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Abstract

Building on the work of Almasan et al. [1], we propose a continuous-time Markov model for

human contact dynamics denoted as Continuous Random Walkers Induced temporal Graph model

(CRWIG). In CRWIG, M walkers move randomly and independently of each other on a Markov

graph with N nodes in continuous time. If walkers are in the same state (node of the Markov

graph) at time t, a link is created between them in their temporal contact graph G(t), where each

walker corresponds to one of the M nodes. We define the exact Markov governing equation that

describes the movement of the ensemble of M walkers. We investigate the consequences of the

time discretization of CRWIG. We prove that CRWIG is characterized by exponential decay of the

initial condition and exponentially distributed inter-meeting times of the walkers. We investigate

two special cases of CRWIG and derive analytical results supported by simulations. We extend

the model to allow for non-exponential sojourn times for the single walkers. The non-Markovian

model extension of CRWIG is able to reproduce empirical properties of human mobility observed

on data: arbitrary flight length distribution, arbitrary pause-time distribution and inter-meeting

time distributions that are power-law with an exponential tail.

1 Introduction

In the last few decades, the increasing availability of geographical data of human movement has

boosted human mobility analysis/studies. Various works focus on the spatial and temporal properties

of human mobility patterns [2–6], trying to create models that are able to reproduce empirical mobility

patterns or population flows [7]. One driver to understand and model human mobility is the study of

epidemic processes. During the COVID-19 pandemic, the quarantining and movement of individuals

had a large impact on the spreading process of the virus [8,9]. Yet, nearly all models to compute and

predict an epidemic are based on static graphs, rather than temporal contact graphs.

Following the ideas in [1], we propose the Continuous Random Walkers Induced temporal Graph

(CRWIG) model, which employs random walkers on a finite graph to generate temporal contact graphs.

In CRWIG, M walkers move randomly and independently of each other on a weighted and directed

Markov graph with N nodes in continuous time. Each random walker m in CRWIG executes an

instance of a human mobility process, defined by its walker policy, the N ×N infinitesimal generator

Qm. CRWIG then assumes the principle of co-location contacts [9,10]: if walkers are in the same state
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(node of the Markov graph) at time t, a link is created between them in the temporal contact graph

G(t). The contact graph G(t) has M nodes, each corresponding to a walker (see also Figure 1 in [1]).

The “Markov graph” on which the M walkers move is a “process graph”, not only e.g. a physical

city map. CRWIG is therefore able to abstract the geographical space in which humans move and

each node of the Markov graph can represent any location/event/activity, whose spatial scale defines

a contact. The identification of the proper scales on which humans move [11] and the choice of nodes

in the Markov graph is thus very important, otherwise the co-location assumption is often not correct.

Contrary to [1], which studies discrete-time RWIG (DRWIG), we focus on the continuous-time

Markov process of the ensemble of M walkers. We combine the states of all walkers together and

considers the entire M -walker ensemble as a whole, instead of considering the individual walkers

separately. The state space of the process is thus NM dimensional as each walker can potentially be

in any of the N states of the Markov graph. The reasons to depart from the discrete time in [1] are the

following: (1) continuous-time models are closer to the “physical” reality and provide the foundations

of discrete time models, as discussed in Section 3; (2) discrete time models become computationally

unfeasible if needed at high resolution while the continuous counterpart provides a reliable and efficient

framework; (3) many empirical time properties of human mobility, such as pause-times of walkers,

inter-meeting times of pairs of walkers and the return-time to a hub are defined in continuous-time [2–6]

and can easily be encoded in continuous time models (see Sec. 5.3).

In Section 2, we define the CRWIG multi-walker mobility process and discuss the structure of the

NM -dimensional state space. In Section 3, we investigate how the discrete model presented in [1]

is related to the continuous CRWIG model. Section 4 extends the results, obtained for the discrete

DRWIG in [1], to the continuous-time framework and we prove new results for CRWIG and DRWIG:

the exponential decay of the influence of the initial state and the exponential tail of the inter-meeting

time distribution. In Section 5, we verify some additional analytical results with simulations and show

that, after extending CRWIG to allow for arbitrary sojourn time distributions and therefore making it

non-Markovian, we can find tail distributions in agreement with observations/measurements of flight

lengths, pause times and inter-meeting times. We summarize our findings and discuss our results in

Section 6.

2 Continuous-time RWIG Markov process

In this section, we define the CRWIG process at the ensemble level. Since the human mobility process

is a continuous-time process in CRWIG, any walker can change location (can transition) at any time

t. Between transitions, the walkers stay in the same state. This means that the contact graph G(t)

remains fixed for some time, before changing due to a walker transition and then remains fixed for

some time again. In a continuous-time Markov process the probability of two events happening at the

same time is zero and therefore the process stays in each state for some non-zero amount of time. The

(random) time that a continuous-time (Markov) process stays in the same state, before changing to

another one, is called a sojourn time. In CRWIG three sojourn times have to be distinguished. First,

there are the sojourn times τm of each walker m, which correspond to the time that walker m stays

in the same state. Second, there is the sojourn time τ of the M -walker ensemble, which corresponds

to the time between two subsequent transitions of any of the m walkers. The multi-walker process,
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which considers the M -walker ensemble (i.e. the location of all M walkers at the same time), changes

state after any walker transition. Lastly, there is the sojourn time τG of the contact graph G(t),

which corresponds to the time between changes in the contact network. The single- and multi-walker

sojourn times are shown in Figure 1. Figure 1 shows the timelines of 3 walkers as horizontal lines.

The black dots on the lines indicate transitions. The sojourn times of the individual walker mobility

processes τm are shown in red, while the sojourn times τ of the walker ensemble are shown in blue. In

most cases τ = τG, unless a walker moves from a location/state with no other walkers to a different

location/state with no other walkers. In Figure 1 this can be observed at t4. Only in that case the

contact graph G(t) does not change after a walker transition. Because the sojourn times τG of the

contact graph G(t) are related to the sojourn times τ of the ensemble of walkers and not to those of

the individual walkers we will investigate the multi-walker process of the walker ensemble, rather than

the individual single-walker processes.

M
ar
ko
v
gr
ap

h
C
on

ta
ct

gr
ap

h

1 2 3

2 3

1

2 3

1

2 3

1

3

2 1

2 3

1

1 3

2

2 3

1

1 3

2

2 3

1

1

2 3

2 3

1 time t

Walker 1

Walker 2

Walker 3

t1 t2 t3 t4 t5

τ1

τ2

τ3

τ1

τ2

τ τ τ τ τ

Figure 1: The transitions of 3 walkers in the CRWIG model and their sojourn times. The top three

horizontal lines are the timelines of the three walkers, where dots indicate the walker changing state.

In the middle the location of the three walkers in the Markov graph is shown and at the bottom the

contact graph that follows after the co-location assumption. The red arrows indicate the sojourn times

τm of the individual walkers, while the blue arrows indicate the sojourn times τ of the multi-walker

process, which correspond to the times between transitions of any walker.

2.1 The single- and multi-walker mobility processes

Consider a set N = {1, 2, ..., N} of N labeled nodes/states. We define a continuous-time Markovian

random walk process generated by Q, a N × N infinitesimal generator [12], whose elements Qij

represent the rates at which the walker moves from node i to node j, where j ̸= i. The infinitesimal

generator Q assigns to the walker a transition rate from any node i to any other node j in N and is

called the continuous-time walker policy. Just as the transition matrix P in a discrete-time mobility

process, the infinitesimal generator Q models the human mobility process and describes how the
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walkers move between states in continuous time.

Let us now consider the process in which M independent random walkers move between the nodes

in N . The infinitesimal generator Qm of walker m is equal to minus the Laplacian of a (possibly

weighted and directed) graph Gm, whose node set is N (see, for example, [12,13]). The single-walker

Markov graph Gm describes the topology on which the m-th walker moves, determined by its policy

Qm. The single-walker Markov graph Gm has adjacency matrix Am, whose elements (Am)ij are equal

to the rate Qij when i ̸= j and are zero when i = j. If all M walkers have the same policy Qm = Q,

CRWIG reduces to a meta-population model (equivalent to, for example, the definition in [14, sec.

5.8]). We argue that DRWIG and CRWIG are more general than meta-population models because by

allowing heterogeneous policies they no longer describe population flows. We discuss how to restrict

the walker policies to an underlying topology in Appendix B.

As illustrated in Figure 1 with the contact graph sojourn time τG, the individual walker processes

do not fully characterize the contact graph evolution. We have to consider the multi-walker process,

which describes the mobility of all walkers together. Any individual walker m can be in any of the N

nodes of its single-walker Markov graph Gm. The state of the M -walker ensemble as a whole can be

every possible way in which the M walkers can be distributed over the N states of the node set N .

For example, they all can be in state 1, 2, . . . , N . Or, M − 1 walkers can be in state 1 and the m-th

walker in another state. Each possible distribution of M walkers over the N states in the set N creates

a particular state in the M -walker process. In total, there are NM such states in the multi-walker

mobility process.

Consider the state of the M -walker ensemble, where walker 1 is in state x1 ∈ N , walker 2 is in state

x2 ∈ N and so on. As in [15,16], we will write the state of the ensemble as xM . . . x2x1. If we interpret

the state xM . . . x2x1 as a base N number, we can enumerate the states of the ensemble from 1 through

NM with the following representation:

i = 1 +
M∑

m=1

(xm(i)− 1)Nm−1, (1)

where xm(i) ∈ {1, ..., N} is the single-walker state variable, indicating in which of the N labeled nodes

the walker m is found in state i. Compared with the base N number, we add 1 such that the states

are numbered from 1 and subtract (xm(i) − 1) because the elements of N are numbered from 1. As

an example, consider M = 4 walkers on a node set of size N = 5:

x4x3x2x1 = 2135 −→ i = 1 + (4 · 50 + 2 · 51 + 0 · 52 + 1 · 53) = 140.

In this case, the single-walker state variable x1(140) = 5, x2(140) = 3, x3(140) = 1 and x4(140) = 2,

which means that in ensemble state i = 140, walker 1 is in state 5, walker 2 is in state 3, walker 3 is

in state 1 and walker 4 is in state 2.

The M -walker process {X(t), t ∈ [0,∞)}, describing the transitions of the M -walker ensemble is

itself a Markov process, with infinitesimal generator Q, which we describe explicitly below. The M -

walker process is a combination of all single-walker Markov processes. From each ensemble state i, all

single-walker transitions from xm(i) = k to another state l ∈ N , which have rate (Qm)kl, correspond

to a transition of the multi-walker process out of the multi-walker state i. This transition will go

4



from i = xM (i) . . . xm+1(i) k xm−1(i) . . . x1(i) to j = xM (i) . . . xm+1(i) l xm−1(i) . . . x1(i) and has

rate (Qm)kl. The numbering in (1) allows us to define the elements of the multi-walker infinitesimal

generator Q according to these transitions:

Qij =


(Qm)pq if i = k + (p− 1)Nm−1, j = k + (q − 1)Nm−1,

p, q = 1, 2, . . . , N and p ̸= q∑M
m=1(Qm)xm(i),xm(j) if j = i,

0 otherwise.

