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Modularity with a more accurate baseline model
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We derive an expression for the exact probability Pr [i ∼ j] of a link between a node i with degree di and a
node j with degree dj in a graph belonging to the class of Erdős-Rényi G(N, L) random graphs with N nodes and

L links. The probability Pr [i ∼ j] is commonly approximated as
did j

2L and appears in the formula of Newman’s
modularity, which plays a crucial rule in community detection in networks. We show that, when applied to
graphs not belonging to the class of Erdős-Rényi random graphs, our formula for Pr [i ∼ j] is considerably
more accurate than

did j

2L and leads to the detection of different clusters or partitions than the original modularity
formula.
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I. INTRODUCTION

The probability that two nodes i and j (where i �= j) are
connected in a random graph with L links is commonly given
[[1], Eq. (4.24)] by

Pr [i ∼ j] = did j

2L − 1
, (1)

where di and d j are the degrees of node i and node j,
respectively. In the absence of further qualification, (1) is
demonstrably false; it is trivial to construct examples where
(1) results in a probability greater than 1 as shown in Fig. 1.

In fact, (1) is actually the expected number of links be-
tween node i and node j in the configuration model ([2],
Chap. 12.1.1). In the configuration model, we start with a
degree sequence (d1, d2, . . . , dN ) on N nodes. Each node i
has di half-links, called stubs, and the total number of stubs
is

∑N
i=1 di = 2L. To construct the network, each stub is ran-

domly paired with another stub until no stubs remain. Each
random pairing of stubs is a link in the network. Importantly,
the configuration model allows for self-loops and multilinks
and will not necessarily generate a simple graph [a graph in
which there can be at most one link between node i and node
j and there are no self-loops ([3], Art. 1)].

Consider a pair of nodes i and j with degree di and d j ,
respectively. Consider any stub of node i; what is the proba-
bility that this stub is connected to node j? Excluding the stub
we are considering, there are 2L − 1 remaining stubs in the
network of which d j belong to node j; hence, the probability

that the chosen stub is connected to node j is d j

2L−1 . Since node
i has di stubs, the expected number of links between node i and
node j is

E[ai, j]CM = did j

2L − 1
, (2)

*Contact author: b.l.chang@tudelft.nl

where the subscript CM indicates the configuration model.
In the configuration model, the entries ai, j of the adjacency
matrix are not Bernoulli random variables, because there can
be more than one link between node i and node j. Hence,
the expected number of links E[ai, j]CM upper bounds the
probability Pr [i ∼ j]CM that node i and node j are connected:

E[ai, j]CM =
∞∑

k=0

k Pr [ai, j = k]CM

�
∞∑

k=1

Pr [ai, j = k]CM = Pr [i ∼ j]CM. (3)

If the second moment of a random degree D is constant and
finite, E[D2] < ∞, then the probability of observing multi-
links and self-loops is of order O( 1

N ), as shown in [2], pp.
374–375. Since 1

2L−1 = 1
2L [1 + O( 1

L )], for large size N and
large number L of links, we find approximately

Pr [i ∼ j]CM � E[ai, j]CM � did j

2L
. (4)

The asymptotic (4) is conditioned on a degree distribution
with a finite second moment and a sufficiently large network.
However, in real networks, the degree distribution may fol-
low a power-law distribution in which the second moment
diverges, i.e., does not exist. Real networks are also finite in
size N . In this work, we compute the exact link probability
Pr [i ∼ j] for simple graphs.

II. EXACT PROBABILITY OF A LINK IN A SIMPLE
RANDOM GRAPH

Consider the adjacency matrix A of a simple graph G with
N nodes. An example adjacency matrix A for N = 6 nodes is
illustrated in Fig. 2. In a simple graph, there is at most one
link between a pair of nodes i and j. The off-diagonal entries
ai, j of the adjacency matrix A of a simple random graph are
Bernoulli random variables, where ai, j = 1 if there is a link
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di = 4 dj = 4

FIG. 1. A graph on N = 6 nodes with L = 8 links. The degrees
of node i and node j are di = 4 and dj = 4. Applying (1) yields
Pr [i ∼ j] = 16

15 > 1. A probability cannot be greater than 1; further-
more, node i and node j are not connected.

between node i and node j, and ai, j = 0 otherwise. There are
no self-loops in a simple graph, which means that the diagonal
entries are always ai,i = 0. Because the adjacency matrix A
is symmetric, a simple graph G is fully described by the
elements of the upper triangle (excluding the main diagonal)
of the adjacency matrix. The upper triangle has Lmax = (N

2

) =
N (N−1)

2 entries ai, j that corresponds to the maximum number
of links in a simple graph of N nodes.

Suppose the graph G is a realization of the class of Erdős-
Rényi G(N, L) random graphs, in which L links are placed
uniformly at random in the graph of N nodes. We define the
set GN,L as the set of all possible graphs1 with N nodes and
L links. The graph G is, therefore, chosen uniformly from
the set GN,L. The number of possible graphs is |GN,L| = (Lmax

L

)
,

because precisely L entries are ai, j = 1 in the upper triangle
of the adjacency matrix A.

