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Modularity with a more accurate baseline model

Brian L. Chang®” and Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

® (Received 29 November 2024; accepted 2 April 2025; published 25 April 2025)

We derive an expression for the exact probability Pr [i ~ j] of a link between a node i with degree d; and a
node j with degree d; in a graph belonging to the class of Erd6s-Rényi G(N, L) random graphs with N nodes and

L links. The probability Pr [i ~ j] is commonly approximated as

did;
2L

and appears in the formula of Newman’s

modularity, which plays a crucial rule in community detection in networks. We show that, when applied to
graphs not belonging to the class of Erdés-Rényi random graphs, our formula for Pr[i ~ j] is considerably
more accurate than 2 and leads to the detection of different clusters or partitions than the original modularity

2L
formula.
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I. INTRODUCTION

The probability that two nodes i and j (where i # j) are
connected in a random graph with L links is commonly given
[[1], Eq. (4.24)] by

did;
2L—1°

where d; and d; are the degrees of node i and node j,
respectively. In the absence of further qualification, (1) is
demonstrably false; it is trivial to construct examples where
(1) results in a probability greater than 1 as shown in Fig. 1.

In fact, (1) is actually the expected number of links be-
tween node i and node j in the configuration model ([2],
Chap. 12.1.1). In the configuration model, we start with a
degree sequence (di,ds,...,dy) on N nodes. Each node i
has d; half-links, called stubs, and the total number of stubs
is va: 1 di = 2L. To construct the network, each stub is ran-
domly paired with another stub until no stubs remain. Each
random pairing of stubs is a link in the network. Importantly,
the configuration model allows for self-loops and multilinks
and will not necessarily generate a simple graph [a graph in
which there can be at most one link between node i and node
Jj and there are no self-loops ([3], Art. 1)].

Consider a pair of nodes i and j with degree d; and d;,
respectively. Consider any stub of node i; what is the proba-
bility that this stub is connected to node j? Excluding the stub
we are considering, there are 2L — 1 remaining stubs in the
network of which d; belong to node j; hence, the probability

Prii~ j] = (1

that the chosen stub is connected to node j is 5 Ld . Since node

i has d; stubs, the expected number of links between node i and
node j is

where the subscript CM indicates the configuration model.
In the configuration model, the entries g; ; of the adjacency
matrix are not Bernoulli random variables, because there can
be more than one link between node i and node j. Hence,
the expected number of links E[a; ;]\, upper bounds the
probability Pr [i ~ j]y that node i and node j are connected:

Elai jloy = Dk Pria;; = Koy
k=0
o0
2 ZPT [ai,j - k]CM = Pr [l ~ .]]CM (3)
k=1

If the second moment of a random degree D is constant and
finite, E[D?] < oo, then the probability of observing multi-
links and self-loops is of order O(zlv)’ as shown in [2], pp.
374-375. Since Tl—l = i[l + O(%)], for large size N and
large number L of links, we find approximately

o did;
Pri~ jlem = ]E[a,»,j]CM ~ oL

The asymptotic (4) is conditioned on a degree distribution
with a finite second moment and a sufficiently large network.
However, in real networks, the degree distribution may fol-
low a power-law distribution in which the second moment
diverges, i.e., does not exist. Real networks are also finite in
size N. In this work, we compute the exact link probability
Pr [i ~ j] for simple graphs.

“4)

II. EXACT PROBABILITY OF A LINK IN A SIMPLE
RANDOM GRAPH

Consider the adjacency matrix A of a simple graph G with

Ela; jloy = %, 2) N nodes. An example adjacency matrix A for N = 6 nodes is
illustrated in Fig. 2. In a simple graph, there is at most one
link between a pair of nodes i and j. The off-diagonal entries
a;,; of the adjacency matrix A of a simple random graph are

*Contact author: b.l.chang @tudelft.nl Bernoulli random variables, where a; ; = 1 if there is a link
2470-0045/2025/111(4)/044317(11) 044317-1 ©2025 American Physical Society


https://orcid.org/0009-0004-7476-5898
https://orcid.org/0000-0002-3786-7922
https://ror.org/02e2c7k09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.111.044317&domain=pdf&date_stamp=2025-04-25
https://doi.org/10.1103/PhysRevE.111.044317

BRIAN L. CHANG AND PIET VAN MIEGHEM

PHYSICAL REVIEW E 111, 044317 (2025)

FIG. 1. A graph on N = 6 nodes with L = 8 links. The degrees
of node i/ and node j are d; =4 and d; = 4. Applying (1) yields
Prli~jl= }—g’ > 1. A probability cannot be greater than 1; further-
more, node i and node j are not connected.

between node i and node j, and a; ; = 0 otherwise. There are
no self-loops in a simple graph, which means that the diagonal
entries are always a;; = 0. Because the adjacency matrix A
is symmetric, a simple graph G is fully described by the
elements of the upper triangle (excluding the main diagonal)
of the adjacency matrix. The upper triangle has L,y = (1; ) =
%ﬁl) entries ; ; that corresponds to the maximum number
of links in a simple graph of N nodes.

Suppose the graph G is a realization of the class of Erdds-
Rényi G(N, L) random graphs, in which L links are placed
uniformly at random in the graph of N nodes. We define the
set Gy, as the set of all possible graphs' with N nodes and
L links. The graph G is, therefore, chosen uniformly from
the set Gy, .. The number of possible graphs is |Gy .| = ("),
because precisely L entries are a; ; = 1 in the upper triangle
of the adjacency matrix A.