(2)

The infinitesimal generator Q describes a random walk on the corresponding multi-walker Markov

graph G, whose nodes are the NM states of the multi-walker process. The human mobility process

with M walkers, each with its own policy Qm, is completely equivalent to a single walker moving on

the multi-walker Markov graph G. The structure of the ensemble Markov graph G will depend on the

single-walker Markov graphs Gm induced by the single-walker policies Qm, as illustrated in Figure 2.

Figure 2 shows a CRWIG process with two walkers. On the left, both single-walker Markov graphs

G1 (shown in red) and G2 (shown in green) are built with the same N = 5 nodes/states/locations

{1, 2, 3, 4, 5} = N , here shown as locations on a map of the Netherlands. In the middle, the multi-

walker Markov graph G is shown. The graph G is a multi-layered graph consisting of N = 5 layers

(green circles) each containing the single-walker Markov graph G1. The intra-layer links of the multi-

layered graph correspond to movements of walker 1 (the second number of the state changes while

the first stays the same). The inter-layer links of the multi-layered graph correspond to movements

of walker 2 (the first number of the state changes while the second stays the same). The detailed

view on the right shows the multi-layered structure of the multi-walker Markov graph and shows the

structure of the inter-layer links in particular.

5



1
2

3

5

4

15

12 14

13

11

35

32 34

33

31

55

5452

53

51

25

2422

23

21

15

12

13

11

45

4442

43

41

35

3432

33

31

14

𝐺ଶ

𝐺ଵ

Figure 2: Left : the Markov graphs G1 and G2 of two single-walker processes are shown. The node

set N contains 5 nodes/states corresponding to 5 locations on the map [17]. Walker 1 is currently

in state 4 (indicated with the red dot in G1) and walker 2 is currently in state 3 (indicated with the

green dot in G2). Both walkers have only one possible transition from their current state: walker 1

moves from 4 to 5 and walker 2 from 3 to 1. These transitions are indicated with blue arrows with a

bicycle and train symbol, respectively. Middle and right : the multi-walker Markov graph is displayed,

where each ensemble state i is indicated with x2(i)x1(i), which denotes the location of both walkers

in that multi-walker state. The multi-walker Markov graph consists of N = 5 red copies of G1, each

one corresponding to a node in the node set (map) N . Each copy of G1 is a layer (green circle) of

the multi-walker Markov graph, which is a multi-layer graph. Each green circle (layer) corresponds

to a position x2(i) of walker 2, which is the same for all states in the layer. The N = 5 layers are

connected according to the structure of G2. The transitions in the multi-walker process corresponding

to movements of walker 1 are intra-layer links (shown in red), while the transitions corresponding to

movements of walker 2 are inter-layer links (shown in green). The green link between layers i and j

(corresponding to single-walker states i and j) are a simplified visualization of the transitions between

the states ik, with k ∈ N and jk if (G2)ij ̸= 0. The detailed view on the right explicitly shows the

inter-layer links. The intra-layer transitions between nodes belonging to the same layer have the shape

of G1, while the inter-layer transitions have the shape of G2. The state shown on the left (state 34)

is indicated with a star in the multi-walker Markov graph, and the transitions shown on the left are

also indicated with their respective symbols in both the central figure and the detailed view.

To describe the evolution of the M -walker process X(t), we define the single-walker state vectors

sm(t), with elements (sm(t))i = Pr[Xm(t) = i], where Xm(t) is the m-th single walker process and

i ∈ N . Their evolution is described by the Chapman-Kolmogorov equation [12, eq. (10.19)]:

sm(t) = sm(0)eQmt. (3)
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Equation (3) describes the probability distribution of the location of walker m at all times t. Similarly,

we define the ensemble (or M -walker) state vector s(t), with elements (s(t))i = Pr[X(t) = i], where i

is one of the NM ensemble states. The evolution of s(t) is then given by:

s(t) = s(0)eQt. (4)

Due to the independence of the random walkers, we can write

s(t)i = Pr[X(t) = i] =
M∏

m=1

Pr[Xm(t) = xm(i)] =
M∏

m=1

(sm(t))xm(i) =
M∏

m=1

(
sm(0)eQmt

)
xm(i)

. (5)

2.2 The infinitesimal generator Q and the adjacency matrix A of the Markov

graph G

In this section, we derive explicit formulas for the multi-walker infinitesimal generator Q and the

adjacency matrix A of its Markov graph G as functions of the single-walker policies Qm and the

single-walker Markov graph adjacency matrices Am, respectively. We add, iteratively, the M walkers

to the ensemble one by one, starting with the single-walker process of walker 1. Then, we add the

second walker resulting in the 2-walker infinitesimal generator Q2, that describes the ensemble of

walkers 1 and 2. Next, we add the third walker and obtain the 3-walker infinitesimal generator Q3,

describing the ensemble of walkers 1, 2 and 3 and so on, until all walkers are added and we arrive at

the infinitesimal generator QM = Q of the M -walker ensemble.

The iterative construction of the multi-walker infinitesimal generator Q is based on the multi-

layered structure of its Markov graph G, which is illustrated in Figure 2 for M = 2 walkers. Consider

an M -walker CRWIG process. We define the sequence of infinitesimal generators {Qm}Mm=1 = {Q1 =

Q1,Q2, . . . ,Qm, . . .QM−1,QM = Q} as the infinitesimal generators of the CRWIG processes consid-

ering only the first m walkers. These infinitesimal generators Qm each have a corresponding Markov

graph Gm, which has adjacency matrix Am. We emphasize the subtle difference between the symbols

for the m-walker infinitesimal generator Qm and the single-walker policy Qm as well as the subtle

difference between the symbols for the m-walker Markov graph adjacency matrix Am and the single-

walker Markov graph adjacency matrix Am. The m-walker Markov graphs Gm have a multi-layered

structure. Recall that links in a Markov graph correspond to transitions in the process. The structure

of the Markov graph Gm (and in particular GM = G) is that of N layers that contain the (m−1)-walker

Markov graph Gm−1. Each layer i corresponds to walker m being in state i ∈ N . Intra-layer links are

transitions of the other m−1 walkers, all given by Gm−1. The inter-layer transitions have the shape of

the mth-walker single-walker policy Gm, where layers i and j are connected if and only if (Am)ij ̸= 0.

The connections between layers (inter-layer links) have the shape of the identity matrix: between

layers only those nodes that are the same state of Gm−1 can be connected in Gm. The structure of the

adjacency matrix of the m-walker Markov graph Am is:

Am =


Am−1 I(Am)1,2 · · · I(Am)1,N

I(Am)2,1 Am−1 · · · I(Am)2,N
...

...
. . .

...

I(Am)N,1 I(Am)N,2 · · · Am−1

 , (6)
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where I is shorthand for the Nm−1 ×Nm−1 identity matrix. The coordinates i and j of each block in

the block matrix representation correspond to the single-walker state of walker m. For example: the

block (1, 1), which is equal to Am−1, describes the transitions between ensemble-states where walker

m is in state 1. This block and all other diagonal blocks describe intra-layer transitions. Conversely,

the block (1, 2), which is equal to I(Am)1,2 describes the transitions from ensemble-states where walker

m is in state 1, to the ensemble-states where walker m is in state 2. This block and all other off-

diagonal blocks describe inter-layer transitions. The element (Am)i,j connects layers i and j if walker

m can transition from single-walker state i to single-walker state j, because it is zero otherwise. The

identity I links only those ensemble-states from the different layers where no walkers except walker m

transition. As an example, we consider again the 2-walker system from Figure 2. The Markov graphs

are given by:

A1 =


0 1 1 0 1

1 0 0 0 0

1 0 0 0 0

0 0 0 0 1

1 0 0 1 0

 , A2 =


0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

 ,A =


A1 I5 I5 I5 I5

I5 A1 0 0 0

I5 0 A1 0 0

I5 0 0 A1 0

I5 0 0 0 A1

 .

In this example, the structure in (6) can be observed: the identity blocks in A have the shape of A2

(inter-layer, green in Figure 2), while the diagonal blocks are A1 (intra-layer, red in Figure 2). In

Appendix C, we give some additional explanation why this construction retains our enumeration (1)

at all steps.

We introduce the Kronecker sum ⊕, which is an operator on a n × n matrix A and an m × m

matrix B defined as: A⊕B = A⊗ Im + In ⊗B, where Ik is the k× k identity matrix and ⊗ indicates

the Kronecker product [18, section B.13]. The Kronecker sum allows us to write (6) in a more compact

way:

Am = IN ⊗Am−1 +Am ⊗ I = Am ⊕Am−1, (7)

where IN is the N ×N identity matrix and I represents the Nm−1×Nm−1 identity matrix. Since the

diagonal of Am is zero for all single-walker Markov graphs, the Am ⊗ I term does not contribute to

the diagonal.

Since the structure of the ensemble Markov graph A and the ensemble infinitesimal generator Q
are similar, we can build Q iteratively in an analogous way

Qm = Qm ⊕Qm−1 =


Qm−1 + I(Qm)1,1 I(Qm)1,2 · · · I(Qm)1,N

I(Qm)2,1 Qm−1 + I(Qm)2,2 · · · I(Qm)2,N
...

...
. . .

...

I(Qm)N,1 I(Qm)N,2 · · · Qm−1 + I(Qm)N,N

 . (8)

This means that the closed form of A and Q can be written as

A =

1⊕
m=M

Am, Q =

1⊕
m=M

Qm, (9)
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where the Kronecker sums are in reverse order: QM⊕QM−1⊕· · ·⊕Q1, due to our choice of enumeration

in (1).

In Appendix D we show that the adjacency matrix A and the infinitesimal generator Q can be

reformulated as rank-2M tensors in the R

2M times︷ ︸︸ ︷
N ×N × · · · ×N space, which could lead to computational

advantages.

3 Discretization of the continuous-time RWIG model

We are interested in the differences between CRWIG and the discrete-time RWIG model from [1]

(DRWIG). Because the DRWIG contact graph G[k] is only defined at discrete times k = 1, 2, . . . , the

walker policies are transition probability matrices Pm instead of infinitesimal generators Qm. Each

walker m transitions from a state i ∈ N at time k to a state j ∈ N at time k + 1 with probability

(Pm)ij . The DRWIG model explicitly allows multiple walkers to transition in the same timestep

from k to k + 1. This is the first fundamental difference between DRWIG and CRWIG, which we

illustrate with an example. Assume the strongest possible equivalence between the two models: for

some time-step ∆t we have that at all discrete times G[k] = G(k∆t) and all walkers are in the same

location, i.e. the processes are in the same ensemble state at every time where the discrete-time model

is defined. Consider the following case, where N = 2,M = 2 and walker 1 is in location 1, while

walker 2 is in location 2 at time 0. Then at time k = 1, the walkers have switched places. This means

that in DRWIG the contact graphs G[0] = G[1] are equal to the empty graph, implying no contacts

happened between the walkers. In CRWIG however, because both walkers transition at the same time

with probability zero, one walker must move before the other guaranteeing that there is at least some

non-zero time between t = 0 and t = ∆t that the walkers are in the same location.

We find another fundamental difference between the models by analyzing the discretization of

CRWIG.

3.1 Comparison of discretized processes

We investigate the relation between the CRWIG model in Section 2.1 and the DRWIG model in [1].