Consider a pair of nodes (i, j) in the graph G. Given the
degree di of node i and the degree d j of node j, what is the
probability that node i and node j are connected? The set
GN,L,(di,d j ) denotes the set of graphs with N nodes and L links,
where the node pair (i, j) has the corresponding degree pair
(di, d j ). We partition the set of graphs GN,L,(di,d j ) based on
whether or not there is a link between the node pair (i, j),

GN,L,(di,d j ) = GN,L,(di,d j ),i∼ j ∪ GN,L,(di,d j ),i� j, (5)

where i ∼ j denotes that the node pair (i, j) is connected by
a link and i � j denotes that the node pair (i, j) is not con-
nected. Since GN,L,(di,d j ) is a subset of GN,L and every graph in
GN,L occurs with equal probability, the probability Pr [i ∼ j]
that the node pair (i, j) is connected is given by

Pr [i ∼ j] =
∣∣GN,L,(di,d j ),i∼ j

∣∣∣∣GN,L,(di,d j ),i∼ j

∣∣ + ∣∣GN,L,(di,d j ),i� j

∣∣ . (6)

The probability Pr [i ∼ j] is defined only if |GN,L,(di,d j )| >

0, which clearly must be true: since the degree pair (di, d j )
corresponds to the degrees of a node pair (i, j) in a G(N, L)
graph, there must exist at least one graph with the parameters
{N, L, (di, d j )}. In other words, the parameters {N, L, (di, d j )}
are graphical, because they can be realized by a simple
graph, which means that they satisfy the constraints de-
scribed in Appendix A 1. In our derivation, we will assume
both |GN,L,(di,d j ),i∼ j | > 0 and |GN,L,(di,d j ),i� j | > 0, which is a

1We consider each node to be labeled; therefore, isomorphic graphs
are different graphs.

a1,1 a1,2 a1,3 a1,4 a1,5 a1,6
a2,1 a2,2 a2,3 a2,4 a2,5 a2,6
a3,1 a3,2 a3,3 a3,4 a3,5 a3,6
a4,1 a4,2 a4,3 a4,4 a4,5 a4,6
a5,1 a5,2 a5,3 a5,4 a5,5 a5,6
a6,1 a6,2 a6,3 a6,4 a6,5 a6,6

N − 2  other links connected to node i

N − 2  other links connected to node j

Lmax − 2(N − 2) − 1  remaining links

1  link between node i and node j

Lmax = N (N − 1)/2  possible links

connected to neither node i nor node j

FIG. 2. Illustration of an adjacency matrix for N = 6 showing
the possible links. We define node i = 1 and node j = 2. The gray
entries do not need to be considered because the graph is simple; the
main diagonal is 0 and the matrix symmetric.

stricter constraint that excludes parameters {N, L, (di, d j )} for
which Pr [i ∼ j] = 1 or Pr [i ∼ j] = 0. In Appendix A 2, we
show that this assumption has no impact on our final result
(9), which yields the correct probability for all graphical pa-
rameters {N, L, (di, d j )}.

Consider the adjacency matrix A in Fig. 2, where we have
defined node i = 1 and node j = 2. If the node pair (i, j) is
not connected, the entry ai, j = 0 in the adjacency matrix A
(shown in orange in Fig. 2). We need to connect di links to
node i and there are N − 2 possible entries to choose from
(shown in green). Similarly for node j, we need to connect
dj links and there are N − 2 possible entries to choose from
(shown in blue). There are Lmax − 2(N − 2) − 1 remaining
entries in the adjacency matrix A (shown in red). Since the
total number of links is L, we still need to place L − di − d j

links in the rest of the graph. Hence, the total number of
graphs in which the node pair (i, j) is not connected is
given by∣∣GN,L,(di,d j ),i� j

∣∣ =
(

N − 2

di

)(
N − 2

d j

)(
Lmax − 2(N − 2) − 1

L − di − d j

)
.

(7)

Suppose now that the pair of nodes (i, j) is connected.
Since the entry ai, j = 1, we need to connect di − 1 addi-
tional links to node i and d j − 1 additional links to node j.
Since the total number of links is L, we still need to place
L − di − d j + 1 links in the rest of the graph. Hence, the total
number of graphs in which the node pair (i, j) is connected is
given by∣∣GN,L,(di,d j ),i∼ j

∣∣ =
(

N−2

di−1

)(
N−2

d j − 1

)(
Lmax − 2(N − 2) − 1

L − di − d j + 1

)
.

(8)

Substituting (7) and (8) into (6) and simplifying
(Appendix A 3) yields

Pr [i ∼ j]

= did j
(
Lc − dc

i − dc
j + 1

)
did j

(
Lc − dc

i − dc
j + 1

) + dc
i dc

j (L − di − d j + 1)
,

(9)

where dc = (N − 1) − d and Lc = Lmax − L and the su-
perscript "c" refers to the complement of the graph ([3],
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Art. 1). Our expression (9) for the probability Pr [i ∼ j] is
exact and holds for all random graphs where L links are
placed uniformly at random on N � 2 nodes, i.e., for the
class of Erdős-Rényi G(N, L) random graphs (Appendix A 2).
Increasing the degree d increases the probability of being
connected. If either node i or node j has degree d = 0, then
the numerator becomes zero and Pr [i ∼ j] = 0. If either node
i or node j has degree d = N − 1, then dc = 0 and the second
term in the denominator becomes zero and Pr [i ∼ j] = 1.

Increasing the number of links L decreases the proba-
bility of being connected. As derived in Appendix A 1, the
minimum number of links given that di, d j > 0 is L = di +
d j − 1; the second term in the denominator becomes zero
and Pr [i ∼ j] = 1. The maximum number of links given that
di, d j < N − 1 is L = Lmax − (dc

i + dc
j − 1), which means

that Lc = dc
i + dc

j − 1 and that the numerator becomes zero
and Pr [i ∼ j] = 0.

