Markov chain [42] with time step �t = 0.05. At each discrete
time step, we compute the probability for each node and

FIG. 11. The transcritical bifurcation in the second-order mean-
field ABN model with N = 40 and ξ = 0.5. The epidemic threshold
is constant for varying ω (different lines) but also for changing ξ (not
shown).

each link to change its state. If the probability is larger than
a random number between zero and one, then the state is
changed, and it is left unchanged otherwise. We use a small
self-infection rate ε = 10−3 for all simulations [43]. Each
simulation starts at t = 0 and ends at t = 500, unless speci-
fied otherwise. The metastable prevalence y is determined by
averaging over all simulations and over all prevalences from
t = 100 to t = 500. We focus on the relation between the
epidemic threshold τc and the effective link-breaking rate ω

and illustrate this relation for the ASIS, AID, and ABN model.
The phase diagram for the ASIS model in Fig. 12 illus-

trates that the static SIS model, shown in blue, has a similar
accuracy for both the first-order and second-order mean-field
approximation. For the ASIS model, however, the simula-
tions are closer to the second-order mean-field approximation
than the first-order mean-field approximation, both in terms
of the average distance between the two curves as well as
the location of the epidemic threshold. If we estimate the
epidemic threshold τc from the simulations as the smallest

FIG. 12. The phase diagram for the ASIS model on a complete
network with N = 40 nodes and ξ = ζ = 0.5, δ = 1 for the first and
second-order mean-field approximations and the Markovian result is
averaged over 1000 simulations.
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FIG. 13. The phase diagram for the AID model on a complete
network with N = 40 nodes and ξ = 0.5, δ = 1 for ζ = 1 and ζ =
25 for the first and second order mean-field approximations and the
Markovian result is averaged over 1000 simulations. The first-order
and second-order mean-field for static SIS are indistinguishable.
The first-order mean-field for ζ = 25 is invisible, because the cor-
responding epidemic threshold is roughly τ (1),AID

c ≈ 10/(N − 1),
which is far away from the real threshold at τc ≈ 3/(N − 1).

effective infection rate τ for which the steady-state prevalence
y∞ exceeds 1/N , then the estimated threshold τc is much
closer to the second-order mean-field threshold τ (2),ASIS

c than
the first-order mean-field threshold τ (1),ASIS

c .
The phase diagram of the AID model is depicted in

Fig. 13. The inaccuracy of the first-order mean-field approxi-
mation is large for the AID model. The first-order mean-field
approximation predicts a continuously increasing epidemic
threshold τc, whereas the second-order mean-field approx-
imation predicts a slightly increasing but strictly bounded
threshold. The simulations in Fig. 13 show that the epidemic
threshold τc indeed increases a little, but seems to con-
verge to a finite value for increasing effective link-breaking
rates ω.

FIG. 14. The phase diagram for the ABN model on a network
with N = 40 nodes and ξ = 0.5, ζ = 0.5, δ = 1 for the first and
second-order mean-field approximations and the Markovian result
is averaged over 1000 simulations.

The situation for the ABN model is plotted in Fig. 14. For
the ABN model, both the first-order and second-order mean-
field approximation predict a fixed epidemic threshold, which
is also exemplified by Fig. 14. In other words, both mean-field
approximations capture the epidemic threshold qualitatively
correct.

VI. CONCLUSION

In this paper, we have reviewed the Markovian G-ASIS
model and considered various mean-field approximations of
the Markovian G-ASIS model. We rigorously derived the
first-order and second-order mean-field approximations of
the G-ASIS model. We discussed two instances of G-ASIS
in particular; the Adaptive SIS (ASIS) model where nodes
prevent themselves from contracting the disease by breaking
connections with infected nodes and the Adaptive Informa-
tion Diffusion (AID) model that describes the tendency of
unaware (healthy) individuals to connect to nodes that are
aware (infected) of the gossip or news. We showed that the
relation between the epidemic threshold and the effective
link-breaking rate is qualitatively captured correctly by the
second-order mean-field approximation whereas it is not by
the first-order mean-field approximation.