Therefore, we will discretize the continuous-time model in multiple ways and investigate the differ-

ences. Where continuous-time Markov processes are completely defined by their infinitesimal genera-

tor, discrete-time Markov processes are completely defined by their transition probability matrix.

Given an infinitesimal generator Q of a Markov process {W (t), t ≥ 0}, the exact transition prob-

ability matrix P (∆t) of Q over an interval with length ∆t, follows from the Chapman-Kolmogorov

equation [12]:

P (∆t) = eQ∆t. (10)

This exact transition probability matrix P (∆t) describes a discrete-time Markov process {Wk(∆t), k =

1, 2, . . . } such that W (k∆t) = Wk(∆t) in distribution if W (0) = W0(∆t). In particular, the M -

walker infinitesimal generator Q is exactly described over discrete steps of size ∆t by the multi-walker

transition probability matrix P(∆t) given by

P(∆t) = eQ∆t (11)
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and the single-walker infinitesimal generator Qm is exactly described over discrete steps of size ∆t by

the single-walker transition probability matrix Pm(∆t) given by

Pm(∆t) = eQm∆t. (12)

We denote the M -walker continuous-time process defined by Q as {X(t), t ≥ 0} and the discrete-time

Markov process defined by its exact discretization P(∆t) as {Xk(∆t), k = 1, 2, . . . }.
Alternatively to P(∆t), we can define another NM ×NM transition probability matrix over steps

of size ∆t, that we will denote as P(∆t), defined as the combination of the discrete single-walker

policies Pm(∆t). We denote the discrete-time process defined by P(∆t) as {Yk(∆t), k = 1, 2, . . . }. In
order for P(∆t) to describe the same discrete-time RWIG process as the single-walker policies Pm(∆t),

it is required that

(P(∆t))ij =
M∏

m=1

(Pm(∆t))xm(i),xm(j). (13)

Similar to (6) and (8), we can build them-walker transition probability matrix Pm(∆t) in theNm×Nm

basis by iteratively adding single walkers at a time. This time, due to the products in (13), the iterative

steps are described by the Kronecker product instead of the Kronecker sum:

Pm = Pm ⊗ Pm−1 =


(Pm)1,1Pm−1 (Pm)1,2Pm−1 · · · (Pm)1,NPm−1

(Pm)2,1Pm−1 (Pm)2,2Pm−1 · · · (Pm)2,NPm−1

...
...

. . .
...

(Pm)N,1Pm−1 (Pm)N,2Pm−1 · · · (Pm)N,NPm−1

 , (14)

where the dependence on ∆t is omitted for clarity. We find

P(∆t) =
1⊗

m=M

Pm(∆t), (15)

where the Kronecker product is indexed in reverse order for consistency with (9) and (14). The equa-

tion P =
⊗1

m=M Pm is a known expression for the ensemble transition probability of M discrete-time

random walkers with policies Pm that can move at the same time (see, for example, Riascos and

Sanders [19]).

Instead of the exact discretization, we can define the time-sampled Markov chain [12], with transi-

tion probability matrix P̂ (∆t) = I +∆tQ, which is the first-order approximation of the Taylor series

of P (∆t) in (10). We write P̂(∆t) and P̂m(∆t) for the first-order approximations of (11) and (12),

respectively.

P̂(∆t) = I +∆tQ (16)

P̂m(∆t) = I +∆tQm (17)

Additionally, we write

P̂(∆t) =
1⊗

m=M

P̂m(∆t) (18)

and indicate the two discrete-time processes defined by P̂(∆t) and P̂(∆t) as X̂k(∆t) and Ŷk(∆t),

respectively.

We prove that the transition matrices (11) and (15) define the same discrete-time process.
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Theorem 1. Given M walker policies Q1, . . . , QM , the discrete-time process Yk(∆t), described by the

transition probability matrix P(∆t), built from the exact single-walker transition probability matrices

P1(∆t), . . . , PM (∆t) and the discrete-time process Xk(∆t), described by the exact transition probability

matrix P(∆t), are the same process. In other words: Xk(∆t)
d
= Yk(∆t) in distribution, for all k =

1, 2, . . . and for all ∆t ≥ 0, if X0(∆t) = Y0(∆t).

Proof. We construct both the NM × NM dimensional matrices P(∆t) in (11) and P(∆t) in (15)

iteratively and show by induction that they are equal at every step. If both transition probability

matrices are the same, then so are the processes Xk(∆t) and Yk(∆t).

Considering only the first walker, we have P1(∆t) = P1(∆t) and P(∆t) = eQ1∆t, which are the

same due to (12). Next, we prove that Pm(∆t) = Pm(∆t) after the induction assumption that

Pm−1(∆t) = Pm−1(∆t). We find that:

Pm(∆t) = Pm(∆t)⊗ Pm−1(∆t) = eQm∆t ⊗ eQm−1∆t = eQm∆t⊕Qm−1∆t = eQm∆t = Pm(∆t),

where we have used the identity eA⊕B = eA ⊗ eB (see, for example, [18, Theorem 10.9]).

Conversely, in the time-sampled case, the transition matrices (16) and (18) do not define the same

discrete-time process.

Theorem 2. Given M walker policies Q1, . . . , QM , the discrete-time process Ŷk(∆t) described by the

transition probability matrix P̂(∆t), built from the time-sampled single-walker transition probability

matrices P̂1(∆t), . . . , P̂M (∆t) and the discrete-time process X̂k(∆t), described by the time-sampled

transition probability matrix P̂(∆t), are not the same process, if at least two walkers have a non-

diagonal (non-stationary) policy.

Proof. We denote two walkers with non-diagonal policies as walker k and l. Assume walker k has

a non-zero transition rate (Qk)ab, a ̸= b and walker l has a non-zero transition rate (Ql)cd, c ̸= d.

Consider a transition from a state i with xk(i) = a and xl(i) = c to a state j where xk(j) = b and

xl(j) = d. Then j ̸= i ± kNm−1 for any m = 1, 2, . . . ,M ; k = 1, 2, . . . , N − 1 and thus Qij = 0 (see

(2)). The time-sampled transition probability matrix P̂(∆t) has the exact same structure as Q and

therefore (P̂(∆t))ij = 0 ⇔ Qij = 0.

The time-sampled transition probability matrices P̂1(∆t), . . . , P̂M (∆t) similarly have the same

structure as the policies Q1, . . . , QM . Therefore, we know that (P̂k(∆t))ab > 0 and (P̂l(∆t))cd > 0.

Since the rows of every walker policy (P̂m(∆t)) sum to one, we can find, for each walker m ̸= k, l,

a transition (P̂m(∆t))y(m),z(m) > 0. Consider the state r, defined such that xm(r) = y(m) for all

m ̸= k, l and xk(r) = a, xl(r) = c. In addition, consider the state q, defined such that xm(q) = z(m)

for all m ̸= k, l and xk(q) = b, xl(q) = d. Then, by construction, (P̂m(∆t))xm(r),xm(q) > 0 for all m

and therefore (P̂(∆t))rq =
∏M

m=1(P̂m(∆t))xm(r),xm(q) > 0, where we have used (13).

However, (P̂(∆t))rq = 0 ̸= (P̂(∆t))rq, because r and q satisfy the definition of i and j above by

construction. The processes Ŷk(∆t) and X̂k(∆t) are only the same if they are described by the same

transition probability matrix and, therefore, the processes are different.

Riascos and Sanders [19] consider an alternative to (15), in which the m walkers cannot move

at the same time. Instead, one walker is picked uniformly at random to move the next step. The
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asynchronous walkers have an ensemble transition probability matrix given by

P =
1

M

M∑
m=1

I ⊗ · · · ⊗
m−th position︷︸︸︷

Pm ⊗ · · · ⊗ I︸ ︷︷ ︸
M terms

,

which is similar in definition to our tensor representation in Appendix D, but with the Kronecker

product instead of the tensor outer product. We choose not to further investigate the asynchronous

multi-walker process, because the uniform walker selection does not agree with the continuous-time

process, where the walker selection is based on the transition rates. It is also unrelated to the DRWIG

model, which explicitly allows synchronous walker transitions.

3.2 Loss of topology after discretization

An important consequence of the discretization of the continuous-time process is that the transition

probability matrices from (11) and (12) contain transitions that are only possible by multiple transi-

tions in Q and/or Q1, . . . QM . This means that the single-walker Markov graphs G1, . . . , GM are not

the Markov graphs corresponding to the transition matrices P1, . . . , PM . This is the second fundamen-

tal difference between CRWIG and DRWIG: the discrete-time process that has the same distribution

X(k∆t) = Xk(∆t) as the continuous-time process defined by Q must allow multiple-hop transitions.

When the transition probability matrices P1, . . . , PM are interpreted as in [1], namely as single-hop

transitions, the discrete-time walkers are walking on a different graph compared to the walkers on the

original continuous-time process as exemplified in Figure 3. In Figure 3, the single-walker infinitesimal

generator Q and its topology are shown on the left, while on the right, the exact transition probability

matrix P (1) = eQ is shown for ∆t = 1, together with its topology. In red, the links that are not

present in the topology of Q are shown. The self-loops are imposed by the discrete-time process, but

the other links can be interpreted as single-hop paths and thus as part of the network the walker

walks on, even though the “ground truth” continuous-time topology is different. For large enough

∆t, the weight of the links between nodes 1 and 2 and the self-loops in nodes 1 and 2 will tend to

zero, effectively removing them from the network, and, hence, deviating even more compared to the

“ground truth”.
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Q =




−2 1 1 0
1 −1 0 0
0 0 −1 1
0 0 1 −1


 P =




0.2414 0.2726 0.3262 0.1597
0.2726 0.5140 0.1597 0.0536

0 0 0.5677 0.4323
0 0 0.4323 0.5677




1

2 3

4

1

2 3

4

Continuous time Discrete time

Figure 3: Single-walker infinitesimal generator Q and its exact transition probability matrix P for

∆t = 1. All transitions in the discrete Markov graph that are not part of the Markov graph in the

continuous process are colored red.

3.3 CRWIG and DRWIG

Our results on the discretization of CRWIG may invoke questions about its relevancy. One may ask:

“Why do we need CRWIG if an exact discretization exists?”. This question is important to address.

We argue that CRWIG is relevant from a modeling point of view. The physical reality of human

mobility occurs in continuous time, like any physical process. Therefore, a discrete-time model is an

approximation. The approximation is only accurate if the time step ∆t is (very) small. Firstly, with

small ∆t time steps, simulating a continuous-time process is significantly easier than simulating the

corresponding discrete-time process. In the continuous-time process, the sojourn time of each walker

is generated immediately after they move. For each single-walker transition two random variables

have to be sampled: the sojourn time τm (or time before next movement) and the destination of the

next transition. In the discrete-time process a random variable has to be sampled for each walker

after each step ∆t, namely the location of each walker after the next time step ∆t. Approximately
E[τm]
2∆t times more samples must be drawn from a probability distribution in the discrete-time process.

Secondly, a discrete-time model with small time steps ∆t is hard to construct, unless the equivalent

continuous-time model is known. The difficulty stems from the fact that, at small ∆t, the policies

Pm are almost identical to the identity matrix, which makes them very hard to interpret and, indeed,

create.