III. ERROR WHEN USING E[ai, j]CM
TO ESTIMATE Pr [i ∼ j]

We consider the error when using the expected number of
links E[ai, j]CM in the configuration model (2) as an estimate
for the connection probability Pr [i ∼ j] in a simple graph
(9). Instead of the relative error, we define an error factor
ε to quantify the extent to which E[ai, j]CM overestimates or
underestimates Pr [i ∼ j]. The error factor ε is defined as

ε =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min (1,E[ai, j ]CM )

Pr [i∼ j] − 1 if min (1,E[ai, j]CM) > Pr [i ∼ j]

1 − Pr [i∼ j]
min (1,E[ai, j ]CM ) if min

(
1,E[ai, j]CM

)
< Pr [i ∼ j]

0 if min (1,E[ai, j]CM) = Pr [i ∼ j].
(10)

An error factor ε = +1 means that the estimate E[ai, j]CM
is double the true probability Pr [i ∼ j], and ε = −1 means
that the estimate E[ai, j]CM is half of the true probability
Pr [i ∼ j]. We take the minimum min (1,E[ai, j]CM) so that
estimates E[ai, j]CM > 1 are treated as a probability of 1 and
are not further penalized.

Figure 3 shows a heatmap of the error factor ε for the class
of graphs with N = 10 nodes and L = 25 links. A fully red
cell indicates an error factor ε � 0.6 and a fully blue cell indi-
cates an error factor ε � 0.6. The degree pairs (0, 9) and (9, 0)
are absent in the heatmap because it is impossible to have de-
gree d = N − 1 and degree d = 0 in the same graph. If node i
or node j has degree d = 0, then E[ai, j]CM = Pr [i ∼ j] = 0;
hence, there is no error. If node i has close to the maximum
degree while node j has a low degree, then E[ai, j]CM severely
underestimates the probability Pr [i ∼ j]. If both di and d j

are low, then E[ai, j]CM severely overestimates the probabil-
ity Pr [i ∼ j]. Hence, on small networks, E[ai, j]CM deviates
significantly from the probability Pr [i ∼ j].

IV. LIMIT FOR LARGE N

We define the normalized degree k = d
N−1 and its comple-

ment kc = 1 − k. Expressing the number of links L in terms
of the link density p = L

Lmax
and its complement pc = 1 − p,

FIG. 3. Heatmap of the error factor ε for the class of graphs with
N = 10 nodes and L = 25 links.

we rewrite (9) as

1

Pr [i ∼ j]
= 1+ kc

i kc
j

[
pLmax − ki(N − 1) − k j (N − 1) + 1

]
kik j

[
pcLmax − kc

i (N − 1) − kc
j (N − 1) + 1

]
= 1 +

kc
i kc

j

(
p − 2(ki+k j )

N + 2
N (N−1)

)
kik j

(
pc − 2(kc

i +kc
j )

N + 2
N (N−1)

) . (11)

Since k and kc are upper bounded by 1, it follows that

lim
N→∞

2(ki + k j )

N
= 0,

lim
N→∞

2
(
kc

i + kc
j

)
N

= 0. (12)

Hence, in large networks, the probability that node i and node
j are connected tends to

lim
N→∞

Pr [i ∼ j] = kik j (1 − p)

kik j (1 − p) + (1 − ki )(1 − k j )p
, (13)

which is dependent on the link density p, but not the network
size N . Similarly, the expected number of links in the config-
uration model E[ai, j]CM in (2) can be rewritten as

E[ai, j]CM = did j

2L − 1
= kik j (N − 1)2

pN (N − 1) − 1
= kik j

p N
N−1 − 1

(N−1)2

.

(14)

Hence, in large networks, E[ai, j]CM tends to

lim
N→∞

E[ai, j]CM = kik j

p
, (15)

which is also only dependent on the link density p. This
suggests that when using E[ai, j]CM (the expected number of
links in the configuration model) as an estimate for Pr [i ∼ j]
(the probability of a link in a simple ER graph), given a pair
of nodes (i, j) with normalized degrees (ki, k j ), the approx-
imation error is constant and scale invariant with respect to
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FIG. 4. Comparison of the error factor ε of the configuration model approximation E[ai, j]CM for N = 25 and N = 1000 nodes with p = 0.5.
The solid lines show the average degree, and the dotted lines indicate the area where both di and dj are within two standard deviations of the
average degree. (a) N = 25 nodes and (b) N = 1000 nodes.

the network size N . Figure 4 shows a heatmap of the error
factor ε for the class of graphs with N = 25 nodes and link
density p = 0.5 (L = 150) and for the class of graphs with
N = 1000 nodes and the same link density p = 0.5 (L =
249 750). The exact same pattern in the heatmap is observed
in both Figs. 4(a) and 4(b), indicating that the error factor ε is
constant for the same relative degree k.

To understand the pattern in the heatmap in Fig. 4, we
rewrite (13) as

lim
N→∞

Pr [i ∼ j] = kik j

p + 1
1−p (p − ki )(p − k j )

. (16)

Hence, in the limit N → ∞,

E[ai, j]CM

⎧⎨⎩>Pr [i ∼ j] if (p − ki )(p − k j ) > 0
<Pr [i ∼ j] if (p − ki )(p − k j ) < 0
=Pr [i ∼ j] if (p − ki )(p − k j ) = 0,

(17)

which explains Fig. 4. The average degree is dav = p(N − 1)
and the normalized average degree kav = p. When either node
i or node j has the average degree, then (p − ki )(p − k j ) =
0. Therefore, the error factor is (almost) zero along the solid
lines in Fig. 4. If both ki, k j > p, or both ki, k j < p, then (p −
ki )(p − k j ) > 0 and E[ai, j]CM overestimates the connection
probability Pr [i ∼ j]. If ki > p but k j < p, or ki < p but k j >

p, then (p − ki )(p − k j ) < 0 and E[ai, j]CM underestimates the
connection probability Pr [i ∼ j].