Consider a pair of nodes (i, j) in the graph G. Given the
degree d; of node i and the degree d; of node j, what is the
probability that node i and node j are connected? The set
Gn, L.(d;.d;) denotes the set of graphs with N nodes and L links,
where the node pair (i, j) has the corresponding degree pair
(d;, d;). We partition the set of graphs QN,L,(dl,,dj) based on
whether or not there is a link between the node pair (i, j),

ON.L.(ddy) = GN.L.(drd;).i~j YD GNL(drd)) i &)

where i ~ j denotes that the node pair (i, j) is connected by
a link and i ~ j denotes that the node pair (i, j) is not con-
nected. Since Gy .1 (4,.q;) is a subset of Gy ; and every graph in
Gn.1 occurs with equal probability, the probability Pr[i ~ j]
that the node pair (i, j) is connected is given by

N L i |

Pri~ jl= (6)

|GN.Ldimj |+ |GNoLdndine|

The probability Pr [i ~ j] is defined only if |Gy, Lididp] >
0, which clearly must be true: since the degree pair (d;, d;)
corresponds to the degrees of a node pair (7, j) in a G(N, L)
graph, there must exist at least one graph with the parameters
{N, L, (d;, d;)}. In other words, the parameters {N, L, (d;, d;)}
are graphical, because they can be realized by a simple
graph, which means that they satisfy the constraints de-
scribed in Appendix A 1. In our derivation, we will assume
both |QN,L,(di,d/.),,-~j| > 0 and |QN,L,(di,dj),,-,gj| > 0, which is a

"We consider each node to be labeled; therefore, isomorphic graphs
are different graphs.

Lmax =N (N - 1)/2 possible links

1 link between node i and node j

N - 2 other links connected to node i

N -2 other links connected to node j

Lmax = 2(N - 2) = 1 remaining links

connected to neither node i nor node j

FIG. 2. Illustration of an adjacency matrix for N = 6 showing
the possible links. We define node i = 1 and node j = 2. The gray
entries do not need to be considered because the graph is simple; the
main diagonal is 0 and the matrix symmetric.

stricter constraint that excludes parameters {N, L, (d;, d;)} for
which Pr[i ~ j] =1 or Pr[i ~ j] = 0. In Appendix A 2, we
show that this assumption has no impact on our final result
(9), which yields the correct probability for all graphical pa-
rameters {N, L, (d;, d;)}.

Consider the adjacency matrix A in Fig. 2, where we have
defined node i = 1 and node j = 2. If the node pair (i, j) is
not connected, the entry a; ; = 0 in the adjacency matrix A
(shown in orange in Fig. 2). We need to connect d; links to
node i and there are N — 2 possible entries to choose from
(shown in green). Similarly for node j, we need to connect
d; links and there are N — 2 possible entries to choose from
(shown in blue). There are Ly,x — 2(N — 2) — 1 remaining
entries in the adjacency matrix A (shown in red). Since the
total number of links is L, we still need to place L — d; — d;
links in the rest of the graph. Hence, the total number of
graphs in which the node pair (i, j) is not connected is
given by

N =2\ /N =2\ (Loax —2(N —2) — 1
|GN.L. (i | = d d. L—d—d .
i J i J
@)

Suppose now that the pair of nodes (i, j) is connected.
Since the entry a; ; =1, we need to connect d; — 1 addi-
tional links to node i and d; — 1 additional links to node ;.
Since the total number of links is L, we still need to place
L —d; — d; + 1 links in the rest of the graph. Hence, the total
number of graphs in which the node pair (7, j) is connected is
given by

G (= (V2) (MR (B 2N =2
NG =g J\dj = 1)\ L—d;—a;+1 )

®)
Substituting (7) and (8) into (6) and simplifying
(Appendix A 3) yields
Pr[i ~ j]

did; (LS — df — dS + 1)
didj(Le—df —dS+ 1)+ didS(L —d; —d; + 1)
©)

where d° =(N —1)—d and L® = Ly, — L and the su-

perscript "c" refers to the complement of the graph ([3],
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Art. 1). Our expression (9) for the probability Pr[i ~ j] is
exact and holds for all random graphs where L links are
placed uniformly at random on N > 2 nodes, i.e., for the
class of Erdés-Rényi G(N, L) random graphs (Appendix A 2).
Increasing the degree d increases the probability of being
connected. If either node i or node j has degree d = 0, then
the numerator becomes zero and Pr [i ~ j] = 0. If either node
i or node j has degree d = N — 1, then d° = 0 and the second
term in the denominator becomes zero and Pr [i ~ j] = 1.
Increasing the number of links L decreases the proba-
bility of being connected. As derived in Appendix A 1, the
minimum number of links given that d;,d; > 0is L =d; +
d; — 1; the second term in the denominator becomes zero
and Pr [i ~ j] = 1. The maximum number of links given that
di,dj < N —11is L = Ly, — (df —}—djc. — 1), which means
that L° = d; 4+ d — 1 and that the numerator becomes zero

and Pr[i ~ j] = 0.