A summary of our results for all possible link-breaking
and link-creation updating rules is presented in Table II. For
each combination of the link-breaking rule (columns) and
link-creation rule (rows), there are three circles. The first
circle indicates the scaling of the epidemic threshold in the
Markovian model (see Ref. [18] for details). The second and
third circle describe the scaling for the first-order mean-field
and second-order mean-field approximation, respectively. If
the relation is in compliance with the Markovian result, then
the circle is green and is red otherwise. If the exact Markovian
relation is unknown (reflected by a question mark “?” in the
circle), then the circles are orange. In general, Table II con-
firms that the second-order mean-field approximation better
captures the Markovian model than the first-order approxima-
tion, although not for all instances of the G-ASIS model.

Finally, we showed that the Markovian AID model was
erroneously coined an unstable stochastic model. Instead,
we showed that the average convergence time from the all-
healthy, empty graph toward the endemic state is very large.
The bimetastability phenomenon is in compliance with the
second-order mean-field approximation, which also exhibits
the bistability phenomenon.

We see several directions for future research. So far, we
analyzed 3 of 36 instances of the G-ASIS model in detail,
but the remaining models remain largely unexplored. Fur-
ther investigation on the remaining models, especially those
models whose relation between the epidemic threshold and
the effective link-breaking rate in Table II remains unclear,
may enhance our understanding of the interplay between the
disease spreading, network topologies and human decision
making. Another underestimated research topic is related to
the time-varying graph in adaptive epidemics. Most research
focusses on the determination of the number of infected cases,
but no or limited attention is devoted to the properties of the
underlying network itself. Even though we believe mean-field
methods constitute a powerful tool to enhance our under-
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TABLE II. All G-ASIS instances and their relation between the epidemic threshold τc and the effective link-breaking rate ω. If a circle
contains ∞, then τc diverges to infinity at a certain finite ωc. The first circle corresponds to the Markov model (derived in Ref. [18]), the
second circle is the first-order mean-field approximation (Sec. III) and the third circle corresponds the second-order mean-field approximation
(Sec. IV). Green colored circles indicate a correct approximation, red circles denote incorrect relations and orange circles correspond to
undetermined relations. The first-order mean-field approximation predicts 6 correct relations and 9 wrong relations whereas the second-order
mean-field approximation predicts 14 correct relations and 1 incorrect relation. Unfortunately, 21 relations have not yet been determined.

standing of Markovian epidemic processes, many properties
of the underlying network are not captured by mean-field

models, complicating the direct analysis of the underlying,
time-varying network.

APPENDIX A: PROOF OF THEOREM III.1

Proof.
The steady states of any dynamical system can be computed by setting the time derivatives to zero. This reduces Eqs. (6a)

and (6b) to

y∞ = x(1 − y∞)y∞z∞, (A1a)

ζ z∞
(
abr + 2bbry∞ + cbry

2
∞

) = ξ (1 − z∞)
(
acr + 2bcry∞ + ccry

2
∞

)
. (A1b)

Equation (A1a) shows that y∞ = 0 is a solution. Inserting y∞ = 0 into Eq. (A1b), we obtain

ζ z∞abr = ξ (1 − z∞)acr.

If acr = abr = 0, then any value for z∞ is a steady-state solution. Otherwise, we find

z∞ = acr

abrω + acr
.

Now suppose that y∞ > 0, so y∞ can be removed from Eq. (A1a). Using the effective link-breaking rate ω = ζ/ξ , Eqs. (A1a)
and (A1b) become

1 = x(1 − y∞)z∞, (A2a)

ωz∞
(
abr + 2bbry∞ + cbry

2
∞

) = (1 − z∞)
(
acr + 2bcry∞ + ccry

2
∞

)
. (A2b)

Equation (A2a) shows that y∞ �= 1. Before making any further claims about y∞, we present the following Lemma.
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TABLE III. All updating rules in G-ASIS.