In summary, if the configuration model expectation
E[ai, j]CM is used as an estimate for the true connection prob-
ability Pr [i ∼ j], the error is constant with respect to the link
density p and relative degree k. The error is worse in dense
networks because if the link density p is close to 1, then
the term 1

1−p in the denominator of (16) becomes very large.
However, in Erdős-Rényi random graphs, the degree d will be
binomially distributed ([4], Sec. 15.7.1) with mean p(N − 1)
and variance (N − 1)p(1 − p). Therefore, the relative degree

k has mean p and variance p(1−p)
N−1 → 0 as N → ∞. The gray

dotted lines in Fig. 4 indicate the area where both di and d j

are within two standard deviations of the average degree dav.
Therefore, the configuration model expectation E[ai, j]CM is a
good estimate for the connection probability Pr [i ∼ j] if the
network belongs to the class of Erdős-Rényi random graphs
and N is large, because the probability of observing degrees d
that are far away from the average degree dav decreases as N
increases.

V. MODULARITY

The modularity m as defined by Newman [5,6] plays a
critical role in detecting community structure in networks. The
modularity m is given by

m = 1

2L

N∑
i=1

N∑
j=1

(ai, j − pi, j )
C∑

k=1

1{i, j∈Ck} (18)

and

pi, j = did j

2L
, (19)

where C is the number of clusters (communities) and Ck

denotes cluster k. The indicator function 1{i, j∈Ck} means that
only nodes belonging to the same cluster Ck contribute to the
modularity. The entry ai, j of the adjacency matrix A indicates
whether a link exists between node i and node j. The term
pi, j represents the probability that a link would exist between
node i and node j if “connections are made at random but
respecting [node] degrees” [7] and is the baseline or null
model with which the existence of a link is compared. Observe
that (19) is actually the expected number of links between
node i and node j in a large configuration model network (4)
and is dependent only on the degrees di and d j ; the degrees of
the rest of the nodes in the network are not taken into account.
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TABLE I. Summary of the modularity values of the clusters found when using different algorithms and objective functions.

Modularity

Algorithm Objective m m̂ mexact Figure

ILP (optimal) m, m̂, mexact 0.4198 0.4524 0.4513 Fig. 5
Spectral m̂ 0.4118 0.4455 0.4438 Fig. 6(b)
Spectral m, mexact 0.3934 0.4216 0.4223 Fig. 6(a)
Greedy m̂, mexact 0.3942 0.4206 0.4205 Fig. 7(b)
Greedy m 0.3807 0.4009 0.4030 Fig. 7(a)

The modularity m provides a measure for evaluating the
quality of a given division of a network into communities and
is the most commonly used quality function in community
detection methods based on optimization [8]. As summarized
in a recent review [9], various modifications to the modularity
formula (18) have been proposed to address some of its limita-
tions. For example, [10,11] modify the modularity formula to
not only consider links present within a community, but also
the links that are missing within a community. In [12], the
modularity is modified to also take links between communi-
ties into account. Here, we consider a simple change where we
redefine the probability term p̂i, j using our exact probability
(9) of a link in a simple graph on N nodes and L links,

p̂i, j =
{

did j (Lc−dc
i −dc

j +1)
did j (Lc−dc

i −dc
j +1)+dc

i dc
j (L−di−d j+1) , i �= j

0, i = j.
(20)

With this change, we still only respect the degrees di and d j ,
but we additionally account for the fact that the graph must be
simple and contain exactly N nodes and L links. We define the
adjusted modularity m̂ as

m̂ = 1

2L

N∑
i=1

N∑
j=1

(ai, j − p̂i, j )
C∑

k=1

1{i, j∈Ck}, (21)

which is the same as the original modularity formula (18)
except pi, j is replaced by p̂i, j .

As an example, we consider partitioning Zachary’s karate
club network [13]. In Appendix B, we explicitly calculate
the probability Pr [i ∼ j](d1,...,dN ) of a link conditioned on the
entire degree sequence of the karate club network, and we
verify that our probability term p̂i, j is more accurate than pi, j .
We define the modularity calculated using Pr [i ∼ j](d1,...,dN )
to be the true modularity

mexact = 1

2L

N∑
i=1

N∑
j=1

(ai, j − Pr [i ∼ j](d1,...,dN ) )
C∑

k=1

1{i, j∈Ck}.

(22)

We consider two heuristic algorithms (Newman’s spectral
algorithm [14] and the Clauset-Newman-Moore greedy algo-
rithm [7]) and compare the differences when using Newman’s
modularity m, our adjusted modularity m̂, and the true mod-
ularity mexact as the objective function. We also compare the
results with the optimal partitioning obtained through integer
linear programming (ILP) [15,16].

A summary of the modularity values of the clusters for the
different algorithms and objective functions is presented in
Table I. The table is sorted on the true modularity mexact from

highest to lowest and our adjusted modularity m̂ agrees with
the ordering. However, Newman’s modularity m considers the
clusters of Fig. 7(b) to have higher modularity than Fig. 6(a).
Our adjusted modularity m̂ values are close to the true modu-
larity mexact, but there is a small error, because our probability
term p̂i, j takes only the degrees of node i and j into account.
When using integer linear programming to find the optimal
partitioning, the same clusters are found for all three objective
functions. The clusters are illustrated in Fig. 5 and have been
verified against other publications [17,18].