If human mobility is described by our Markovian continuous-time CRWIG model, then the search

space when training a discrete-time version on discrete data [20] can be strongly reduced. All walker

policies assume the form Pm = eQm∆t =
∑∞

k=0
(Qm)k

k! (∆t)k for some set of infinitesimal generators Qm

and a single time step ∆t, where the k-th power of Qm corresponds to the rate of k-hop paths. It

follows from Pm = eQm∆t that: (1) if (Pm)ij > 0 and (Pm)jk > 0, then (Pm)ik must be larger than

zero as well (proved in Appendix A.1); (2) since ∆t is finite, (Pm)ii must be larger than zero and

when (Pm)ii > 0, then (Pm)ij < 1 except if i = j and i is an absorbing state. If Pm is a discretization

of a CRWIG policy Qm, then the continuous-time model can be used to interpolate the discrete-time
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process if one wants to reduce the step size ∆t. This can be required for accurate modeling of dynamic

processes on the CRWIG contact network. For example, in a respiratory epidemic ∆t should be in

the order of minutes [21–23] to correctly take into account for all the relevant contacts. We emphasize

that interpolation is generally not possible in the discrete-time framework, because it would require

to solve Pm(∆t) = Pm(∆t
K )K , which is equivalent to taking the K-th root of the transition probability

matrix K
√

Pm(∆t), which does not necessarily exist and may not be unique.

4 Analytical results

In this section we show some analytical results related to the contact graph distribution and inter-

meeting times in CRWIG. First, we show continuous-time analogues to the two main theorems in [1]

that describe the distribution of the contact graph G(t) at a given time t. Second, we show that the

dependence of the distribution of the contact graph G(t) on the initial condition decays exponentially

fast. Thirdly, we consider the inter-meeting times of two walkers and show that the inter-meeting

times are not heavy-tailed.

4.1 Brief review of DRWIG results

Most DRWIG results from Almasan et al. [1] hold in continuous time, although some minor adjust-

ments are needed in some cases. The results about co-location transfer directly, such as the number

of possible contact graphs as a function of N and M . Other results can be translated to continuous

time, because they are based on the single-walker state vector sm[k]. By replacing the discrete-

time single-walker state vector sm[k] = sm[0]P k
m with the continuous-time single-walker state vector

sm(t) = sm(0)eQmt, analogue continuous-time results of the main results in [1] follow directly. In par-

ticular, Theorem 1 and the main result, Theorem 2, from [1] have continuous-time equivalents, which

we state below. We first define the probability that a set of walkers are in the same single-walker

state.

Definition 3. Consider a set (or clique) of walkers C. The probability that the walkers of the set C

are in the same location at time t, denoted as σC(t) =
∑

i∈ΩC

(
s(0)eQt

)
i
, where ΩC is the set of the

M -walker states where the walkers in the set C share a location.

The same definitions of clique-sets {C1, C2, . . . , Ck} and partitions as in [1] are transferred to the

continuous versions of the two main Theorems.

Theorem 4 (Continuous version of Theorem 1 in [1]). The probability of an k-clique contact graph

G = {C1, C2, . . . , Ck} at time t is:

Pr[G(t) = G] =
N∑

i1=1

N∑
i2=1

i2 /∈{i1}

· · ·
N∑

ik=1
ik /∈{il}m−1

l=1

k∏
j=1

∏
m∈Cj

(sm(t))ij . (19)

Theorem 5 (Continuous version of Theorem 2 in [1]). The probability of an k-clique contact graph

G = {C1, C2, . . . , Ck} at time t is:

Pr[G(t) = G] =
∑
π∈PG

(∏
C∈π

(−1)|C|−1(|C| − 1)!

) ∏
C∈G(π)

σC(t), (20)
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where |C| denotes the number of cliques C of partition π on G = {C1, C2, . . . , Ck}.

We used (19) to verify our simulations of CRWIG. In Figure 4 the distribution of the contact

graph G(t) over time is shown for M = 3 walkers with randomized policies Qm with N = 6 locations.

Each policy Qm is minus the weighted Laplacian of an Erdős-Rényi graph of size N = 6 with link

probability p = 1
2 and random directed link weights uniform in [0, 1].

Figure 4: Distribution of all possible graphs of size M = 3 generated by CRWIG over time. Each

walker has a policy generated by adding random rates uniform from the interval [0, 1] to the directed

links of an Erdős-Rényi graph of sizeN = 6 with link probability p = 1
2 . The lines shows the theoretical

distribution from (19), while the dots show simulation results averaged over 105 simulations. Each

color corresponds to one of the 5 possible contact graphs on M = 3 nodes. At t = 0 all walkers are in

the same location.

4.2 Decay of the initial condition

The probability that the contact graph G(t) equals G, conditioned on the initial condition G(0) = G∗,

written as Pr[G(t) = G|G(0) = G∗] decays exponentially to the steady-state probability Pr[G(∞) = G]

as t → ∞, if the steady state is unique. A unique steady state is required, because otherwise the

steady state distribution limt→∞ Pr[X(t) = i] = (s∞)i = πi is not well-defined. In continuous-time, a

unique steady state is equivalent to requiring that the Markov graph has a single strongly connected

component that can be reached from all nodes. The exponential decay also occurs in DRWIG, in which

case the assumption of a unique steady state requires that the transition matrix P is aperiodic and

irreducible. We treat both cases in this section under the assumption that P and Q are diagonalizable.

The arguments for the diagonalizable case are very similar to the general case, which requires the

introduction of Jordan forms. Since the diagonalizable case presents the arguments well enough, the

general case is treated in Appendix A.2.

We define the set of states in the M -walker process that correspond to the contact graph G as ΩG

(i.e. those states i such that X(t) = i implies that G(t) = G). Assume that the state of the M -walker
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process at time t = 0 is g ∈ ΩG∗ then:

Pr[G(t) = G|X(0) = g] = Pr[X(t) ∈ ΩG|X(0) = g] =
∑
ω∈ΩG

(
eQt
)
gω

.

After diagonalization of eQt, the last term can be rewritten [12, Eq. 10.16] as:

Pr[G(t) = G|X(0) = g] =
∑
ω∈ΩG

πω +
NM∑
k=2

eλkt
(
xky

T
k

)
gω

,

where π is the steady-state vector of the M -walker ensemble. Each term in the second sum will decay

to zero exponentially because the eigenvalues λk of the infinitesimal generator Q have negative real

part [12]. The same result can be shown to hold for DRWIG if the transition probability matrix P is

aperiodic and irreducible. Then, it follows [12] that the eigenvalues of P are λ1 = 1 > |λ2| ≥ |λ3| ≥
· · · ≥ |λNM |. Assuming that P is diagonalizable, we find [12]:

Pk = uπ +
NM∑
l=2

λk
l xly

T
l

and thus

Pr[G[k] = G|X[0] = g] =
∑
ω∈ΩG

(
Pk
)
gω

=
∑
ω∈ΩG

πω +
NM∑
l=2

λk
l

(
xly

T
l

)
gω

,

where each term in the second sum will decay to zero exponentially since |λl| < 1 for all l > 1.

4.3 Inter-meeting times

A commonly used metric in mobility processes is the inter-meeting time, which is the (random) time

between two contacts of a pair of individuals. Data shows [4, 5] that human contacts often have a

power-law inter-meeting time distribution with exponential tail. We show that CRWIG always has

exponentially-tailed inter-meeting times.

Assume that both walkers m and n are in the single-walker state i and walker n moves to a state

j, different from state i. We will call the time of this transition t = η and define the inter-meeting

time Tm,n as:

Tm,n = inf{t− η : Xm(t) = Xn(t)|Xm(η) = i,Xn(η) = j ̸= i,Xn(η − ϵ) = i for ϵ ↓ 0}. (21)

Since the walkers m and n are independent of all other walkers, we can define the inter-meeting time

Tm,n in terms of the 2-walker process. The subset Ωmn of the N2-dimensional state space, where

walkers m and n are in the same single-walker state, is defined as:

Ωmn = {i : xm(i) = xn(i)}. (22)

We write ΩC
mn for the complement of Ωmn:

ΩC
mn = {i : xm(i) ̸= xn(i)}. (23)
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We apply (22) and (23) to rewrite (21) in terms of the 2-walker continuous time process X(t):

Tm,n = inf{t− η : X(t) ∈ Ωmn|X(η) ∈ ΩC
mn, X(η − ϵ) ∈ Ωmn for ϵ ↓ 0}. (24)

To prove the inter-meeting times are not heavy-tailed, we shift our view from realizations of the

CRWIG process to walks on its Markov graph and introduce a few definitions. Consider the 2-walker

CRWIG process with infinitesimal generator Q2. We define the (random) inter-meeting walk W (m,n),

which is a walk through the Markov graph of the 2-walker process, with length |W (m,n)| = l(W ) as

a sequence of states {w1, w2, . . . wl(W )} such that wi ̸= wi+1 for all i = 1, . . . , l(W ) and w1, wl(W ) ∈
Ωmn, wi ∈ ΩC

mn for all i ̸= 1, l(W ). The inter-meeting walks are subsequences of the sequence of states

of the CRIWG process during a realization, specifically those who start in Ωmn and end the first time

Ωmn is reached afterwards. Indeed, each time walkers m and n meet again in a realization of CRWIG

there is an inter-meeting time Tm,n (the time between the two meetings) and an inter-meeting walk

W (the sequence of states through which the process went between meetings). We proof the following

Lemma:

Lemma 6. The distribution of the inter-meeting walk length Pr[l(W ) = k] of two arbitrary walkers

in the CRWIG process is bounded by an exponential:

Pr[l(W ) = k] ≤ Ce−ak, (25)

where a and C are real, finite constants larger than zero.

Proof. See Appendix A.3.

The proof in Appendix A.3 also applies to prove that DRWIG inter-meeting times (which are

equivalent to inter-meeting walk lengths in discrete time) are not heavy-tailed by considering the two-

walker discrete-time Markov graph, instead of the continuous-time one. Using Lemma 6, we can proof

that CRWIG inter-meeting times are also exponentially tailed.

Theorem 7 (The CRWIG inter-meeting times are not heavy-tailed). Consider an M -walker CRWIG

process with infinitesimal generator Q and single-walker policies Q1, Q2, . . . , QM . Consider two walkers

m and n. We denote with Q2(m,n) the two-walker infinitesimal generator of walkers m and n and

write Θ for the smallest non-zero and non-diagonal element of Q2(m,n). Then, the tail probability

Pr[Tm,n > x] = 1− FTm,n(x) of the inter-meeting time Tm,n is bounded as:

Pr[Tm,n > x] = 1− FTm,n(x) ≤
∞∑
k=1

Ce−ak
k−1∑
r=0

1

r!
e−Θx(Θx)r ≤ C̃e−(1−ξ)Θx, (26)

where FTm,n(x) is the distribution of Tm,n, ξ is a constant between 0 and 1 and C̃ < ∞.

Proof. See Appendix A.4

While the sojourn times of the Markovian CRWIG are exponential, other M -walker processes

with the same structure (i.e. no transitions occur that can’t occur in CRWIG) could have heavy-

tailed sojourn times. We show that heavy-tailed sojourn times imply heavy-tailed inter-meeting times.