Rule f a b c Quadratic form Zeros Gate

XiXj 0 0 1 y2
∞ y∞ = 0 (2x) AND

1 − XiXj 1 0 −1 (1 − y∞)(1 + y∞) y∞ = 1, y∞ = −1 NAND
(1 − Xi )(1 − Xj ) 1 −1 1 (1 − y∞)2 y∞ = 1 (2x) NOR

1 − (1 − Xi )(1 − Xj ) 0 1 −1 y∞(2 − y∞) y∞ = 0, y∞ = 2 OR
(Xi − Xj )2 0 1 −2 2y∞(1 − y∞) y∞ = 0, y∞ = 1 XOR

1 − (Xi − Xj )2 1 −1 2 y2
∞ + (1 − y∞)2 y∞ ∈ C XNOR

Lemma A.1. Consider an updating rule f with corresponding parameters a, b, and c from Table III. Then the following
function is strictly positive on the interval 0 < y∞ < 1:

g(y∞) = a + 2by∞ + cy2
∞.

Proof.
There are six updating rules for the link-creation mechanism fcr and six for the link-breaking mechanism fbr, which are listed

in Table III. Each of these updating rules can be written in a quadratic form. Since 0 < y∞ < 1, all quadratic forms are strictly
positive. �

Based on Lemma A.1, we may rewrite Eq. (A2b) in terms of z∞:

z∞ = acr + 2bcry∞ + ccry2
∞

acr + 2bcry∞ + ccry2∞ + ω
(
abr + 2bbry∞ + cbry2∞

) . (A3)

Substituting Eq. (A3) into Eq. (A2a) gives

1 = x(1 − y∞)
acr + 2bcry∞ + ccry2

∞
acr + 2bcry∞ + ccry2∞ + ω

(
abr + 2bbry∞ + cbry2∞

) . (A4)

Rewriting Eq. (A4) gives Eq. (7). �

APPENDIX B: PROOF OF THEOREM III.2

We present two proofs. The first proof is specifically tailored toward the G-ASIS model and results in Corollary III.3 whereas
the second proof is more general and encompasses a larger class of spreading processes.

Proof 1.
We show that Eq. (7) has at least one solution. We split up the proof in two parts.
(i) Consider Eq. (A3) in Appendix A. Equation (7) can be simplified if the zeros of the link-breaking and link-creation

mechanisms coincide. Those coinciding zeros are either unphysical (e.g., y∞ = −1 or complex y∞) or it is redundant (the
solution y∞ = 0 was already provided in Theorem III.1) or the solution is invalid [e.g., y∞ = 1, which follows by inserting the
solution y∞ = 1 into Eq. (6a)]. The resulting equation is quadratic in y∞ and can be readily solved. Further working out the
details, one can prove that at least one of the solutions is valid in a certain (x, ω) region.

(ii) For the remaining instances without coinciding zeros, we define the function G(y∞) as the expression on the left-hand
side in Eq. (7). Filling in the two limit cases y∞ = 0 and y∞ = 1, we find

G(0) = acr + abrω − acrx, G(1) = ω(abr + 2bbr + cbr) + (acr + 2bcr + ccr).

The expression G(1) is positive, provided that at least one of the two terms is nonzero. The link-creation and link-breaking
mechanisms that violate this constraint are actually contained in case (i), thus we may safely assume that G(1) > 0. Furthermore,
G(0) < 0 if

acr + abrω < acrx.

The case acr = 0 is contained in case (i), thus we assume acr �= 0. Thus, we can write

x >
acr + abrω

acr
. (B1)

Equation (B1) describes the condition under which G(0) < 0. Given that G(1) > 0, the intermediate value theorem states that
there must be some 0 < y∞ < 1 for which G(y∞) = 0, which proves the theorem. �

Proof 2.
We prove Theorem III.2 by showing that the reverse cannot hold, i.e., we look for functions fbr and fcr for which no solution

exists for all (x, ω) values. We define

h(y∞) = ω fbr(y∞) + fcr(y∞) − x(1 − y∞) fcr(y∞),
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where fbr(y∞) is the link-breaking rule and fcr(y∞) is the link-creation rule. If h(y∞) = 0, then the equation simplifies to Eq. (7).
The function h is infinitely differentiable, because h is the composite of such functions fbr and fcr. According to the intermediate
value theorem, if there exists y∞ and y′

∞ such that h(y∞) > 0 and h(y′
∞) < 0, then there must exists some y′′

∞ for which holds
that h(y′′

∞) = 0. To guarantee that solutions do not exist, we must prove that either h(y∞) > 0 or h(y∞) < 0 for all y∞. We focus
on the first case, the other case goes analogously. The function fcr is nonnegative and nontrivial (see Table III), thus there must
exist some y′

∞ such that fcr(y′
∞) > 0. To ensure that h(y′

∞) > 0, we find the condition

ω fbr(y
′
∞) + fcr(y

′
∞) > x(1 − y′

∞) fcr(y
′
∞).