Figure 6 shows the partitioning of the karate club net-
work using Newman’s spectral algorithm [14]. As shown in
Fig. 6(a), using Newman’s modularity m yields the same
clusters as the true modularity mexact. Compared to the op-
timal partitioning (Fig. 5), node 1 and node 12 have been
moved to the red cluster. When using the adjusted modularity
[Fig. 6(b)], there is only one difference with the optimal par-
titioning (Fig. 5): node 12 is placed in an isolated blue cluster.
As shown in Table I, all three modularity measures indicate
that the partitioning in Fig. 6(b) has higher modularity than
the partitioning in Fig. 6(a).

Figure 7 shows the partitioning of the karate club network
using the Clauset-Newman-Moore greedy modularity maxi-
mization algorithm [7] (as implemented in NetworkX [19]).
Figure 7(a) shows the clusters found when using Newman’s

1
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30 31

32
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34

FIG. 5. Optimal partitioning of the karate club network found
using integer linear programming. The same partitions are found
when using Newman’s modularity m, our adjusted modularity m̂, as
well as the true modularity mexact .
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FIG. 6. Partitioning of the karate club network using Newman’s spectral algorithm [14] with different objective functions. (a) Newman’s
modularity m; same clusters as the true modularity mexact and (b) adjusted modularity m̂.

modularity m. There are many differences compared to the
optimal partitioning (Fig. 5), most notably the absence of the
pink cluster. When using the adjusted modularity m̂, a pink
cluster is still detected as shown in Fig. 7(b). Using the true
modularity mexact yields the same clusters as the adjusted mod-
ularity m̂. As shown in Table I, all three modularity measures
indicate that the partitioning in Fig. 7(b) has higher modularity
than the partitioning in Fig. 7(a).

VI. CONCLUSION

We have derived an exact formula (9) for the probability
Pr [i ∼ j] that two nodes i and j are connected in a simple
random graph belonging to the class of Erdős-Rényi G(N, L)
random graphs. The expected number of links in the configu-
ration model E[ai, j]CM is commonly used as an approximation
for the connection probability Pr [i ∼ j]. We defined an error
factor ε to quantify the difference between E[ai, j]CM and
Pr [i ∼ j], showing that E[ai, j]CM severely overestimates the
connection probability between two low degree nodes i and
j, while severely underestimating the connection probability
between a low degree node i and a high degree node j. We
show that for constant link density p, the error factor ε is

scale invariant with respect to the relative degree k. In large
Erdős-Rényi graphs, E[ai, j]CM becomes a good estimate for
Pr [i ∼ j] because the variance of the relative degree k de-
creases as O( 1

N ).
Many real networks, however, do not belong to the class

of Erdős-Rényi random graphs. We consider the application
of network partitioning using Newman’s modularity m, com-
pared with the adjusted modularity m̂ in which the probability
of two nodes being connected is replaced by our formula.
Using the karate club network as an example, we showed
that our probability term p̂i, j (20) is a more accurate baseline
probability than the original probability term pi, j (19) in the
modularity formula.

We tested two heuristic algorithms for modularity max-
imization and compared the clusters found when using
Newman’s modularity m with the clusters found when using
our adjusted modularity m̂. For both algorithms, we found
clusters with higher modularity when using our adjusted mod-
ularity m̂ as the objective function. Although our probability
term p̂i, j (20) is a little more complicated than the origi-
nal probability term pi, j (19), the computational complexity
hardly changes. Hence, we believe that it is worth replacing
(19) by (20) in the objective function for clustering.

FIG. 7. Partitioning of the karate club network using the Clauset-Newman-Moore greedy modularity maximization algorithm [7] with
different objective functions. (a) Newman’s modularity m and (b) adjusted modularity m̂; same clusters as the true modularity mexact .
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APPENDIX A: DERIVATIONS

1. Checking whether the parameters are graphical

We derive the conditions under which a degree pair (di, d j )
is graphical for a graph of N nodes and L links, meaning
there exists at least one simple graph G with the parameters
{N, L, (di, d j )}, which implies∣∣GN,L,(di,d j )

∣∣ = ∣∣GN,L,(di,d j ),i∼ j

∣∣ + ∣∣GN,L,(di,d j ),i� j

∣∣ > 0. (A1)

The degree d of any node in a simple graph G is
bounded by

0 � d � N − 1. (A2)

Since we are considering a degree pair (di, d j ), we must have
at least N � 2 nodes. We should also exclude the degree
pairs (0, N − 1) and (N − 1, 0) because degree d = 0 means
the graph is disconnected while degree d = N − 1 means the
graph is connected, which cannot occur at the same time.

Given a degree pair (di, d j ), we derive the minimum L−
and maximum L+ number of links L,

L− � L � L+. (A3)

There are di links connected to node i and d j links connected
to node j. If min(d j, d j ) > 0, the minimum number of links
L− = di + d j − 1 because we can place a link between node i
and node j. If min(d j, d j ) = 0, then it is not possible to place
a link between node i and node j and the minimum number of
links is L− = di + d j . Hence, the minimum number of links
L− is

L− =
{

di + d j − 1 if min(di, d j ) > 0

di + d j if min(di, d j ) = 0.
(A4)

We derive the maximum number of links L+ in the same
way by considering the complement graph Gc. In the com-
plement graph Gc, there are Lc = Lmax − L links, node i has
degree dc

i = (N − 1) − di, and node j has degree dc
j = (N −

1) − dj . The minimum number of links Lc
− in the complement

graph Gc is

Lc
− =

{
dc

i + dc
j − 1 if min

(
dc

i , dc
j

)
> 0

dc
i + dc

j if min
(
dc

i , dc
j

) = 0.
(A5)

When the number of links in the graph G is maximal, L = L+,
the number of links in the complement graph Gc is minimal,
Lc = Lc

−. Hence, L+ = Lmax − Lc
−.