Below, the notation f(x) ∼ g(x) means limx→∞
f(x)
g(x) = 1.
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Theorem 8. Consider an M -walker process with heavy-tailed sojourn time distributions, i.e. Pr[τi >

x] ∼ cix
−αi, where τi is the sojourn time of the M -walker ensemble state i and αi, ci ∈ (0,∞) are

constants. Consider two walkers m and n. Then, the inter-meeting times Tm,n are heavy-tailed.

Proof. We show that Pr[Tm,n > x] ≥ Pr[τj(x) > x] ∼ cζx
−αζ for some state ζ, where j(x) :=

argminj Pr[τj > x] (if multiple j minimize the expression j(x) is defined as the smallest of them).

We observe that Pr[Tm,n > x] is larger or equal to the sojourn time of the first state between the

meetings. We denote with ξ the first state where walkers m and n are in different locations (X(η) in

equation (24)). Then,

Pr[Tm,n > x] ≥ Pr[τξ > x] ≥ Pr[τj(x) > x].

The variable j(x) converges for x → ∞ because limx→∞
cix

−αi

cjx
−αj

is well defined for all states i, j and

orders the probabilities Pr[τj > x] for (very) large x. Specifically j(x) converges to ζ, where ζ has

αζ = maxi αi and cζ ≤ ck for all k which have αk = αζ . This gives the tail Pr[τj(x) > x] ∼ cζx
−αζ .

We emphasize that, if the walkers are independent, the sojourn times τi of the M -walker ensemble

can only be heavy-tailed if the sojourn times of all individual walkers are heavy-tailed. Otherwise, the

tail of the M -walker sojourn times would be destroyed by the non heavy-tailed transition(s).

5 Simulations

5.1 Symmetric versus non-symmetric walker policies

In this section, we discuss symmetric walker policies Qm, which correspond to undirected Markov

graphs Gm. Caution is required when using symmetric policies, because every walker with a sym-

metric policy has the same steady-state distribution πm = 1
N u, where u is the all-one vector. Using

an undirected and unweighted graph as the Markov graph Gm yields a symmetric policy Qm. This

implies that common undirected graph models such as ER-graphs, BA-graphs, WS-graphs, stochastic

block models etc. should be used with caution to generate the single-walker Markov graphs Gm. First,

we discuss the physical downsides of undirected or symmetrical graphs. Second, we suggest a simple

method to modify undirected graphs to directed graphs, which works better if a graph is less regular.

Lastly, we illustrate our findings with an experiment.

It is a known result that the steady-state vector of a symmetric infinitesimal generator Q is the

all-one vector u.

Theorem 9. The steady-state vector πm of walker m, with symmetric policy Qm, such that (Qm)T =

Qm, is given by πm = 1
N u, where u is the all-one vector.

Proof. Since Qm is an infinitesimal generator the left eigenvector y1 of eigenvalue λ1 = 0, is the steady-

state vector (πm)T . The right eigenvector x1 of eigenvalue λ1 = 0 is u, the all-one vector. Because Qm

is symmetric, the left and right eigenvectors are the same, and thus πm = 1
N u, where the constant 1

N

follows from the requirement that
∑N

i=1(πm)i = 1.
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The steady-state of the ensemble is also uniform if all M walkers have a symmetric policy, because

Q is then also symmetric. Alternatively, it follows from (5) that the ensemble steady-state probability

of state i is given by

πi = (s∞)i =
M∏

m=1

((sm)∞)xm(i) =
M∏

m=1

1

N
=

1

NM
.

We emphasize that: a) the steady-state vector s∞ = 1
NM u does not imply that the steady-state

contact graph distribution Pr[G∞ = G] is also uniform. Instead, the probability of the contact graph

G with C cliques is N !
(N−C)!NM , which is 1

NM times the number of arrangements of the M walkers

across the N locations that create the graph [1]; b) the result holds for any set of symmetric policies

Qm, even if walkers have different policies.

A uniform steady-state is generally not realistic because it implies that the walker spends the same

amount of time in each location on average. However, we emphasize that the steady-state distribution

only describes average behavior. During a short time interval, the process does not have enough time

to average out. Therefore, while two different symmetric walker policies can have the exact same

uniform steady-state, they still describe different dynamics on short timescales.

The generation of directed single-walker Markov graphs Gm using a model that generates undi-

rected graphs, requires that the weights of the links are changed in such a way that the link i ∼ j

generally has a different weight than the link j ∼ i. For example, if the rates (Qm)ij are divided by

the degree di of location i in the Markov graph Gm, then (Qm)ii = −1 for all i and the infinitesimal

generator will not be symmetric unless the Markov graph Gm is regular. We call this method row

normalization. There are many other ways to make an undirected graph directed, such as assigning

random weights or setting (Qm)ij or (Qm)ji (but not both) to zero for some links i ∼ j. There is no

reason to assume there is a “best” way to make a directed graph from an undirected one in general.

Figure 5 shows an experiment that investigates symmetric policies and row normalization: the

maximum clique size is shown for 4 different CRWIG simulations with M = 100 walkers on Markov

graphs with N = 100 nodes. In red and green, respectively, CRWIG is shown for walkers whose

Markov graph Gm is a symmetric ER-graph and a symmetric BA-graph. In orange and blue, we show

CRWIG for walkers, whose Markov graph Gm is the same ER and BA graph, but with the rows of the

adjacency matrix normalized as described above. The walkers with symmetric policies have the same

steady-state behavior by Theorem 9. We also observe that the difference between the normalized BA

graph and the undirected BA graph is larger than the difference between the normalized ER graph

and the undirected ER graph. This difference is expected, because ER graphs are very regular and

thus retain more symmetry after row normalization.
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Figure 5: The average contact graph degree dav over time for different single-walker Markov graphs

Gm. Both a Barabási–Albert and a Erdős–Rényi graph are considered with row normalization (blue

and orange, respectively) and without row normalization (green and red respectively). Without row

normalization the single-walker policies Qm are symmetric. Each curve is averaged over 104 simula-

tions.

5.2 Identical walker policies: simulation on a real-world network

As discussed in Section 2.1, when all walkers have the same policy Qm = Q, CRWIG becomes equiva-

lent to a meta-population model and the policy Q can be interpreted as a population flow model [14].

The assumption that the walkers share a common policy Q leads to several simplifications [1]. We

focus on the property that, if π is the steady-state distribution of the common policy Q, the ex-

pected fraction of walkers in location i converges to πi. This claim follows from the observation

that the number of walkers in location i in the steady state Mi is binomially distributed, because

Pr[Mi = m] = (πi)
m(1 − πi)

M−m. The expected value follows as E[Mi] = πiM and here πi is the

fraction of walkers that are expected to be in location i in the steady state. Our experiment uses

a train transportation network derived from data available at [24]. Our network contains 250 train

stations across the Netherlands. Two stations i and j are linked if a train operated by Nederlandse

Spoorwegen (Dutch Railways), departed from station i and arrived next at station j at any time

during the month April 2025. The resulting network is the common Markov graph G = Gm for all

walkers m. The graph is non-symmetric and shown on the left in Figure 6. On the right, Figure

6 shows the number of walkers out of M = 106 walkers that are at the stations of Delft, Enschede

and Maastricht over time. In black, the expected number of walkers in the locations MDelft,MEnschede

and MMaastricht are shown. These are calculated with the steady-state vector π, which is calculated

by finding the left-eigenvector corresponding to eigenvalue 0 of Q. We observe that the simulation

average indeed converges to the theoretical steady-state value.
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Figure 6: Left: Map of our NS train network. Right: The number of walkers (out of M = 106) that

are in three select locations: Delft (blue), Enschede (orange) and Maastricht (green). These three

stations are also shown on the map in the same colors. In black are the theoretically computed values

of the expected number of walkers in the three locations in the steady state. The map used is an edited

version of “Positron (No Labels)” by CartoDB [25], accessed via the contextily Python package [26].

5.3 CRWIG on geometric networks and beyond exponential times

Many statistical properties of human mobility are characterized by non-exponential distributions [4–6],

which do not generally occur in Markov models. In particular, the pause-time (single-walker sojourn

time) and the flight length (distance traveled per transition) for each walker as well as the inter-meeting

times between walkers have non-exponential distributions in data. The Markovian CRWIG model can

have arbitrary flight length distributions (by constructing suitable walker policies on geometric graphs)

and in specific cases (e.g. on the cycle graph [6]) the Markovian model can have non-exponential inter-

meeting time distributions. Non-exponential pause-times however, cannot occur in the Markovian

model.

In this section we extend the Markovian CRWIG model to the non-Markovian SMRWIG model,

which gives the walkers non-exponential sojourn time distributions (pause times), but keeps the same

transition probabilities as the Markovian process. We then pick the single-walker policies Qm (and thus

the single-walker Markov graphs Gm) in such a way that the process also has arbitrary flight length

distribution and power-law with exponential tail inter-meeting times, thus showing that SMRWIG can

describe contact networks generated by statistically realistic human mobility patterns.

Arbitrary walker sojourn times For the extension of CRWIG to non-exponential sojourn times,

we use a semi-Markov generalization on the single-walker level. A semi-Markov process generalizes a

Markov process, defined on the same state space, with the same transition probabilities, but with a

generalized sojourn time distribution, similar to the renewal process [12, Chapter 8] that generalizes

the exponential Poisson inter-event times to a general distribution. In our case, the Semi-Markov

Random Walker Induced temporal Graph (SMRWIG) model preserves the embedded Markov chain

[12, 27] of the Markovian single-walker process while the single-walker sojourn times follow a general
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distribution Pr[τi,m ≤ t] = Fi(t;m) for walker m in state i. The walker m, who just arrived in state i

transitions after a time distributed as Pr[τi,m > t] = 1− Fi(t;m) to a specific node j with probability

Pr[j] =
(Qm)ij∑
k ̸=i(Qm)ik

. Therefore, if Fi(t;m) = 1−e(Qm)iit, the sojourn times are exponentially distributed

and SMRWIG reduces to CRWIG. We emphasize that, on the ensemble level, the process is not semi-

Markovian. Indeed, independent semi-Markovian walkers will generally result in ensemble sojourn

times that are not memoryless and SMRWIG is therefore a non-Markovian model.

Arbitrary flight length distributions Flight length distributions require a node embedding in a

metric space. We choose here a 2-dimensional Euclidean space. We consider a particular easy topol-

ogy: the heterogeneous square lattice, where the distance between rows and columns are distributed

according to some non-constant distribution. As an example on the left in Figure 7, we consider a 2-

dimensional square Weibull lattice, where the distance between each pair of consecutive rows and each

pair of consecutive columns is Weibull distributed, Fdist(x) = Pr[dist ≤ x]1− e−(λt)α . A homogeneous

random walk, where the next node in the random walk is one of the neighbors of the current node

uniformly at random, on a “large enough” heterogeneous square lattice has travel distances with the

same distribution as the distribution of the link/column distances, if enough steps are made. These

properties hold in any dimension and specifically, for the 1-dimensional lattice, which is the path graph,

show on the bottom right in Figure 7. A heterogeneous path graph can (except in some pathological

cases) be closed in Euclidean 2-dimensional space to become a heterogeneous cycle, shown on the top

right in 7. Both the 2-dimensional square lattice and the cycle can generate power-law regimes of the

inter-meeting times as shown in the next paragraph.