III. ERROR WHEN USING Ela;, ;]\,
TO ESTIMATE Pr [i ~ j]

We consider the error when using the expected number of
links E[a; ;] in the configuration model (2) as an estimate
for the connection probability Pr[i ~ j] in a simple graph
(9). Instead of the relative error, we define an error factor
€ to quantify the extent to which E[q;, ilom Overestimates or
underestimates Pr [i ~ j]. The error factor € is defined as

min (1,E[a; ;1) e .
Tj]CM —1 if min(1, Ela; ;1) > Prli ~ jl

_ Pr[i~j] e .
e=11— —min(l,]E[al{,-]CM) if min (1, E[a; ;]oy) < Prili ~ j
0 it min(1, E[a; j]q) = Prli ~ jl.

(10)

An error factor € = +1 means that the estimate E[a; ;]
is double the true probability Pr[i ~ j], and € = —1 means
that the estimate E[a; ;] is half of the true probability
Pr[i ~ j]. We take the minimum min (1, E[a; ;],,) so that
estimates E[qa; ;],, > 1 are treated as a probability of 1 and
are not further penalized.

Figure 3 shows a heatmap of the error factor € for the class
of graphs with N = 10 nodes and L = 25 links. A fully red
cell indicates an error factor € > 0.6 and a fully blue cell indi-
cates an error factor € < 0.6. The degree pairs (0, 9) and (9, 0)
are absent in the heatmap because it is impossible to have de-
gree d = N — 1 and degree d = 0 in the same graph. If node i
or node j has degree d = 0, then E[a; ;] = Pr[i ~ j]1 =0;
hence, there is no error. If node i has close to the maximum
degree while node j has a low degree, then E[q; ;] severely
underestimates the probability Pr[i ~ j]. If both d; and d;
are low, then E[q; ;]\, severely overestimates the probabil-
ity Pr [i ~ j]. Hence, on small networks, E[a; ;] deviates
significantly from the probability Pr [i ~ j].

IV. LIMIT FOR LARGE N

We define the normalized degree k = 1% and its comple-

ment k¢ = 1 — k. Expressing the number of links L in terms

of the link density p = £ and its complement p¢ = 1 — p,

Linax
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FIG. 3. Heatmap of the error factor € for the class of graphs with
N = 10 nodes and L = 25 links.

we rewrite (9) as

1 k§kS[pLimax — ki(N — 1) — k;(N — 1) + 1]

Prii~jl k[P Lman — KN — 1) = kSN — 1) + 1]
ki kS (p - Z(ki;kj) + N(I\?—l))
=1+ ST . (11)
k-k<(p° _ A #)
in] N NON-D)
Since k and k¢ are upper bounded by 1, it follows that
2k 4
fim 2K kD _
N—oo
2(k5 + kS
lim u =0. (12)
N—o0 N

Hence, in large networks, the probability that node i and node
J are connected tends to

kik;(1 — p)
kikj(1 = p) + (1 = k)(1 = kj)p’
which is dependent on the link density p, but not the network

size N. Similarly, the expected number of links in the config-
uration model E[a; ;] in (2) can be rewritten as

dd; k(N —12 ki

13)

Jim Pt~ 1 -

Elai jloy = = = .
FEM oL -1 pN(N—1)—1 p%—ﬁ
(14)
Hence, in large networks, E[a; ;] tends to
. kik j
ng})oE[a,-,j]CM = 7, (15)

which is also only dependent on the link density p. This
suggests that when using E[a; ;] (the expected number of
links in the configuration model) as an estimate for Pr [i ~ j]
(the probability of a link in a simple ER graph), given a pair
of nodes (i, j) with normalized degrees (k;, k;), the approx-
imation error is constant and scale invariant with respect to
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FIG. 4. Comparison of the error factor € of the configuration model approximation E[a; ;].,, for N = 25 and N = 1000 nodes with p = 0.5.
The solid lines show the average degree, and the dotted lines indicate the area where both d; and d; are within two standard deviations of the

average degree. (a) N = 25 nodes and (b) N = 1000 nodes.

the network size N. Figure 4 shows a heatmap of the error
factor € for the class of graphs with N = 25 nodes and link
density p = 0.5 (L = 150) and for the class of graphs with
N = 1000 nodes and the same link density p =0.5 (L =
249750). The exact same pattern in the heatmap is observed
in both Figs. 4(a) and 4(b), indicating that the error factor € is
constant for the same relative degree k.

To understand the pattern in the heatmap in Fig. 4, we
rewrite (13) as

kik;
P+ 15 (p—k)(p— k)

lim Pr[i ~ j] = (16)
N—o0

Hence, in the limit N — oo,

>Pr[i ~ j] if (p—ki)(p—k;j)>0
Elai jlepy <Prli ~ Jl if (p—k)(p—kj)<0 (17)
=Pr[i ~ j] if (p—ki)(p—k;) =0,

which explains Fig. 4. The average degree is d,, = p(N — 1)
and the normalized average degree k,, = p. When either node
i or node j has the average degree, then (p — k;)(p —k;) =
0. Therefore, the error factor is (almost) zero along the solid
lines in Fig. 4. If both k;, k; > p, or both k;, k; < p, then (p —
ki)(p —k;) > 0 and E[a; ], overestimates the connection
probability Pr [i ~ j]. If k; > pbutk; < p,ork; < pbutk; >
p-then (p — k;)(p — k;) < 0and E[q; ;],, underestimates the
connection probability Pr [i ~ j].