2. Constraints on parameters such that 0 < Pr [i ∼ j] < 1

During the derivation of (9), we assumed∣∣GN,L,(di,d j ),i∼ j

∣∣ > 0,∣∣GN,L,(di,d j ),i� j

∣∣ > 0, (A6)

TABLE II. All possible values of L and (di, dj ) for N = 2 and
N = 3 nodes.

N L (di, dj ) Lc (dc
i , dc

j ) Pr [i ∼ j]

2 0 (0,0) 1 (1,1) 0
2 1 (1,1) 0 (0,0) 1
3 0 (0,0) 3 (2,2) 0
3 1 (0,1) 2 (2,1) 0
3 1 (1,1) 2 (1,1) 1
3 2 (1,1) 1 (1,1) 0
3 2 (1,2) 1 (1,0) 1
3 3 (2,2) 0 (0,0) 1

which is a stricter condition than graphicality (A1) and ex-
cludes parameters {N, L, (di, d j )}, which yield Pr [i ∼ j] = 0
or Pr [i ∼ j] = 1. We derive the constraints on the parameters
{N, L, (di, d j )} in order to satisfy (A6).

A node with degree d = 0 is not connected to any other
node, which implies Pr [i ∼ j] = 0. A node with degree
d = N − 1 is connected to every other node, which implies
Pr [i ∼ j] = 1. To satisfy (A6), the degree d must be strictly
bounded by

0 < d < N − 1. (A7)

The bound (A7) implies that min(d j, d j ) > 0 and
min(dc

j , dc
j ) > 0. From (A4) and (A5), it follows that the

minimum L− and maximum L+ number of links L is

L− = di + d j − 1,

L+ = Lmax − (
dc

i + dc
j − 1

)
. (A8)

If the number of links is minimal, L = L−, then Pr [i ∼ j] =
1. If the number of links is maximal, L = L+, then
Pr [i ∼ j] = 0. To satisfy (A6), the number of links must be
strictly bounded by

L− < L < L+. (A9)

The inequality (A9) cannot be satisfied for N = 2 and N =
3 nodes. Hence, the number of nodes N is at least

N � 4. (A10)

Indeed, the constraints (A7), (A9), and (A10) ensure the bino-
mial coefficients in (7) and (8) are always valid.

We verify that our expression (9) holds for all graphical
parameters {N, L, (di, d j )}. In the main text, we have already
shown that our expression correctly yields Pr [i ∼ j] = 0
when d = 0 or L = L+; we have also shown that our expres-
sion correctly yields Pr [i ∼ j] = 1 when d = N − 1 or L =
L−. In Table II, we summarize all graphical values of L and
(di, d j ) for N = 2 and N = 3 nodes; substituting these values
into (9) yields the correct probability. Hence, our expression
(9) for the probability Pr [i ∼ j] holds for all Erdős-Rényi
G(N, L) graphs on N � 2 nodes.

3. Simplifying binomial coefficients

The binomial coefficient
(n

r

)
is given by(

n

r

)
= n!

r! (n − r)!
. (A11)
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For r > 0, it follows that

(n
r

)( n
r−1

) = (r − 1)! (n − r + 1)!

r! (n − r)!
= n − r + 1

r
. (A12)

For r < n, it follows that

(n
r

)( n
r+1

) = (r + 1)! (n − r − 1)!

r! (n − r)!
= r + 1

n − r
. (A13)

The probability Pr [i ∼ j] is given by

Pr [i ∼ j] =
∣∣GN,L,(di,d j ),i∼ j

∣∣∣∣GN,L,(di,d j ),i∼ j

∣∣ + ∣∣GN,L,(di,d j ),i� j

∣∣
= 1

1 +
∣∣∣GN,L,(di ,d j ),i� j

∣∣∣∣∣∣GN,L,(di ,d j ),i∼ j

∣∣∣
. (A14)

Using the identities (A12) and (A13), we simplify the
second denominator term

∣∣GN,L,(di,d j ),i� j

∣∣∣∣GN,L,(di,d j ),i∼ j

∣∣ =
(N−2

di

)(N−2
d j

)(Lmax−2(N−2)−1
L−di−d j

)(N−2
di−1

)(N−2
d j−1

)(Lmax−2(N−2)−1
L−di−d j+1

)
= (N − 1 − di )

di

(N − 1 − d j )

d j

× (L − di − d j + 1)

(Lmax − L − 2(N − 2) + di + d j − 1)

= dc
i dc

j (L − di − d j + 1)

did j
(
Lc − dc

i − dc
j + 1

) , (A15)

where dc = (N − 1) − d and Lc = Lmax − L.

APPENDIX B: PROBABILITY OF A LINK CONDITIONED
ON THE DEGREE SEQUENCE

Consider a simple graph G with degree sequence
(d1, . . . , dN ) on N nodes with L links. The probability that

ALGORITHM 1. NUMGRAPHSWITHDEGSEQUENCE. Count the
number of labeled graphs with the degree sequence (d1, . . . , dN ).
We remove the node with the smallest degree d from the de-
gree sequence; we iterate over all possible ways that d links can
be connected to the remaining nodes N − 1; for each of the possible
ways we compute the number of graphs of the corresponding degree
sequence recursively and sum them.