Suppose fbr(y′
∞) = 0, then the equation simplifies to

1 > x(1 − y′
∞),

which is not satisfied unconditionally, that is, for all values of x, except if we would allow y′
∞ = 1 as a solution [which

is, fortunately, excluded as a steady-state solution, see Eq. (6)]. If fbr(y′
∞) > 0, then the condition can also not be satisfied

unconditionally. We conclude that there is always a nonempty (x, ω)-region where at least one solution exists. �

APPENDIX C: DERIVATION OF THE SECOND-ORDER MEAN-FIELD APPROXIMATION

Prior to the derivation of the second-order mean-field equation, we define the following variables:

y = 1

N

N∑
i=1

E[Xi], zSS = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

E[(1 − Xi )(1 − Xj )ai j],

zSI = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

E{[Xi(1 − Xj ) + (1 − Xi )Xj]ai j}, zII = 1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

E[XiXjai j],

zISI = 2

N (N − 1)(N − 2)

N∑
i=1

N∑
j=1
j �=i

N∑
k=1
k �=i
k �= j

E[(1 − Xi )XjXkai jaik],

zSSI = 2

N (N − 1)(N − 2)

N∑
i=1

N∑
j=1
j �=i

N∑
k=1
k �=i
k �= j

E{[(1 − Xi )(1 − Xj )Xk + Xi(1 − Xj )(1 − Xk )]ai jaik}, (C1)

where y denotes the fraction of infected nodes, zSS, zSI, and zII denote the fraction of links in the graph between susceptible-
susceptible (S-S), susceptible-infected (S-I), and infected-infected (I-I) pairs of nodes, respectively. Finally, zSSI and zISI denote
the fraction of connected S-S-I and I-S-I triples in the graph, respectively. Any other triples are irrelevant, because S-S pairs and
S-I pairs can be infected by an external infected node I. That infected node must be connected to one of the susceptible nodes in
the original node pair, leading to the triplet S-S-I or I-S-I.

Using the definitions (C1), the average fraction of links z in the graph is given by

z = zSS + zSI + zII. (C2)

We derive the governing equation for zII; the remaining equations can be derived analogously. The governing equation for
E[XiXjai j] is given by

d E[XiXjai j]

dt
= − 2δE[XiXjai j] + βE[(1 − Xi )Xjai j] + βE[Xi(1 − Xj )ai j]

+ β

N∑
k=1
k �=i
k �= j

E[(1 − Xi )Xjai jXkaik] + β

N∑
k=1
k �=i
k �= j

E[Xi(1 − Xj )ai jXka jk]

− ζIIE[XiXjai j] + ξIIE[XiXj (1 − ai j )]. (C3)

The G-ASIS model is a Markov chain, where each state encodes which nodes are infected or susceptible and which links are
existent or nonexistent in the graph. The possible transitions to and from state Xi = 1, Xj = 1, ai j = 1 are as follows: One of the
two infected nodes cures [first term on the right-hand side of Eq. (C3)], node j infects node i (second term), node i infects node j
(third term), there is an infection from outside (term four and five), the link is broken between node i and node j (term six), or the
link is created between node i and node j (term seven) are the possible transitions to and from the state Xi = 1, Xj = 1, ai j = 1.
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The variable ζII is defined as ζII = ζ (abr + 2bbr + cbr) and indicates whether the link can be broken between two infected nodes.
Similarly, ξII = ξ (acr + 2bcr + ccr) indicates the possibility of a link being created between two infected nodes. Analogously, we
define

delete S-S link ζSS = ζabr, create S-S link ξSS = ξacr,

delete S-I link ζSI = ζ (abr + bbr), create S-I link ξSI = ξ (acr + bcr),

delete I-I link ζII = ζ (abr + 2bbr + cbr), create I-I link ξII = ξ (acr + 2bcr + ccr).