Figure 7: Three heterogeneous lattices: on the left a 2-dimensional square Weibull lattice, on the right

a 1-dimensional square Weibull lattice and its 2-dimensional closure, which is a Weibull cycle.

Power-law with exponential tail inter-meeting times To show that our non-Markovian SM-

RWIG model can produce the inter-meeting time power-law regime from literature, we present some

simulation results for different sojourn-time distributions in Figure 8. Figure 8a shows the exact

distribution of the different sojourn times and the sampled single-walker sojourn times employed in

the simulation. Figure 8a confirms that the single walker semi-Markov correctly enforces the chosen

sojourn-time distributions. Figures 8b and 8c show the power-law with exponential tail inter-meeting

time tail distributions, for uniform random walkers on the cycle graph (Figure 8b) and on the 2-

dimensional square lattice (Figure 8c). We observe that the structure of the Markov graph plays a

large role in the existence and slope of the power-law regime. Indeed, for most Markov graphs, the

power-law regime does not exist. While changing the sojourn-time distribution can decrease the slope
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(make the curves flatter), it is seemingly impossible to produce a faster decreasing power-law than for

the exponential distribution on a given Markov graph. Fitting the walker policies and sojourn-time

distributions to data (e.g. the data from [4]) is a challenging task that is beyond the scope of the

current work and will be left to future research.
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Figure 8: Distributions from SMRWIG simulations. The simulated sojourn-time distributions are:

Exponential (Fi(t;m) = 1 − e(Qm)iit), Weibull (Fi(t;m) = 1 − e−(−(Qm)iit)
α
), Levy (Fi(t;m) =

erfc(−(Qm)iit) and Pareto (Fi(t;m) = 1 −
(
L
x

)α
). We have chosen α = 1

3 , L = 10−4. In subfig-

ure (a) the distribution of 104 sojourn times are shown for uniform walkers on the cycle graph of size

N = 104. The exact equations of the distributions are thus found by substituting (Qm)ii = −2 for

all i and m. In subfigure (b), for each sojourn-time distribution, the distribution of 104 inter-meeting

times are shown for uniform walkers on the cycle graph of size N = 104. In subfigure (c), for each

sojourn-time distribution, the distribution of 104 inter-meeting times are shown for uniform walkers

on a square lattice of size N = 104.

6 Conclusion

Following the idea in [1], CRWIG describes M walkers executing independent Markov processes on

the same state space, all evolving on a common global time scale. CRWIG assumes that if two or
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more walkers occupy the same state at time t, a link is established between them in the temporal

contact graph G(t). After defining a proper state numbering for the M -walker process (1), we deduce

the exact infinitesimal generator of the ensemble process in (2), where a transition between two states

belonging to the NM state space is dictated by the transition rate of the individual walker which

changes position. We then iteratively build the Markov graph of the CRWIG process highlighting

the multi-layered structure that arises (see Figure 2) and providing, in terms of Kronecker sums, the

exact expression for both the adjacency matrix of the Markov graph and the ensemble infinitesimal

generator (9).

We then consider the discretized version of the CRWIG model over successive intervals of length

∆t and we obtain two main results: (1) Theorem 1 shows that under exact discretization both the

ensemble Markov process and the discrete process whose transition matrix is built from the exact

single-walker transition probability matrices are the same process (i.e. the processes have the same

distribution at all times k∆t); (2) Theorem 2 shows that the time-sampled CRWIG model, which

approximates the continuous time expanding the transition probability at first order in ∆t, does not

correspond to the discrete process built from the time-sampled single-walker transition probability

matrices.

We discuss the fundamental differences between CRWIG and DRWIG. Firstly, the discretized

process allows transitions to happen simultaneously, which is not possible in the continuous-time

formalism. This can lead to contacts that physically must happen in continuous-time not occurring

in discrete-time. Secondly, the exact discretization includes multiple hop transitions. With the 1-

hop interpretation of the transition probability matrix, the topology imposed for a single walker in

CRWIG is lost when considering the exact discrete-time version of the model. Thirdly, at high time-

resolution CRWIG is computationally superior to DRWIG, which requires each walkers transitions to

be evaluated at each time step, while CRWIG only requires a walkers transitions to be evaluated after

each movement.

Section 4 presents various analytical results. The main results from Almasan et al. [1] are directly

translated into continuous time (e.g. the probability of a specific contact graph G at time t). Then

the decay of the influence of the initial state and the steady-state of symmetric walkers are proven

for both the continuous and the discrete model. Additionally, we prove that the CRWIG process

shows an exponential decay of the initial condition and exponential tail behavior of the inter-meeting

time distribution. Hence, in order to reproduce the heavy-tailed nature of human mobility [2, 4–6],

CRWIG must be extended to include non-exponential sojourn times, as shown in Theorem 8, and/or

interactions between the walkers and/or memory effects.

Therefore, we propose the SMRWIG extension, which preserves the single-walker transition prob-

abilities, but with arbitrarily distributed single-walker sojourn times. SMRWIG is semi-Markovian

on the single-walker level, but non-Markovian on the ensemble level. We show that SMRWIG is able

to reproduce three statistical properties in agreement with human mobility data: 1) arbitrary flight

length distributions due to the Markov graph (see Figure 7); 2) arbitrary pause-time distributions (see

Figure 8a); and 3) power-law with exponential tail inter-meeting time distributions (see Figures 8b

and 8c). We observe that the inter-meeting time distribution is primarily influenced by the Markov

graph of the walkers, rather than the sojourn-time distribution.

We see several directions for future research. The Markovian formalism obtained for the CRWIG
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process will be the starting point to define a combined process that describes both the contact graph

dynamics and the dynamics of a spreading process on top of the temporal graph. We will determine

an analytical representation that describes any Markovian compartmental model (e.g. SI,SIR,SIS) on

the contact network generated by the CRWIG model and we will explore how the exact analysis of the

model can be pushed forward. Additionally, we plan to apply CRWIG and the SMRWIG extension

to real-world data to understand which underlying topologies and sojourn time distributions describe

real-world human mobility best.
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A Proofs

A.1 Proof for the transitivity claim in Section 3.3

Proof. First we show that if (Qm)ab > 0, then (e(Qm)t)ab > 0 for all finite t > 0. This follows because

(e(Qm)t)ab = Pr[Xm(t) = b|Xm(0) = a] ≥ (Qm)ab
∫ t
0 dx e−(Qm)bb(t−x)e(Qm)aax > 0, where we used the

renewal equation [12, Eq. 8.9].

Then, since (Pm)ij > 0 and (Pm)jk > 0 there must be a path in the Markov graph Gm from i to k, say

z1 = i, z2, . . . , zK = k. Each link in the Markov graph corresponds with a transition rate (Qm)zi,zi+1 >

0 and thus we find that (Pm)ik ≥
∏K

i=1 Pr[X( i∆t
K ) = zi|X( (i−1)∆t

K ) = zi−1]
∏K

i=1(e
Q∆t

K )zi,zi+1 > 0 using

that (eQ
∆t
K )zi,zi+1 > 0, because (Qm)zi,zi+1 > 0.

A.2 General proof for Section 4.2

To prove the influence of the initial state decays exponentially also for non-diagonalizable infinitesimal

generators Q and transition probabilities P, we need to use Jordan forms. We first state the basic

27

https://www.rijdendetreinen.nl/en/open-data/train-archive
https://www.rijdendetreinen.nl/en/open-data/train-archive
https://carto.com
https://contextily.readthedocs.io
https://contextily.readthedocs.io


knowledge required for this proof from the book by Meyer [28].

Any N ×N matrix A can be written in the Jordan form J = BAB−1, where

J =


J(λ1) 0 . . . 0

0 J(λ2) . . . 0
...

...
. . .

...

0 0 . . . J(λs)

 ,

where s ≤ N is the number of distinct eigenvalues and J(λj) has the shape

J(λj) =


J1(λj) 0 . . . 0

0 J2(λj) . . . 0
...

...
. . .

...

0 0 . . . Jtj (λj)

 ,

where Ji(λj) has the shape

Ji(λj) =


λj 1

. . .
. . .

. . . 1

λj

 .

Next we state some properties related to Jordan forms from [28] that we will employ throughout this

section:

1. The sum of the sizes of the tj blocks Ji(λj) is equal to the multiplicity mj of the eigenvalue λj .

2. The largest of the Ji(λj) has size kj × kj , where kj is called the index of the eigenvalue λj .

3. Any function of a non-diagonalizable matrix A can be written as:

f(A) =

s∑
i=1

ki−1∑
j=0

f (j)(λi)Zij , (27)

where Zij = (A−λiI)
jGi

j! , where Gi, which is independent of the choice of B, is given by Gi =

Bi(B
−1)i, which are defined by partitioning B and B−1 conformably to the partition of J into

its s Jordan segments:

B = [B1 · · ·Bs] , J =


J(λ1)

. . .

J(λs)

 , B−1 =


B−1

1
...

B−1
s

 .

4. If the eigenvalue λj has multiplicity mj = 1, then kj = 1 and Gj is given by xyT

yT x
, where x and

yT are the left- and right-eigenvalue belonging to λj respectively.

28



Discrete time We first prove the discrete-time case. We need to assume that P is aperiodic and

irreducible, otherwise there is no unique steady state π reachable from every initial condition. We

insert f(P) = Pk in (27) and find:

Pk =
s∑

i=2

ki−1∑
j=0

λk−j
i

k!

(k − j)!
Zij +

k1−1∑
j=0

λk−j
1

k!

(k − j)!
Z1j .

Because λ1 = 1 has multiplicity one (P is an aperiodic irreducible stochastic matrix) it follows from

properties 1 and 2 above that 1 ≤ k1 ≤ m1 = 1 and thus we find:

Pk =
s∑

i=2

ki−1∑
j=0

λk−j
i

k!

(k − j)!
Zij + Z10 = G1 +

s∑
i=2

ki−1∑
j=0

λk−j
i

k!

(k − j)!
Zij ,

where we have substituted Z10 = (P−I)0Gi

0! = G1. It follows from property 4 that G1 = xyT

yT x
and since

x is equal to the all one vector u and yT is equal to π, we have yTx = 1 and G1 = uπ. We find that

Pr[G[k] = G|X[0] = g] =
∑
ω∈ΩG

(
Pk
)
gi
=
∑
ω∈ΩG

πω +
s∑

i=2

ki−1∑
j=0

λk−j
i

k!

(k − j)!
(Zij)gω, (28)

where all terms in the second sum decay exponentially in k, because |λi| < 1, for i > 1 (P is aperiodic

and irreducible) and the factorial terms are a polynomial of order j, which is bounded by ki−1 ≤ MN .

Continuous time Similarly, in the continuous-time case, we need to assume that the steady state is

unique. Under this assumption, the Markov graph has a single strongly connected component, which

is reachable from every node. A unique steady state implies that the multiplicity m1 of the eigenvalue

λ1 = 0 of Q is equal to one. We insert f(Q) = eQt in (27) to find:

eQt =
s∑

i=2

ki−1∑
j=0

eλittjZij + eλ1tZ10,

where, as with P, the eigenvalue λ1 = 0 has multiplicity one such that only the term where j = 0

contributes. Additionally, the eigenvectors of λ1 are the same as for P above, so we find completely

analogue to the discrete case that:

eQt =

s∑
i=2

ki−1∑
j=0

eλittjZij + eλ1tZ10 = G1 +

s∑
i=2

ki−1∑
j=0

eλittjZij = uπ +

s∑
i=2

ki−1∑
j=0

eλittjZij .