Inputs:
DN = (d1, . . . , dN ): degree sequence of N nodes
Outputs:
c = |G(d1,...,dN )|: number of labeled graphs with degree sequence DN

NUMGRAPHSWITHDEGSEQUENCE(DN ):
1: if N = 2 then
2: if DN = (0, 0) or DN = (1, 1) then
3: return 1
4: else
5: return 0
6: end if
7: end if
8: d ← smallest degree in DN

9: DN−1 ← COPY(DN ) and delete d from DN−1

10: c ← 0
11: for each way to choose d indexes from N − 1 total indexes do
12: D′

N−1 ← COPY(DN−1)
13: subtract 1 from the elements at the corresponding indexes

in D′
N−1

14: c ← c + NUMGRAPHSWITHDEGSEQUENCE(D′
N−1)

15: end for
16: return c

a pair of nodes i and j are connected if connections are made
at random while respecting all node degrees is given by

Pr [i ∼ j](d1,...,dN ) =
∣∣G(d1,...,dN ),i∼ j

∣∣
|G(d1,...,dN )| , (B1)

where G(d1,...,dN ) is the set of all labeled graphs with degree
sequence (d1, . . . , dN ) and G(d1,...,dN ),i∼ j is the subset of those
graphs in which there is a link between node i and node j. Un-
fortunately, there is no closed-form solution for (B1); an exact
numerical calculation is possible by counting the number of
graphs with a given degree sequence but this quickly becomes
intractable as the network size increases.

The karate club network contains N = 34 nodes and L =
78 links. The degree sequence of the karate club network
(sorted from smallest to largest) is

(1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 9, 10, 12, 16, 17).

The total number of graphs with the same degree sequence as the karate club network is

|G(d1,...,dN )| = 27 425 053 479 717 264 361 406 133 594 918 792 062 198 598 516 534 680,

which is approximately 2.74 × 1052. We compute the number
of graphs with a given degree sequence using a recursive
algorithm, which is described in [20]; the pseudocode is given
in Algorithm 1. NUMGRAPHSWITHDEGSEQUENCE. As in [20],
we make use of dynamic programming in our solution, which

we implemented in Python; the computation took 1.7 h using
an Intel i7-1265U CPU at 1.80 GHz and 16 GB of RAM on a
machine running Windows 10.

In Table III, we computed the number of graphs
|G(d1,...,dN ),i∼ j | in which a node pair (i, j) with degrees (di, d j )
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ALGORITHM 2. NUMGRAPHSWHERECONNECTED. Count the number of labeled graphs with the degree
sequence (d1, . . . , dN ) in which a pair of nodes i and j is connected. We remove node i and node j from the
degree sequence; we iterate over all possible ways that node i and node j can be connected to the remaining
N − 2 nodes (while also being connected to each other); for each of the possible ways we compute the number
of graphs of the corresponding degree sequence (using Algorithm 1. NUMGRAPHSWITHDEGSEQUENCE) and sum
them.

Inputs:
DN = (d1, . . . , dN ): degree sequence of N nodes
i: index of node
j: index of node
Outputs:
c = |G(d1,...,dN ),i∼ j |: number of labeled graphs with degree sequence DN in which nodes i and j are connected
NUMGRAPHSWHERECONNECTED(DN , i, j):
1: di ← ith element of DN

2: dj ← jth element of DN

3: DN−2 ← COPY(DN ) and delete ith and jth elements
4: c ← 0
5: for each way to choose di − 1 indexes from N − 2 total indexes do
6: D′

N−2 ← COPY(DN−2 )
7: subtract 1 from the elements at the corresponding indexes in D′

N−2

8: for each way to choose dj − 1 indexes from N − 2 total indexes do
9: D′′

N−2 ← COPY(D′
N−2)

10: subtract 1 from the elements at the corresponding indexes in D′′
N−2

11: c ← c + NUMGRAPHSWITHDEGSEQUENCE(D′′
N−2)

12: end for
13: end for
14: return c

FIG. 8. Heatmaps of the error factor ε comparing the modularity probability term with the probability of a link Pr [i ∼ j](d1,...,dN )

conditioned on the degree sequence (d1, . . . , dN ) of the karate club network. (a) Original probability term pi, j and (b) our probability term p̂i, j .
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TABLE III. Number of graphs |G(d1,...,dN ),i∼ j | in which a node pair (i, j) with degrees (di, dj ) is connected for degree sequence (d1, . . . , dN )
of the karate club network.