In summary, if the configuration model expectation
Ela;,j1cy 18 used as an estimate for the true connection prob-
ability Pr [i ~ j], the error is constant with respect to the link
density p and relative degree k. The error is worse in dense
networks because if the link density p is close to 1, then
the term ﬁ in the denominator of (16) becomes very large.
However, in Erdés-Rényi random graphs, the degree d will be
binomially distributed ([4], Sec. 15.7.1) with mean p(N — 1)

and variance (N — 1)p(1 — p). Therefore, the relative degree

. 1—
k has mean p and variance Pz(vff) — 0 as N — oo. The gray

dotted lines in Fig. 4 indicate the area where both d; and d;
are within two standard deviations of the average degree d,,.
Therefore, the configuration model expectation E[a; ;] is a
good estimate for the connection probability Pr [i ~ j] if the
network belongs to the class of Erdés-Rényi random graphs
and N is large, because the probability of observing degrees d
that are far away from the average degree d,, decreases as N
increases.

V. MODULARITY

The modularity m as defined by Newman [5,6] plays a
critical role in detecting community structure in networks. The
modularity m is given by

N N c
1
m= ZZZ(ai,j_Pi,j)gl{i,jeCk} (18)

i=1 j=1
and

did;
pi,j = i
where C is the number of clusters (communities) and Cj
denotes cluster k. The indicator function 1y; jec,y means that
only nodes belonging to the same cluster C; contribute to the
modularity. The entry a; ; of the adjacency matrix A indicates
whether a link exists between node i and node j. The term
Di,j represents the probability that a link would exist between
node i and node j if “connections are made at random but
respecting [node] degrees” [7] and is the baseline or null
model with which the existence of a link is compared. Observe
that (19) is actually the expected number of links between
node i and node j in a large configuration model network (4)
and is dependent only on the degrees d; and d;; the degrees of
the rest of the nodes in the network are not taken into account.

) (19)
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TABLE I. Summary of the modularity values of the clusters found when using different algorithms and objective functions.

Modularity
Algorithm Objective m m Mexact Figure
ILP (optimal) m, m, Meyact 0.4198 0.4524 0.4513 Fig. 5
Spectral m 0.4118 0.4455 0.4438 Fig. 6(b)
Spectral M, Mexact 0.3934 0.4216 0.4223 Fig. 6(a)
Greedy M, Mexact 0.3942 0.4206 0.4205 Fig. 7(b)
Greedy m 0.3807 0.4009 0.4030 Fig. 7(a)

The modularity m provides a measure for evaluating the
quality of a given division of a network into communities and
is the most commonly used quality function in community
detection methods based on optimization [8]. As summarized
in a recent review [9], various modifications to the modularity
formula (18) have been proposed to address some of its limita-
tions. For example, [10,11] modify the modularity formula to
not only consider links present within a community, but also
the links that are missing within a community. In [12], the
modularity is modified to also take links between communi-
ties into account. Here, we consider a simple change where we
redefine the probability term p; ; using our exact probability
(9) of a link in a simple graph on N nodes and L links,

didj (LS —d§ —d$+1) ..
G —d—d A DA dS L—di—d;+ 1) P # (20)
0, i=j.

pi,j =

With this change, we still only respect the degrees d; and d;,
but we additionally account for the fact that the graph must be
simple and contain exactly N nodes and L links. We define the
adjusted modularity 7 as

1 M X c
= 2L Z Z (@ij = Pij) Z L jec)s 21
k=1

i=1 j=1

which is the same as the original modularity formula (18)
except p; ; is replaced by p; ;.

As an example, we consider partitioning Zachary’s karate
club network [13]. In Appendix B, we explicitly calculate
the probability Pr[i ~ j],, .. 4, of a link conditioned on the
entire degree sequence of the karate club network, and we
verify that our probability term p; ; is more accurate than p; ;.
We define the modularity calculated using Pr[i ~ jl, 4
to be the true modularity

N N C
1 .
Mexact = i § § (ai,j —Pr[i~ ]](dl ,,,,, dN)) E l{i,jeCk}~
k=1

i=1 j=1
(22)

We consider two heuristic algorithms (Newman’s spectral
algorithm [14] and the Clauset-Newman-Moore greedy algo-
rithm [7]) and compare the differences when using Newman’s
modularity m, our adjusted modularity 77, and the true mod-
ularity mex,ct as the objective function. We also compare the
results with the optimal partitioning obtained through integer
linear programming (ILP) [15,16].

A summary of the modularity values of the clusters for the
different algorithms and objective functions is presented in
Table I. The table is sorted on the true modularity mexaer from

highest to lowest and our adjusted modularity 711 agrees with
the ordering. However, Newman’s modularity m considers the
clusters of Fig. 7(b) to have higher modularity than Fig. 6(a).
Our adjusted modularity 7 values are close to the true modu-
larity mexact, but there is a small error, because our probability
term p; ; takes only the degrees of node i and j into account.
When using integer linear programming to find the optimal
partitioning, the same clusters are found for all three objective
functions. The clusters are illustrated in Fig. 5 and have been
verified against other publications [17,18].