By summing over i and j �= i in Eq. (C3), multiplying all terms by 1
N (N−1) and using the definitions (C1), we find

d zII

dt
= −2δzII + βzSI + β(N − 2)zISI − ζIIzII − ξIIzII + ξII

1

N (N − 1)

N∑
i=1

N∑
j=1
j �=i

E[XiXj].

The last term needs to be rewritten as
N∑

i=1

N∑
j=1
j �=i

E[XiXj] =
N∑

i=1

N∑
j=1

E[XiXj] −
N∑

i=1

E
[
X 2

i

] =
N∑

i=1

N∑
j=1

(Cov[Xi, Xj] + E[Xi]E[Xj]) −
N∑

i=1

E[Xi]

=
N∑

i=1

N∑
j=1

Cov[Xi, Xj] + N2y2 − Ny ≈ N2y2 − Ny,

where we have made the approximation that the covariance between the state Xi and Xj is zero. Then we finally obtain

d zII

dt
= −2δzII + βzSI + β(N − 2)zISI − ζIIzII + ξII

(
N

N − 1
y2 − 1

N − 1
y − zII

)
.

Finally, we rescale time t̃ = δt and using τ = β/δ, ζ̃ = ζ/δ, ξ̃ = ξ/δ, we obtain

d zII

dt̃
= −2zII + τ zSI + τ (N − 2)zISI − ζ̃IIzII + ξ̃II

(
N

N − 1
y2 − 1

N − 1
y − zII

)
.

The governing equations for y, zSS and zSI are derived in a similar manner. After dropping the tildes for the time t , link-breaking
rate ζ and link-creation rate ξ , we obtain Eq. (20).

APPENDIX D: PROOF OF THEOREM IV.1

Proof.
The steady states of equation (22) are computed by setting the derivatives to zero, such that

y∞ = τ
N − 1

2
zSI,∞, (D1a)

(N − 1)τ
zSS,∞zSI,∞
1 − y∞

= zSI,∞ + ξSS

[
N

N − 1
(1 − y∞)2 − 1

N − 1
(1 − y∞) − zSS,∞

]
− ζSSzSS,∞, (D1b)

2zII,∞ = τ zSI,∞

(
1 + N − 1

2

zSI,∞
1 − y∞

)
+ ξII

(
N

N − 1
y2
∞ − 1

N − 1
y∞ − zII,∞

)
− ζIIzII,∞, (D1c)

(1 + τ )zSI,∞ = τ (N − 1)
zSI,∞

1 − y∞

(
zSS,∞ − 1

2
zSI,∞

)
+ 2zII,∞ + ξSI

[
2N

N − 1
y∞(1 − y∞) − zSI,∞

]
− ζSIzSI,∞. (D1d)

By taking all zII,∞-terms in Eq. (D1c), substituting zII,∞ into Eq. (D1d), we obtain

y∞ = τ
N − 1

2
zSI,∞ (D2a)

(N − 1)τ
zSS,∞zSI,∞
1 − y∞

= zSI,∞ + ξSS

[
N

N − 1
(1 − y∞)2 − 1

N − 1
(1 − y∞) − zSS,∞

]
− ζSSzSS,∞, (D2b)

(1 + τ )zSI,∞ = τ (N − 1)
zSI,∞

1 − y∞

(
zSS,∞ − 1

2
zSI,∞

)
+ 2

τ zSI,∞
(
1 + N−1

2
zSI,∞
1−y∞

) + ξII

(
N

N−1 y2
∞ − 1

N−1 y∞
)

2 + ξII + ζII

+ ξSI

[
2N

N − 1
y∞(1 − y∞) − zSI,∞

]
− ζSIzSI,∞. (D2c)
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For readability, we define the positive constant α1 = 2
2+ξII+ζII

. We substitute Eq. (D2a) into the other equations, such that

(N − 1)τ
zSS,∞zSI,∞

1 − τ N−1
2 zSI,∞

= zSI,∞ + ξSS

[
N

N − 1

(
1 − τ

N − 1

2
zSI,∞

)2

− 1

N − 1

(
1 − τ

N − 1

2
zSI,∞

)
− zSS,∞

]
− ζSSzSS,∞, (D3a)