di d j |G(d1,...,dN ),i∼ j | Exact |G(d1,...,dN ),i∼ j |
1 2 2.03 × 1050 203465676733748493823662233969243882674397849632503
1 3 3.35 × 1050 335138986101163740931904899352277411443028413324199
1 4 4.90 × 1050 490353935594975119965653979099935224307525406605949
1 5 6.72 × 1050 671798464251910119246043264689493290899435959443732
1 6 8.82 × 1050 881775728102236344291700215299113498989196381473411
1 9 1.69 × 1051 1685767821671073255424245879820309811859665373689287
1 10 2.01 × 1051 2009360839076345283569699839619042763673439227858611
1 12 2.75 × 1051 2745894612135793202070993415145338189132399644229636
1 16 4.69 × 1051 4693834043189311700657709644029053657146370670506418
1 17 5.32 × 1051 5320169340436471275916316747263382245788323693434289
2 2 4.45 × 1050 445095241323276849325505021982568939186793845378089
2 3 7.30 × 1050 729993800191351101921545006288111082132453924834841
2 4 1.06 × 1051 1062625740607953717497882955963886053628936388499767
2 5 1.45 × 1051 1447029791830398928611895717488337261040603223612944
2 6 1.89 × 1051 1885812392252473208556921463056088161291368266224879
2 9 3.50 × 1051 3503822708470880559350374909649443735331229771660844
2 10 4.13 × 1051 4126848764640108113550634133633223638559702008285383
2 12 5.48 × 1051 5484141483525387404861315735936476347199877170906072
2 16 8.66 × 1051 8660536347009646891373628362136647616756600322414654
2 17 9.55 × 1051 9551908161030016647131503742597688591734563373092776
3 3 1.19 × 1051 1191100267530147667163656341126617260023961562192674
3 4 1.72 × 1051 1723260233252800426308130989713762996113199740244059
3 5 2.33 × 1051 2329755965823245953660594852275146243362364299765816
3 6 3.01 × 1051 3010643248436718662572873216626434985406691781212357
3 9 5.41 × 1051 5412184657175496734417360391506052538311807149751084
3 10 6.29 × 1051 6290269332389720899473100026192217555390251696731113
3 12 8.11 × 1051 8113252617344239607547241262399602288977734808710341
3 16 1.19 × 1052 11913464836517078749571110295320286766033092695990615
3 17 1.29 × 1052 12875301076008515151346090206822744745283404897763551
4 4 2.48 × 1051 2475151903476364527391202752444586762144693552727671
4 5 3.32 × 1051 3317891880575692998052925905399916001422120364243917
4 6 4.25 × 1051 4245442323368255490031478310240936599183578949432001
4 9 7.35 × 1051 7354112767566938328508422490660603837938375254076011
4 10 8.43 × 1051 8426853024659940838269078073900290341576626398513687
4 12 1.05 × 1052 10547349953441384694048223289366792689090031840690176
4 16 1.45 × 1052 14548379947369957807973371573545753151931270128921983
4 17 1.55 × 1052 15484399938186154595356538420311913423996079567135015
5 5 4.40 × 1051 4403752283515778516415915671623152655548456766855770
5 6 5.57 × 1051 5571547350930337620783508797670037616624679085614632
5 9 9.27 × 1051 9270725926130121978978194136851504370216110261045575
5 10 1.05 × 1052 10471520360091141637141071203509697349573503047214017
5 12 1.27 × 1052 12738015252748238951135745052151472933904128356968663
5 16 1.67 × 1052 16675995748522801050951400619535802050536743186378709
5 17 1.75 × 1052 17543397589421853870167387320847526431363256622881118
6 6 6.96 × 1051 6960677624784803516885235745505914514304196857099457
6 9 1.11 × 1052 11106196308116579707096929773034718827131614300369818
6 10 1.24 × 1052 12372093838941429204325096324574595143460358474865705
6 12 1.47 × 1052 14665312099435453619864891131232377231066457887456716
6 16 1.84 × 1052 18392663450306698558578728765841803301483760933182692
6 17 1.92 × 1052 19176510030218322145291447966192917725135293695576568
9 10 1.69 × 1052 16926346855540913249381569674429189748377803200410354
9 12 1.89 × 1052 18926054909459425851679100828077069467450466204573390
9 16 2.18 × 1052 21785310643451594830019076439869278886772046610315603
9 17 2.23 × 1052 22337596351074550184613946276305510534271223964715271
10 12 1.99 × 1052 19928901936845786888052921954340319425021826688267038
10 16 2.25 × 1052 22518715584627096475819129914161964042411938444298200
10 17 2.30 × 1052 23010390269587058721654564236438614900901760850531123
12 16 2.36 × 1052 23636658413130309966263997511496487984095611768926346
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TABLE III. (Continued.)

di d j |G(d1,...,dN ),i∼ j | Exact |G(d1,...,dN ),i∼ j |
12 17 2.40 × 1052 24029290184427225072622311605147506729232328270230435
16 17 2.53 × 1052 25316054324467781389349761422153512378065076848970020

is connected; the pseudocode is given in Algorithm 2: NUM-
GRAPHSWHERECONNECTED. The computation took 11.3 h
(using the same machine). The values in Table III are exact,
which can be easily verified by checking the sum

N∑
i=1

N∑
j=1, j �=i

∣∣G(d1,...,dN ),i∼ j

∣∣ = 2L|G(d1,...,dN )|. (B2)

We compare the probability term pi, j of the modular-
ity formula, given in (19), with the connection probability
Pr [i ∼ j](d1,...,dN ) conditioned on the degrees of all nodes.
Similar to Sec. III, we define an error factor ε to quantify the

difference between pi, j and Pr [i ∼ j](d1,...,dN ),

ε =

⎧⎪⎪⎨⎪⎪⎩
pi, j

Pr [i∼ j](d1 ,...,dN )
− 1 if pi, j > Pr [i ∼ j](d1,...,dN )

1 − Pr [i∼ j](d1 ,...,dN )

pi, j
if pi, j < Pr [i ∼ j](d1,...,dN )

0 if pi, j = Pr [i ∼ j](d1,...,dN ).

(B3)

We do the same for the probability term p̂i, j of our adjusted
modularity, given in (20). In Fig. 8(a), we plot the heatmap of
the error factor for the original probability term pi, j , and in
Fig. 8(b) our probability term p̂i, j . As seen in the figure, our
probability term p̂i, j is considerably more accurate than pi, j

when applied to a network that is not Erdős-Rényi.
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