Figure 6 shows the partitioning of the karate club net-
work using Newman’s spectral algorithm [14]. As shown in
Fig. 6(a), using Newman’s modularity m yields the same
clusters as the true modularity 7ex,;. Compared to the op-
timal partitioning (Fig. 5), node 1 and node 12 have been
moved to the red cluster. When using the adjusted modularity
[Fig. 6(b)], there is only one difference with the optimal par-
titioning (Fig. 5): node 12 is placed in an isolated blue cluster.
As shown in Table I, all three modularity measures indicate
that the partitioning in Fig. 6(b) has higher modularity than
the partitioning in Fig. 6(a).

Figure 7 shows the partitioning of the karate club network
using the Clauset-Newman-Moore greedy modularity maxi-
mization algorithm [7] (as implemented in NetworkX [19]).
Figure 7(a) shows the clusters found when using Newman’s

®17
6
o1 w7
o5
12
025
1 22
®26
932 20 18
®28 /4298
©29 3 3
24 9 @14 4
30— —par 31
57 8
23 / 10
946 21

15

FIG. 5. Optimal partitioning of the karate club network found
using integer linear programming. The same partitions are found
when using Newman’s modularity m, our adjusted modularity 71, as
well as the true modularity mey,c.
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FIG. 6. Partitioning of the karate club network using Newman’s spectral algorithm [14] with different objective functions. (a) Newman’s
modularity m; same clusters as the true modularity mey, and (b) adjusted modularity 7.

modularity m. There are many differences compared to the
optimal partitioning (Fig. 5), most notably the absence of the
pink cluster. When using the adjusted modularity 7, a pink
cluster is still detected as shown in Fig. 7(b). Using the true
modularity mey,; yields the same clusters as the adjusted mod-
ularity 7. As shown in Table I, all three modularity measures
indicate that the partitioning in Fig. 7(b) has higher modularity
than the partitioning in Fig. 7(a).

VI. CONCLUSION

We have derived an exact formula (9) for the probability
Pr[i ~ j] that two nodes i and j are connected in a simple
random graph belonging to the class of Erdés-Rényi G(N, L)
random graphs. The expected number of links in the configu-
ration model E[q; ;],, is commonly used as an approximation
for the connection probability Pr [i ~ j]. We defined an error
factor € to quantify the difference between Ela; ;]-,, and
Pr[i ~ j], showing that E[a; ;] severely overestimates the
connection probability between two low degree nodes i and
J, while severely underestimating the connection probability
between a low degree node i and a high degree node j. We
show that for constant link density p, the error factor € is

o6
o1 o7
o5
°12
25 P
P &1
£ 20 18
= AN 13
24 993 14 4
30 34 3
5 33
23 10
16 21

(a)

scale invariant with respect to the relative degree k. In large
Erd6s-Rényi graphs, E[a; ;] becomes a good estimate for
Pr[i ~ j] because the variance of the relative degree k de-
creases as 0(1lv)'

Many real networks, however, do not belong to the class
of Erd6s-Rényi random graphs. We consider the application
of network partitioning using Newman’s modularity m, com-
pared with the adjusted modularity 7 in which the probability
of two nodes being connected is replaced by our formula.
Using the karate club network as an example, we showed
that our probability term p; ; (20) is a more accurate baseline
probability than the original probability term p; ; (19) in the
modularity formula.

We tested two heuristic algorithms for modularity max-
imization and compared the clusters found when using
Newman’s modularity m with the clusters found when using
our adjusted modularity 7. For both algorithms, we found
clusters with higher modularity when using our adjusted mod-
ularity 7 as the objective function. Although our probability
term p;; (20) is a little more complicated than the origi-
nal probability term p; ; (19), the computational complexity
hardly changes. Hence, we believe that it is worth replacing
(19) by (20) in the objective function for clustering.

®17
o6
o 11 7
o5
®12
@25 2
®26 AL
932 20 18
28 208
13
5 ®29 T 4
30 ) 34 31
57 33
23 10
19 /
16 15 21
(b)

FIG. 7. Partitioning of the karate club network using the Clauset-Newman-Moore greedy modularity maximization algorithm [7] with
different objective functions. (a) Newman’s modularity m and (b) adjusted modularity 71; same clusters as the true modularity meyac.
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APPENDIX A: DERIVATIONS
1. Checking whether the parameters are graphical

We derive the conditions under which a degree pair (d;, d;)
is graphical for a graph of N nodes and L links, meaning
there exists at least one simple graph G with the parameters
{N, L, (d;, d;)}, which implies

|GN.L.@.ap| = |GN.L.apini| + |GN.Lidayyini] > 0. (AD)

The degree d of any node in a simple graph G is
bounded by

0<d<N-1 (A2)

Since we are considering a degree pair (d;, d;), we must have
at least N > 2 nodes. We should also exclude the degree
pairs (0, N — 1) and (N — 1, 0) because degree d = 0 means
the graph is disconnected while degree d = N — 1 means the
graph is connected, which cannot occur at the same time.

Given a degree pair (d;, d;), we derive the minimum L_
and maximum L, number of links L,

L <L<L,. (A3)

There are d; links connected to node i and d; links connected
to node j. If min(d;, d;) > 0, the minimum number of links
L_ = d; + d; — 1 because we can place a link between node i
and node j. If min(d;, d;) = 0, then it is not possible to place
a link between node i and node j and the minimum number of

links is L_ = d; + d;. Hence, the minimum number of links
L_1is
di+dj—1 if min(d;,d;) >0
L = e ' (A4)
d,‘ + dj if mln(d,-, dj) =0.