(1 + τ )zSI,∞ = τ (N − 1)
zSI,∞

1 − τ N−1
2 zSI,∞

(
zSS,∞ − 1

2
zSI,∞

)
+ α1τ zSI,∞

(
1 + N − 1

2

zSI,∞
1 − τ N−1

2 zSI,∞

)

+α1ξII

[
τ 2 N (N − 1)

4
z2

SI,∞ − τ

2
zSI,∞

]
+ ξSI

[
τNzSI,∞

(
1 − τ

N − 1

2
zSI,∞

)
− zSI,∞

]
− ζSIzSI,∞. (D3b)

One solution of Eq. (D3b) is the all-healthy state y∞ = zSI,∞ = zII,∞ = 0. By inserting the all-healthy state into the original
equations (D1), we obtain the steady-state fraction of S-S links zSS,∞ given in the theorem. To remove the all-healthy solution,
we divide Eq. (D3b) by zSI,∞, such that

(N − 1)τ
zSS,∞zSI,∞

1 − τ N−1
2 zSI,∞

= zSI,∞ + ξSS

[
N

N − 1

(
1 − τ

N − 1

2
zSI,∞

)2

− 1

N − 1

(
1 − τ

N − 1

2
zSI,∞

)
− zSS,∞

]
− ζSSzSS,∞, (D4a)

(1 + τ ) = τ (N − 1)
1

1 − τ N−1
2 zSI,∞

(
zSS,∞ − 1

2
zSI,∞

)
+ α1τ

(
1 + N − 1

2

zSI,∞
1 − τ N−1

2 zSI,∞

)

+α1ξII

[
τ 2 N (N − 1)

4
zSI,∞ − τ

2

]
+ ξSI

[
τN

(
1 − τ

N − 1

2
zSI,∞

)
− 1

]
− ζSI. (D4b)

Rewriting Eq. (D4a) in terms of zSS,∞ and rearranging Eq. (D4b) while introducing α2 = (1 + ζSI + ξSI ) + (1 − α1 + α1
2 ξII −

NξSI )τ, α3 = ξSS + ζSS, we find

zSS,∞ = zSI,∞ + ξSS

[
N

N−1

(
1 − τ N−1

2 zSI,∞
)2 − 1

N−1

(
1 − τ N−1

2 zSI,∞
)]

(N − 1)τ zSI,∞ + α3
(
1 − τ N−1

2 zSI,∞
) (

1 − τ
N − 1

2
zSI,∞

)
, (D5a)

α2 = τ (N − 1)
zSS,∞

1 − τ N−1
2 zSI,∞

+ (α1 − 1)τ
N − 1

2

zSI,∞
1 − τ N−1

2 zSI,∞
+ τ 2N (N − 1)

4
(α1ξII − 2ξSI )zSI,∞. (D5b)

Substituting Eq. (D5a) into Eq. (D5b), we obtain

α2 = τ (N − 1)
ξSS + (

τ
2 ξSS − NτξSS + 1

)
zSI,∞ + ξSS

(N−1)2

4 τ 2z2
SI,∞

α3 + (
1 − 1

2α3
)
τ (N − 1)zSI,∞

+ (α1 − 1)τ
N − 1

2

zSI,∞
1 − τ N−1

2 zSI,∞
+ τ 2N (N − 1)

4
(α1ξII − 2ξSI )zSI,∞. (D6)

Defining α4 = (N − 1)τξSS, α5 = τ (N − 1)( τ
2 − Nτ )ξSS + (N − 1)τ, α6 = ξSS

(N−1)3

4 τ 3, α7 = τ 2N (N−1)
4 (α1ξII − 2ξSI ), and α8 =

(1 − 1
2α3)τ (N − 1), we find

α2 = α4 + α5zSI,∞ + α6z2
SI,∞

α3 + α8zSI,∞
+ (α1 − 1)τ

N − 1

2

zSI,∞
1 − τ N−1

2 zSI,∞
+ α7zSI,∞. (D7)