Thus, since (uπ)ij = πj we find

Pr[G(t) = G|X(0) = g] =
∑
ω∈ΩG

(
eQt
)
gω

=
∑
ω∈ΩG

πω +
s∑

i=2

ki−1∑
j=0

eλittj(Zij)gω, (29)

where the second sum decays exponentially because all λi > 1 have negative real part [12], and j is

bounded from above by ki − 1 ≤ MN . While the second sum in both the discrete-time case (28)

and the continuous-time case (29) decays exponentially, this decay can still be very slow. If some |λi|
are close to 1 the decay of λk

i is slow in the discrete case and similarly if the real part of λi is only

slightly below zero in the continuous case the decay of eλit is slow. Additionally, if the eigen-structure

is particularly degenerate, the polynomials in j that are present in the second sum in (28) and (29)

can be of high order, slowing down the decay as well.
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A.3 Proof of Lemma 6

Proof. We introduce the concept of deterministic nodes. The deterministic nodes of the 2-walker

Markov graph are those nodes that have the property that every walk starting in one of them is a

path until a node from Ωmn is reached. Since paths do not contain cycles, this means a cycle cannot be

reached from a deterministic node without first reaching a node in Ωmn. In Figure 9 the deterministic

nodes are shown in red. The nodes that are not deterministic are called non-deterministic nodes,

shown in blue in Figure 9. Figure 9 illustrates that nodes in Ωmn can be both deterministic and

non-deterministic, depending on the structure of the Markov graph. The most important property

of deterministic nodes for our purposes is that from any deterministic node, we reach a state in Ωmn

in less than N2 steps with probability one. This follows directly because Q2 has N2 states and the

longest path on N2 nodes has length N2. This bound is very loose, since |Ωmn| = N and long path

structures are not possible in G2 due to the walker independence.

1 2 3 Ωmn

1

2

3

4

5

Ωmn

a

b

c

1

2 3

4

Ωmn

Figure 9: Three Markov graphs illustrating deterministic (red) and non-deterministic nodes (blue).

From each deterministic node every walk is a path until a node in Ωmn is reached. In a) node Ωmn

is deterministic, while in b) and c) Ωmn is non-deterministic. Additionally, a) and c) illustrate that

the longest deterministic path and the longest path from a non-deterministic node to Ωmn contain at

most the number of nodes N in the Markov graph.

We proof Lemma 6 by considering two cases: l(W ) ≤ 2N2 and l(W ) > 2N2. We construct our

exponential upper-bound such that it is larger than one for k ≤ 2N2. Then, the upper bound on

Pr[l(W ) = k] holds trivially for those values of k and we only need to consider the case l(W ) > 2N2.

If l(W ) is k = N2 + s, at least the first s nodes of the walk W must be non-deterministic, since

the maximum number of deterministic nodes in W is N2. It is possible that from some set of (non-

deterministic) nodes S, no nodes from Ωmn can be reached. When considering inter-meeting walks W ,

no nodes from S can be part of W since W is inherently conditioned on reaching Ωmn after l(W )− 1

steps. Therefore, we remove the nodes in S from our consideration without loss of generality and

assume that Ωmn can be reached from any node in G2, which requires that there has to be at least
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one path with non-zero probability to a node in Ωmn from each non-deterministic node. The longest

of such paths has length at most N2. Therefore, the probability of staying in non-deterministic nodes

for N2 steps can be bounded from above by some p < 1 independent of which non-deterministic node

the first step is taken from. Then, the probability of staying in non-deterministic states for s steps

can be upper-bounded by1 p⌊
s

N2 ⌋ if s > N2. Thus, for k > 2N2 we find that:

Pr[l(W ) = k] ≤ Pr[W contains k −N2 non-deterministic nodes] ≤ p⌊
k−N2

N2 ⌋ ≤ p
k−N2

N2 −1

and because k−N2

N2 − 1 ≤ 0 for k ≤ 2N2, the bound p
k−N2

N2 −1 ≥ 1 for k ≤ 2N2 and is thus valid for all

k. After rewriting:

p
k−N2

N2 −1 = p
k

N2−2 =
1

p2
p

k
N2 = Ce

log(p)

N2 k = Ce−ak,

where log(p) = −aN2 for some real, finite a > 0 since 0 < p < 1 and Lemma 6 is proven.

A.4 Proof of Theorem 7

Proof. We apply the law of total probability, conditioned on the length (number of states) l(W ) of

the inter-meeting walk W the 2-walker process performs before the walkers meet again:

Pr[Tm,n > x] =

∞∑
k=2

Pr[l(W ) = k] Pr[Tm,n > x|l(W ) = k]

=

∞∑
k=2

Pr[l(W ) = k] (1− Pr[Tm,n ≤ x|l(W ) = k]) .

We now condition the probability Pr[Tm,n ≤ x|l(W ) = k] on all inter-meeting walks w̃ ∈ Wk,

where Wk is the set of inter-meeting walks of length k. The condition on w̃ and l(W ) = k simplifies

to a condition on only w̃ since w̃ has length k and with the law of total probability we find:

Pr[Tm,n > x] =

∞∑
k=2

Pr[l(W ) = k]

1−
∑

w̃∈Wk

Pr[w̃|l(W ) = k] Pr [Tm,n ≤ x|w̃]


=

∞∑
k=2

Pr[l(W ) = k]

1−
∑

w̃∈Wk

Pr[w̃|l(W ) = k] Pr

[
k−1∑
i=1

Tw̃i,w̃i+1 ≤ x

]
=

∞∑
k=2

Pr[l(W ) = k]
∑

w̃∈Wk

Pr[w̃|l(W ) = k]

(
1− Pr

[
k−1∑
i=1

Tw̃i,w̃i+1 ≤ x

])
. (30)

where k − 1 = l(W ) − 1 is the number of transitions in the walk w̃ and Tw̃i,w̃i+1 is the random time

it takes to transition from w̃i to w̃i+1, which is exponentially distributed with rate (Q2)w̃i,w̃i+1 ≥ Θ.

Therefore, the probability Pr
[∑k−1

i=1 Tw̃i,w̃i+1 ≤ x
]
is lower bounded by the probability Pr

[∑k−1
i=1 Y (Θ) ≤ x

]
,

where Y (Θ) is exponentially distributed with rate Θ. Indeed Θ is the smallest rate in the infinitesimal

generator and therefore the random variable Y (Θ) has the same distribution as the largest sojourn

time in the Markov chain. The sum
∑k−1

i=1 Y (Θ) is distributed as an Erlang distribution [12, p.45]

1The floor function is defined as ⌊x⌋ = n where n is the largest integer such that n ≤ x.
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with shape parameter k − 1 and rate Θ; therefore, Pr
[∑k−1

i=1 Y (Θ) ≤ x
]
= FErlang(x; k − 1,Θ) =

1−
∑k−2

r=0
1
r!e

−Θx(Θx)r. Applying these arguments to (30), we find:

Pr[Tm,n > x] =
∞∑
k=2

Pr[l(W ) = k]
∑

w̃∈Wk

Pr[w̃|l(W ) = k]

(
1− Pr

[
k−1∑
i=1

Tw̃i,w̃i+1 ≤ x

])

≤
∞∑
k=2

Pr[l(W ) = k]
∑

w̃∈Wk

Pr[w̃|l(W ) = k]

(
1− Pr

[
k−1∑
i=1

Y (Θ) ≤ x

])

=

∞∑
k=2

Pr[l(W ) = k] (1− FErlang(x; k − 1,Θ))

=
∞∑
k=2

Pr[l(W ) = k]
k−2∑
r=0

1

r!
e−Θx(Θx)r.

We substitute the result from Lemma 6 and reverse the order of summation:

Pr[Tm,n > x] ≤
∞∑
k=2

Ce−ak
k−2∑
r=0

1

r!
e−Θx(Θx)r =

∞∑
r=0

∞∑
k=r+2

Ce−ak 1

r!
e−Θx(Θx)r

= Ce−Θx
∞∑
r=0

( ∞∑
k=r+2

e−ak

)
1

r!
(Θx)r = Ce−Θx

∞∑
r=0

(
e−a(r+1)

ea − 1

)
1

r!
(Θx)r

= C
e−a

ea − 1
e−Θx

∞∑
r=0

e−ar

r!
(Θx)r = C

1

ea(ea − 1)
e−ΘxeΘxe−a

, (31)

Hence, we arrive at

Pr[Tm,n > x] ≤ C
1

ea(ea − 1)
e−(1−e−a)Θx = C̃e−(1−ξ)Θx,

where C̃ < ∞ and 0 < ξ = e−a < 1, which completes the proof.

B Restriction to a graph G

To keep the model as general as possible, we allowed the walker policies Qm to be the Laplacian of any

single-walker Markov graph Gm with node set N . In real-world scenarios, we may be interested in a

situation in which walkers are restricted to move on an underlying graph G, instead of the unrestricted

vertex set. Then, not every policy Qm will be possible because the single-walker Markov graph Gm

may contain a link between two nodes i and j that are not connected in the underlying graph G.

The walkers in CRWIG can be restricted to an underlying graph G, by imposing that Gm cannot

have links other than the ones in G. We still allow the links to be weighted and non-symmetric as in

the general case. The underlying graph G determines which links do not exist, but not their weights.

To restrict the walker policy Qm only to the links in G, we remove the links from node i to node j

in Gm if there is no link from i to j in G. We will write Gm(G) for the m-th walker single-walker

Markov graph Gm restricted to G and Am(G) for its adjacency matrix. We obtain

Am(G) = A ◦Am, (32)
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where ◦ indicates the Hadamard (or element-wise) product and A is the adjacency matrix of the

unweighted underlying graph G. The elements (Am(G))ij are equal to (Am)ijaij = (Am)ij1i∼j , where

the indicator function 1i∼j is 1 if there is a link from i to j in G and 0 otherwise. The restricted

walker policy Qm(G) is then again minus the Laplacian of the restricted single-walker Markov graph

Gm(G). We emphasize that not all walkers have to be restricted in this setting. Additionally, different

walkers can be given different restrictions. This could, for example, correspond to a traffic network

where some walkers are using public transport, some are driving a car and some are on foot. Each

of these groups could then be restricted to a different underlying graph on the same vertex set N .

Restricting all walkers to the same underlying graph G is equivalent to the base case in the original

discrete RWIG model [1].

C Blockmatrix structure of state-transitions

It follows from construction that the index of the matrices are in agreement with (1). Each walker

added per iteration step corresponds to adding a digit in front of the base N representation of the

state (e.g. x3x2x1 becomes x4x3x2x1). The base-N state numbering (1) orders the states as

1111, . . . , 1NNN, 2111, . . . 2NNN, 3111, . . . , NNNN.