We derive the maximum number of links L, in the same
way by considering the complement graph G°. In the com-
plement graph G€, there are L® = Ly,x — L links, node i has
degree df = (N — 1) — d;, and node j has degree d_]? = (N —
1) — d;. The minimum number of links L¢ in the complement
graph G° is

L df+d5 — 1
UL

if min (df,dS) >0
if min (df, d$) = 0.

1 J

(A5)

When the number of links in the graph G is maximal, L = L.,
the number of links in the complement graph G® is minimal,
L° =L°.Hence, L = L, — LS.

2. Constraints on parameters such that 0 < Pr[i ~ j] <1

During the derivation of (9), we assumed
|gN,L,(di,dj),i~j| > 0,

|ON L. (drd.inej| > 0, (A6)

TABLE II. All possible values of L and (d;, d;) for N =2 and
N = 3 nodes.

N L (. d;) Le (ds. dS) Prli ~ j]
2 0 (0,0) 1 (1,1 0
2 1 (1,1 0 (0,0) 1
3 0 (0,0) 3 2.2) 0
3 1 ,1) 2 2.1 0
3 1 (1,1) 2 (1,1) 1
3 2 (1,1) 1 (1,1 0
3 2 (1,2) 1 (1,0) 1
3 3 (2.2) 0 (0,0) 1

which is a stricter condition than graphicality (Al) and ex-
cludes parameters {N, L, (d;, d;)}, which yield Pr[i ~ j] =0
or Pr[i ~ j] = 1. We derive the constraints on the parameters
{N, L, (d;, d;)} in order to satisfy (A6).

A node with degree d = 0 is not connected to any other
node, which implies Pr[i ~ j]=0. A node with degree
d = N — 1 is connected to every other node, which implies
Pr[i ~ j] = 1. To satisfy (A6), the degree d must be strictly
bounded by

0<d<N-1. (A7)

The bound (A7) implies that min(d;,d;) >0 and
min(djc.,djc.) > 0. From (A4) and (AS5), it follows that the
minimum L_ and maximum L, number of links L is

L_ =di+dj — 1,
Ly = Lpax — (df +d§ —1).

If the number of links is minimal, L = L_, then Pr[i ~ j] =
1. If the number of links is maximal, L =L,, then
Pr[i ~ j] = 0. To satisfy (A6), the number of links must be
strictly bounded by

(A8)

L. <L<L,. (A9)

The inequality (A9) cannot be satisfied for N =2 and N =
3 nodes. Hence, the number of nodes N is at least

N > 4. (A10)

Indeed, the constraints (A7), (A9), and (A10) ensure the bino-
mial coefficients in (7) and (8) are always valid.

We verify that our expression (9) holds for all graphical
parameters {N, L, (d;, d;)}. In the main text, we have already
shown that our expression correctly yields Pr[i ~ j]=0
when d = 0 or L = L, ; we have also shown that our expres-
sion correctly yields Pr[i ~ j]=1whend =N —1or L =
L_. In Table II, we summarize all graphical values of L and
(d;, dj) for N = 2 and N = 3 nodes; substituting these values
into (9) yields the correct probability. Hence, our expression
(9) for the probability Pr[i ~ j] holds for all Erd6s-Rényi
G(N, L) graphs on N > 2 nodes.

3. Simplifying binomial coefficients

The binomial coefficient (f) is given by

n\ n!
<r> o rl(n—r)’

(A11)

044317-7



BRIAN L. CHANG AND PIET VAN MIEGHEM

PHYSICAL REVIEW E 111, 044317 (2025)

For r > 0, it follows that

() —-Dla—r+D! n—r+1

= Al2
(rfl) rl'(n—r)! r (Al2)
For r < n, it follows that
" Dn—r—-1! 1
(;) _ DI D_ r4 1 (A13)
(1) rl(n—r)! n—r
The probability Pr [i ~ j] is given by
g )i
Prli~ j]= ‘ ML @dy), ]’
|Gn.Ldrdypi~i| + |GN.Lddyyins |
1
. (A14)
|gN,L,(d,v.d]-),io0j)
14 :
|gN,L.(d,-.d/).i~j‘

Using the identities (A12) and (A13), we simplify the
second denominator term

v zaapins]  Ca )OO0

|Gvaapinil  GID Gl
_(N—1—d)(N—1—-d))
N d; d;

y (L—di—d;j+1)
(Lmax_L_Z(N_2)+di+dj_ 1)
_ dicdjc-(L—di —d;j+1)
didj(Le —df —dS +1)

, (A15)

where d* = (N — 1) —d and L* = Ly,x — L.

APPENDIX B: PROBABILITY OF A LINK CONDITIONED
ON THE DEGREE SEQUENCE

Consider a simple graph G with degree sequence
(dy,...,dy) on N nodes with L links. The probability that

J

ALGORITHM 1. NUMGRAPHSWITHDEGSEQUENCE. Count the
number of labeled graphs with the degree sequence (d, ..., dy).
We remove the node with the smallest degree d from the de-
gree sequence; we iterate over all possible ways that d links can
be connected to the remaining nodes N — 1; for each of the possible
ways we compute the number of graphs of the corresponding degree
sequence recursively and sum them.