Multiplying Eq. (D7) with 1 − τ N−1
2 zSI,∞ gives

α2 = α4 + (
α5 − τ N−1

2 α4
)
zSI,∞ + (

α6 − τ N−1
2 α5

)
z2

SI,∞ − τ N−1
2 α6z3

SI,∞
α3 + α8zSI,∞

+
[
τ

N − 1

2
(α1 − 1 + α2) + α7

]
zSI,∞ − α7τ

N − 1

2
z2

SI,∞. (D8)

Multiplying Eq. (D8) with α3 + α8zSI,∞ and rearranging, gives us the cubic equation

0 =
(

τ
N − 1

2
α6 + α7α8τ

N − 1

2

)
z3

SI,∞ +
{
τ

N − 1

2
α5 − α6 − α8

[
τ

N − 1

2
(α1 − 1 + α2) + α7

]
+ α3α7τ

N − 1

2

}
z2

SI,∞

+
{
α2α8 + τ

N − 1

2
α4 − α5 − α3

[
τ

N − 1

2
(α1 − 1 + α2) + α7

]}
zSI,∞ + (α2α3 − α4). (D9)

Finally, using the identity y∞ = τ N−1
2 zSI,∞, we obtain the required cubic equation for y∞. �
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APPENDIX E: THE TWO METASTABLE STATES IN THE MARKOVIAN AID MODEL

Trajanovski et al. [21] proved that the metastable state of the Markovian AID model does not exist if Var[Z∗] > 1/4, where
Z∗ is the metastable fraction of infected nodes (see Eq. (4) in Ref. [21]). Achterberg et al. [18] attempted to prove the instability
conjecture in vain (see Conjecture III.1 in Ref. [18]). Here, we make plausible that two metastable states co-exist. One of
the reasons is that although Var[Z∗] > 1/4 is a sufficient condition for the nonexistence of the metastable state, Lemma E.1
demonstrates that Var[Z∗] > 1/4 is never satisfied.

Lemma E.1. For the static and adaptive Markovian SIS model, it holds that Var[Z∗] < 1
4 , where Z∗ is the metastable fraction

of infected nodes.
Proof.

Var[Z∗] = E[(Z∗)2] − E[Z∗]2 = 1

N2
E

⎡
⎣(

N∑
i=1

X ∗
i

)2
⎤
⎦ − y2 = 1

N2
E

⎡
⎢⎢⎣

N∑
i=1

(X ∗
i )2 +

N∑
i=1

N∑
j=1
j �=i

X ∗
i X ∗

j

⎤
⎥⎥⎦ − y2

= 1

N2
E

[
N∑

i=1

X ∗
i

]
+ 1

N2
E

⎡
⎢⎢⎣

N∑
i=1

N∑
j=1
j �=i

X ∗
i X ∗

j

⎤
⎥⎥⎦ − y2 = y

N
− y2 + 1

N2

N∑
i=1

N∑
j=1
j �=i

E
[
X ∗

i X ∗
j

]

�

� y

N
− y2 + 1

N2

N∑
i=1

N∑
j=1
j �=i

E[X ∗
i ] = y

N
− y2 + N − 1

N2

N∑
i=1

E[X ∗
i ]

= y(1 − y),

where the inequality � follows from

E[X ∗
i X ∗

j ] = Pr[X ∗
i = 1 ∩ X ∗

j = 1] = Pr[X ∗
j = 1|X ∗

i = 1]Pr[X ∗
i = 1] � Pr[X ∗

i = 1] = E[X ∗
i ].

Since the prevalence y is bounded between zero and one, Var[Z∗] is bounded between 0 and 1
4 , thus proving our claim. �

Lemma E.1 proves that the statement Var[Z∗] > 1/4 cannot be satisfied, but does, unfortunately, not guarantee the existence
of two metastable states.

The hypothesis in Ref. [21] of the nonexistence of the metastable state and the nonconvergence of the time-varying prevalence
y(t ) was implicitly based on the assumption of a fast convergence toward the metastable state. Thus, we believe that Fig. 2(b) in
Ref. [21] is merely a result of a short simulation period, in which the process has not yet converged to the steady state.
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