Each possible configuration of walkers 1, 2 and 3 with walker 4 in state 1 comes before each possible

configuration of walkers 1, 2 and 3 with walker 4 in state 2 and so on. This is the reason for the block

structure of the iterative process of adding walkers. See for example the case below which extends a

system with 2 walkers on two nodes to 3 walkers on two nodes. The elements x2(i)x1(i), x2(j)x1(j)

indicate the transitions from state x2(i)x1(i) to state x2(j)x1(j). The four blocks correspond to walker

3 moving from the node indicated on the left of the block to the node indicated at the top. When this

transition is added to the base-N state numbering x3(i)x2(i)x1(i), x3(j), x2(j), x1(j) it can be seen

that the enumeration order is preserved.

1 2

1


11, 11 11, 12 11, 21 11, 22

12, 11 12, 12 12, 21 12, 22

21, 11 21, 12 21, 21 21, 22

22, 11 22, 12 22, 21 22, 22



11, 11 11, 12 11, 21 11, 22

12, 11 12, 12 12, 21 12, 22

21, 11 21, 12 21, 21 21, 22

22, 11 22, 12 22, 21 22, 22



2


11, 11 11, 12 11, 21 11, 22

12, 11 12, 12 12, 21 12, 22

21, 11 21, 12 21, 21 21, 22

22, 11 22, 12 22, 21 22, 22



11, 11 11, 12 11, 21 11, 22

12, 11 12, 12 12, 21 12, 22

21, 11 21, 12 21, 21 21, 22

22, 11 22, 12 22, 21 22, 22



=

33





111, 111 111, 112 111, 121 111, 122

112, 111 112, 112 112, 121 112, 122

121, 111 121, 112 121, 121 121, 122

122, 111 122, 112 122, 121 122, 122

111, 211 111, 212 111, 221 111, 222

112, 211 112, 212 112, 221 112, 222

121, 211 121, 212 121, 221 121, 222

122, 211 122, 212 122, 221 122, 222

211, 111 211, 112 211, 121 211, 122

212, 111 212, 112 212, 121 212, 122

221, 111 221, 112 221, 121 221, 122

222, 111 222, 112 222, 121 222, 122

211, 211 211, 212 211, 221 211, 222

212, 211 212, 212 212, 221 212, 222

221, 211 221, 212 221, 221 221, 222

222, 211 222, 212 222, 221 222, 222


D Tensor formulation of the multi-walker process

In Section 2, we have described the structure of the NM × NM Markov graph adjacency matrix A
in (6) and of the NM ×NM infinitesimal generator Q in (8). Instead of working in the matrix space

RNM×NM
, we can reformulate the adjacency matrix A and the infinitesimal generator Q as rank-2M

tensors in the R

2M times︷ ︸︸ ︷
N ×N × · · · ×N space. A similar approach has been presented in [29, Sec. 2.2]

and has been employed for the hitting times calculations in [30]. We consider the tensor formulation,

because it can lead to significant computational advantages [31–33]. Firstly, due to the nice structure

of our process, the tensors can be stored more efficiently in memory (MN2 versus N2M ). Secondly,

tensor operations can be applied more efficiently on the rank-2M tensor than equivalent matrix oper-

ations on the NM ×NM matrix.

To write the NM ×NM matrices in tensor form, we first define as in [31, sec. B] the outer product

□ between two tensors as a generalization of the Kronecker product ⊗ between two vectors. Given

a column vector v ∈ Rn1 and a row vector wT ∈ Rn2 , their Kronecker product v ⊗ wT is a n1 × n2

matrix. Similarly, given a tensor B ∈ Rn1×n2×n3 and a tensor C ∈ Rd1×d2×d3 , their outer product

B□C is a n1 × n2 × n3 × d1 × d2 × d3 tensor. In particular, the element of the outer product tensor is

(B□C)i1i2i3j1j2j3 = Bi1i2i3Cj1j2j3 . (33)

The tensors in the R

2M times︷ ︸︸ ︷
N ×N × · · · ×N space have the same elements as the matrices A and Q.

We define the tensor representations TQ and TA of the multi-walker infinitesimal generator Q and the

adjacency matrix A of its Markov graph by assigning the elements of Q and A, respectively:

(TQ)x1(i)x1(j)x2(i)x2(j)...xM (i)xM (j) = Qij . (34)

(TA)x1(i)x1(j)x2(i)x2(j)...xM (i)xM (j) = Aij . (35)

We consider the multi-walker infinitesimal generator Q first. Ignoring the diagonal, there is some m

with xm(i) ̸= xm(j) and the tensor element

(TQ)x1(i)x1(j)x2(i)x2(j)...xM (i)xM (j) = (Qm)xm(i)xm(j)
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if for all k ̸= m, we have xk(i) = xk(j) and zero otherwise (see (2)). Using the tensor outer product

(33), we can write the tensor infinitesimal generator TQ as

TQ =
M∑

m=1

I□ · · ·□
m−th position︷︸︸︷

Qm □ · · ·□I︸ ︷︷ ︸
M terms

, (36)

where I is the N × N identity matrix. We consider an element from TQ defined in (36). There are

three cases: Firstly, the case, where one walker k changes state (i.e. xk(i) ̸= xk(j), but xm(i) = xm(j)

for all m ̸= k). Secondly, the case, where multiple walkers including walkers k and l change state (i.e.

xk(i) ̸= xk(j) and xl(i) ̸= xl(j)). Lastly, there is the case, where no walkers change state (the diagonal

elements). We show that in each case equation (34) holds.

Case 1: one walker moves When one walker k changes state, then xk(i) ̸= xk(j), but xm(i) =

xm(j) for all other walkers m ̸= k. Looking at the terms of the sum in (36), all terms m ̸= k are zero,

because in the kth place there is an identity I. The value of the chain of outer products is the product

of the entries Ix1(i),x1(j) · . . . · Ixm−1(i),xm−1(j) · (Qm)xm(i),xm(j) · Ixm+1(i),xm+1(j) · . . . · IxM (i),xM (j), which

is zero when there is an identity in the k-th place since xk(i) ̸= xk(j). The remaining term has the

value (Qk)xk(i)xk(j), in agreement with (2).

Case 2: multiple walkers move When multiple walkers change state, then, for at least some k

and some l ̸= k, we have xk(i) ̸= xk(j) and xl(i) ̸= xl(j). With the same argument as in case 1, we

find that all terms m ̸= k in the sum are zero and also all terms m ̸= l in the sum are zero. This

means the element of TQ is zero, similar to the one in Q, because multiple transitions are not possible

at the same time in a continuous-time Markov process [12].

Case 3: no walkers move When no walkers move, the tensor element (TQ)x1(i)x1(i)x2(i)x2(i)...xM (i)xM (i) =

Qii corresponds to a diagonal element of the multi-walker infinitesimal generator. This time, each term

of the sum in (36) contributes and the sum reduces to
∑M

m=1(Qm)xm(i)xm(i), which is in agreement

with (2).

The adjacency matrix A of the multi-walker Markov graph G can be expressed in a similar form:

TA =

M∑
m=1

I□ · · ·□
m−th position︷︸︸︷

Am □ · · ·□I︸ ︷︷ ︸
M terms

. (37)

In order to use the tensor representation to describe/simulate the evolution of the CRIWG in time,

we require a tensor equivalent of the operator eQt and a tensor equivalent of the state vector s(t). We
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start with the former and write, using Theorem 1 and (15), that

eQt = P(t) = P(t) =
1⊗

m=M

eQmt,

such that the elements can be written as

(eQt)ij = (P(t))ij =

M∏
m=1

(eQmt)xm(i),xm(j). (38)

If we define the exponential of the tensor TQt as the tensor whose elements are

(eTQt)x1(i)x1(j)x2(i)x2(j)...xM (i)xM (j) = (eQt)ij ,

then, from (38) and the definition of the tensor outer product (33), it follows that the tensor eTQt can

also be written as

eTQt =
M

□
m=1

eQmt. (39)

We then define the tensor Ts(t), corresponding to the state vector s(t) of the NM multi-walker

process, as a N ×N × · · · ×N rank-M tensor with elements

(Ts(t))x1(i),x2(i),...,xM (i) = (s(t))i =

M∏
m=1

(sm(t))xm(i), (40)

where we used (5). Using the definition of the tensor outer product (33) it follows that:

Ts(t) =
M

□
m=1

sm(t) =
M

□
m=1

sm(0)eQmt. (41)

The evolution of the multi-walker process can also be written in terms of the tensor contraction

operation ×[i1,j1],[i2,j2],...,[ik,jk] as defined in [31, sec. B]. The tensor contraction operator is a generaliza-

tion of the vector matrix product for tensors. The subscript indicates which pairs of indices [i, j] of the

two tensors are contracted. Consider two tensors A ∈ RN×N×···×N and B ∈ RN×N×···×N of rank RA

and RB respectively. The contraction operator ×[ai,bj ] is defined by the elements of C = A×[ai,bj ] B:

Ca1,...,ai−1,ai+1,...,aRA
,b1,...,bj−1,bj+1,...,bRB

=
N∑

n=1

Aa1,...ai−1,n,ai+1,...,aRA
Bb1,...bj−1,n,bj+1,...,bRB

.

For another example, consider the two N ×N matrices M1 and M2. The contraction operator ×[2,1] is

the well-known matrix product: (M1M2)ij =
∑N

n=1(M1)in(M2)nj = M1 ×[2,1] M2. If the contraction

operator contracts multiple pairs additional sums are added. The contraction operator ×[ai,bj ],[ak,bl],

when i < k, j > l, is defined by the elements of C = A×[ai,bj ],[ak,bl] B:

Ca1,...,ai−1,ai+1,...,ak−1,ak+1,...,aRA
,b1,...,bl−1,bl+1,...,bj−1,bj+1,...,bRB

=

N∑
n1=1

N∑
n2=1

Aa1,...ai−1,n1,ai+1,...ak−1,n2,ak+1,...,aRA
Bb1,...bl−1,n2,bl+1,...bj−1,n1,bj+1,...,bRB

.
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The step to contracting more than two pairs is analogous to the step from contracting one pair to

contracting two pairs. Each additional contracted pair of indices adds an additional sum over all equal

values of those indices. With the tensor contraction operator, the tensor state vector Ts(t) in terms of

the tensor exponent eTQt is;

Ts(t) = Ts(0) × eTQt, (42)

where we write × as abbreviation of ×[1,1],[2,3],...,[k,2k−1],...[M,2M−1]. The elements are given by:

(Ts(t))i =
N∑

x1(j)=1

N∑
x2(j)=1

· · ·
N∑

xM (j)=1

(Ts(0))x1(j),x2(j),...,xM (j)(e
TQt)x1(j)x1(i)x2(j)x2(i)...xM (j)xM (i),

where we now denote the summation indices as xm(j), to illustrate the equivalence with the non-tensor

form:

(s(t))i =

NM∑
j=1

(s(0))j
(
eQt
)
ji
.

Since the tensor state vector Ts(t) is the tensor equivalent of the NM state space probability

vector s(t), which solves the Chapman-Kolmogorov equation defining the multi-walker Markov process,

equation (42) can be interpreted as the tensor form of the Chapman-Kolmogorov equation (4). The

tensor representation allows for the direct computation of the exact M -walker ensemble state vector

from the single-walker processes in Equation (41). This is a very tedious operation with the NM × 1

state vector s(t), due to the enumeration of the M -walker states.
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