Inputs:

Dy = (d,, ..
Outputs:

¢ = |G,....ay)|: number of labeled graphs with degree sequence Dy
NUMGRAPHSWITHDEGSEQUENCE(Dy ):

., dy): degree sequence of N nodes

1:if N = 2 then

2: if Dy = (0,0)or Dy = (1, 1) then
3: return 1

4:  else

5 return 0

6 end if

7: end if

8: d < smallest degree in Dy

9: Dy_; < COPY(Dy) and delete d from Dy _;

10:c <0

11: for each way to choose d indexes from N — 1 total indexes do

12: Dj,_, < COPY(Dy_,)

13:  subtract 1 from the elements at the corresponding indexes
in Dy_,

14: ¢ < ¢ + NUMGRAPHSWITHDEGSEQUENCE(D},_,)

15: end for

16: return ¢

a pair of nodes i and j are connected if connections are made
at random while respecting all node degrees is given by

Prli~ jlg, (BI)

i) G,y
where G4, ..4,) is the set of all labeled graphs with degree
sequence (dy, ..., dy) and G, .. ay),i~j i the subset of those
graphs in which there is a link between node i and node j. Un-
fortunately, there is no closed-form solution for (B1); an exact
numerical calculation is possible by counting the number of
graphs with a given degree sequence but this quickly becomes
intractable as the network size increases.

The karate club network contains N = 34 nodes and L =
78 links. The degree sequence of the karate club network
(sorted from smallest to largest) is

(1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,6,6,9, 10, 12, 16, 17).

The total number of graphs with the same degree sequence as the karate club network is

|Gq,

.....

which is approximately 2.74 x 10°%2. We compute the number
of graphs with a given degree sequence using a recursive
algorithm, which is described in [20]; the pseudocode is given
in Algorithm 1. NUMGRAPHSWITHDEGSEQUENCE. As in [20],
we make use of dynamic programming in our solution, which

doy| = 27425053479 717264361406 133594 918792062 198 598 516 534 680,

(

we implemented in Python; the computation took 1.7 h using
an Intel i7-1265U CPU at 1.80 GHz and 16 GB of RAM on a
machine running Windows 10.

In Table III, we computed the number of graphs
dy),i~j| in which a node pair (i, j) with degrees (d;, d;)

.....
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ALGORITHM 2. NUMGRAPHSWHERECONNECTED. Count the number of labeled graphs with the degree
sequence (dy, ..., dy) in which a pair of nodes i and j is connected. We remove node i and node j from the
degree sequence; we iterate over all possible ways that node i and node j can be connected to the remaining
N — 2 nodes (while also being connected to each other); for each of the possible ways we compute the number
of graphs of the corresponding degree sequence (using Algorithm 1. NUMGRAPHSWITHDEGSEQUENCE) and sum
them.

Inputs:

Dy = (d, ..., dy): degree sequence of N nodes

i: index of node

Jj: index of node

Outputs:

¢ = |G,....dy).i~j|: number of labeled graphs with degree sequence Dy in which nodes i and j are connected
NUMGRAPHSWHERECONNECTED(Dy, i, j):

1: d; < ith element of Dy

2:d; < jth element of Dy

3: Dy_, < COPY(Dy) and delete ith and jth elements

4:c <0

5: for each way to choose d; — 1 indexes from N — 2 total indexes do

6: Djy_, < COPY(Dy_7)

7:  subtract 1 from the elements at the corresponding indexes in D},_,
8:  for each way to choose d; — 1 indexes from N — 2 total indexes do

9: Dy,_, < copY(Dy_,)
10: subtract 1 from the elements at the corresponding indexes in Dj,_,
11: ¢ < ¢ + NUMGRAPHSWITHDEGSEQUENCE(DY, _,)
12:  end for
13: end for
14: return c
Node j Node j
1'13579111315171921232527293133 135 7 91113151719 2123 25 27 29 31 33 o
3
5
; 0.4
9
1 -02
13
15
o 17 ()
£ o0 K 00
21
23 --0.2 --0.2
25
27
29 - -0.4 -04
31- 31-
- —
-0.6 -0.6
(a) (b)
FIG. 8. Heatmaps of the error factor € comparing the modularity probability term with the probability of a link Prli ~ jly, 4
conditioned on the degree sequence (dj, . .., dy) of the karate club network. (a) Original probability term p; ; and (b) our probability term p; ;.
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TABLE III. Number of graphs |G, ,....ay),i~j] in Which a node pair (i, j) with degrees (d;, d;) is connected for degree sequence (d, . . ., dy)
of the karate club network.
d d; 1Gdy....dw i~ Exact |G, .....dy),i~j]
1 2 2.03 x 10% 203465676733748493823662233969243882674397849632503
1 3 3.35 x 10%° 335138986101163740931904899352277411443028413324199
1 4 4.90 x 10% 490353935594975119965653979099935224307525406605949
1 5 6.72 x 10% 671798464251910119246043264689493290899435959443732
1 6 8.82 x 10 881775728102236344291700215299113498989196381473411
1 9 1.69 x 10°! 1685767821671073255424245879820309811859665373689287
1 10 2.01 x 10%! 2009360839076345283569699839619042763673439227858611
1 12 2.75 x 10%! 2745894612135793202070993415145338189132399644229636
1 16 4.69 x 10°! 46938340431893117006577096440290536571463706705064 18
1 17 5.32 x 10%! 5320169340436471275916316747263382245788323693434289
2 2 4.45 x 10 445095241323276849325505021982568939186793845378089
2 3 7.30 x 10% 729993800191351101921545006288111082132453924834841
2 4 1.06 x 10°! 1062625740607953717497882955963886053628936388499767
2 5 1.45 x 10! 1447029791830398928611895717488337261040603223612944
2 6 1.89 x 10°! 1885812392252473208556921463056088161291368266224879
2 9 3.50 x 10%! 3503822708470880559350374909649443735331229771660844
2 10 4.13 x 10%! 4126848764640108113550634133633223638559702008285383
2 12 5.48 x 10%! 5484141483525387404861315735936476347199877170906072
2 16 8.66 x 10°! 8660536347009646891373628362136647616756600322414654
2 17 9.55 x 10°! 9551908161030016647131503742597688591734563373092776
3 3 1.19 x 107! 1191100267530147667163656341126617260023961562192674
3 4 1.72 x 10°! 1723260233252800426308130989713762996113199740244059
3 5 2.33 x 10%! 2329755965823245953660594852275146243362364299765816
3 6 3.01 x 10°! 3010643248436718662572873216626434985406691781212357
3 9 5.41 x 103! 5412184657175496734417360391506052538311807149751084
3 10 6.29 x 10°! 6290269332389720899473100026192217555390251696731113
3 12 8.11 x 10> 8113252617344239607547241262399602288977734808710341
3 16 1.19 x 10% 11913464836517078749571110295320286766033092695990615
3 17 1.29 x 1072 12875301076008515151346090206822744745283404897763551
4 4 2.48 x 10°! 2475151903476364527391202752444586762144693552727671
4 5 3.32 x 10%! 3317891880575692998052925905399916001422120364243917
4 6 4.25 x 10°! 4245442323368255490031478310240936599183578949432001
4 9 7.35 x 10> 735411276756693832850842249066060383793837525407601 1
4 10 8.43 x 107! 8426853024659940838269078073900290341576626398513687
4 12 1.05 x 1072 10547349953441384694048223289366792689090031840690176
4 16 1.45 x 10°? 14548379947369957807973371573545753151931270128921983
4 17 1.55 x 10% 15484399938186154595356538420311913423996079567135015
5 5 4.40 x 10°! 4403752283515778516415915671623152655548456766855770
5 6 5.57 x 10%! 5571547350930337620783508797670037616624679085614632
5 9 9.27 x 10%! 9270725926130121978978194136851504370216110261045575
5 10 1.05 x 1072 10471520360091141637141071203509697349573503047214017
5 12 1.27 x 10°? 12738015252748238951135745052151472933904128356968663
5 16 1.67 x 10% 16675995748522801050951400619535802050536743186378709
5 17 1.75 x 1072 17543397589421853870167387320847526431363256622881118
6 6 6.96 x 10°! 6960677624784803516885235745505914514304196857099457
6 9 1.11 x 10% 11106196308116579707096929773034718827131614300369818
6 10 1.24 x 107 12372093838941429204325096324574595143460358474865705
6 12 1.47 x 10> 14665312099435453619864891131232377231066457887456716
6 16 1.84 x 10% 18392663450306698558578728765841803301483760933182692
6 17 1.92 x 107 19176510030218322145291447966192917725135293695576568
9 10 1.69 x 10°? 16926346855540913249381569674429189748377803200410354
9 12 1.89 x 10% 18926054909459425851679100828077069467450466204573390
9 16 2.18 x 10% 21785310643451594830019076439869278886772046610315603
9 17 2.23 x 10”2 22337596351074550184613946276305510534271223964715271
10 12 1.99 x 10% 19928901936845786888052921954340319425021826688267038
10 16 2.25 x 10% 22518715584627096475819129914161964042411938444298200
10 17 2.30 x 10% 23010390269587058721654564236438614900901760850531123
12 16 2.36 x 10% 23636658413130309966263997511496487984095611768926346

044317-10



MODULARITY WITH A MORE ACCURATE BASELINE ..

PHYSICAL REVIEW E 111, 044317 (2025)

TABLE IIl. (Continued.)

Exact |G, ....dy),i~j]

d; d; 1Gd,....dy i~
12 17 2.40 x 10
16 17 2.53 x 10

24029290184427225072622311605147506729232328270230435
25316054324467781389349761422153512378065076848970020

is connected; the pseudocode is given in Algorithm 2: NUM-
GRAPHSWHERECONNECTED. The computation took 11.3 h
(using the same machine). The values in Table III are exact,
which can be easily verified by checking the sum

N N
Z Z ’g(d, ..... dN),i~j|=2L|g(d1 ..... - (B2)

i=1 j=1j#i

We compare the probability term p;; of the modular-
ity formula, given in (19), with the connection probability
Pr[i ~ jly,. . .4y conditioned on the degrees of all nodes.
Similar to Sec. III, we define an error factor € to quantify the

difference between p; ; and Pr[i ~ jl, 4y

Dij . S
m -1 if Pi,j > Pr [l ]](d] _____ dy)
_ Pr[i~jla ) .
TN i py <Pl B3
0 if pij=Prli~ jly, 4

We do the same for the probability term p; ; of our adjusted
modularity, given in (20). In Fig. 8(a), we plot the heatmap of
the error factor for the original probability term p; ;, and in
Fig. 8(b) our probability term p; ;. As seen in the figure, our
probability term p; ; is considerably more accurate than p;
when applied to a network that is not Erd6s-Rényi.
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