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• The spreading time resembles a lognormal-like distribution with deep tails.
• The average spreading time is not monotonous with the effective infection rate.
• The average spreading time scales logarithmically as a function of the network size.

a r t i c l e i n f o

Article history:
Received 14 June 2017
Received in revised form 5 October 2017
Available online 11 December 2017

Keywords:
SIS epidemics
Spreading time
Heavy-tailed distribution

a b s t r a c t

In a Susceptible–Infected–Susceptible (SIS) process, we investigate the spreading time Tm,
which is the time when the number of infected nodes in the metastable state is first
reached, starting from the outbreak of the epidemics. We observe that the spreading time
Tm resembles a lognormal-like distribution, though with different deep tails, both for the
Markovian and the non-Markovian infection process, which implies that the spreading
time can be very long with a relatively high probability. In addition, we show that a
stronger virus, with a higher effective infection rate τ or an earlier timing of the infection
attempts, does not always lead to a shorter average spreading time E[Tm]. We numerically
demonstrate that the average spreading time E[Tm] in the complete graph and the star
graph scales logarithmically as a function of the network size N for a fixed fraction of
infected nodes in the metastable state.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Epidemic spreading on networks is a ubiquitous process, which can describe the information spreading on social
networks [1], emotions [2], biological diseases [3] and failures in networked systems [4]. The Susceptible–Infected–
Susceptible (SIS) model is a simple epidemic model where each infected item can be cured, and becomes susceptible again
after recovering from the disease. Since the epidemic is a time-dependent spreading process, we are naturally concerned
with characteristic times that can be applied to predict or control the spreading process. In spite of the simplicity of the SIS
process, unfortunately, only a few results for exact SIS times on a generic graph have been presented [5, p. 460].

In the Susceptible–Infected–Susceptible (SIS) epidemics on a graph, the ratio between the infection rate β and the curing
rate δ is called the effective infection rate τ = β/δ. The SIS model features a phase transition [6] around the epidemic
threshold τc . Viruses with an effective infection rate τ above the epidemic threshold τc can infect a sizeable portion of the
population on average and stay for a long time in the network. This long period is called the metastable state. Specially,
in the Markovian SIS model, the infection processes and the curing processes are Poissonian. A first-order mean-field
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approximation of the epidemic threshold τ
(1)
c = 1/λ1(A), where λ1(A) is the spectral radius of the adjacency matrix A, was

shown [3,7] to be a lower bound for the epidemic threshold, τ (1)
c < τc .

Due to the existence of an absorbing state, which is the overall healthy or disease-free state in the SIS process, any initial
infection will ultimately extinguish in any finite graph. The time until the network reaches the all-healthy state is called the
extinction time, or alternatively, the time to absorption or the survival time [8]. When the effective infection rate τ is below
the epidemic threshold τc , the infectious process dies out exponentially fast [9,10], which is called quick die out or early
extinction. A sufficient condition for slow die out [11] is that the effective infection rate τ is above the epidemic threshold
τc . If the effective infection rate τ > τc , the infection stays very long on average in any sufficiently large network [12]. The
average survival time is dominated by the second largest eigenvalue of the infinitesimal generator of theMarkov chain [8,13].

In real-world large graphs, the extinction time is much longer than the actually observed time that an epidemic lasts.
Therefore, besides the extinction time, we are interested in characteristic times before the absorbing state is reached. Van de
Bovenkamp and Van Mieghem [14] showed that the average hitting time to the metastable state can be computed by using
a uniformed embedded Markov chain for the complete graph and the star graph. The modified SIS model in [14] removes
the absorbing state directly, implying that the process prevents itself from extinction and restarts to reach the metastable
state, from one infected node. Thus, the average time to the metastable state is slightly overestimated, because the restarted
process with one infected node usually needs a longer time to reach the metastable state.

In this paper, we define the spreading time Tm as the timewhen the number Im of infected nodes in themetastable state is
first reached, starting from one initially infected node. The spreading time indicates the spreading velocity of the SIS process
in the early stage and unveils the transient, time-dependent properties of epidemic activity before the metastable state. In
practice, the average spreading time reflects the time interval in which the virus can be eradicated relatively easily.

Though it is intractable to estimate the spreading time in a general graph analytically, we study the distribution of the
spreading time and the factors that influence the spreading time. Based on the simulations, we investigate the distribution
of the spreading time Tm both for the Markovian and non-Markovian infection process, and further investigate the effect of
the effective infection rate τ , the network size N and the non-Markovian process on the average spreading time E[Tm].

This paper is organized as follows. Section 2 introduces the definition and determination of the spreading time. We
investigate the distribution of the spreading time Tm in Section 3. In Section 4, we further present the effect of the effective
infection rate τ , the non-Markovian infection times and the network size N on the average spreading time. We conclude the
paper in Section 5. We define the metastable state and the stability ts in a SIS process in Appendix A. Appendix B presents
the procedure of the simulator for SIS epidemics (SSIS).

2. Definition and determination of the spreading time

We first propose a preferred definition of the metastable state and the stability time ts as follow:

Definition 1. In an epidemic process, the metastable state is reached at the stability time ts, which is the smallest time
obeying dy(t)

dt

⏐⏐
t>ts

< ϵ, where the average fraction of infected nodes is y(t) = 1
N E[I(t)], with I(t) ≥ 1 is the number of

infected nodes at time t , and ϵ is a small positive real number that needs to be agreed upon.

A more detailed discussion on the determination of the stability time is presented in Appendix A.

Definition 2. The spreading time Tm is defined as the first time when the number Im = I(ts) of the infected nodes in the
metastable state is reached, starting from one initially infected node.

Specifically, the probability distribution of the spreading time Tm in the graph Gwith N nodes follows

Pr[Tm ≤ t] =
N∑

n=1

Pr[Tm ≤ t|I(ts) = n] Pr[I(ts) = n]. (1)

Thus, the average spreading time E[Tm] follows from (1) as

E[Tm] =
N∑

n=1

E[THn ] Pr[I(ts) = n]. (2)

where the hitting time THn = Tm
⏐⏐
I(ts)=n

is the first time when the process reaches the state with n infected nodes. After
differentiating both sides of (1) with respect to t , we obtain the probability density function (pdf) of the spreading time
fTm (t):

fTm (t) =
N∑

n=1

fTm (t|I(ts) = n) Pr[I(ts) = n]. (3)

Physically, the spreading time Tm describes the spreading velocity in the early stage of the spreading process, which
depends on the local topology around the initial spreaders. After Tm time units, the epidemic approximates the metastable
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Fig. 1. Illustration of the estimation scheme of the stability time ts in the prevalence via SSIS and the spreading time tm for one realization i(t). The
distribution of the number of infected nodes in the metastable state is shown in the right subgraph. The green line represents the average number of
infected nodes with time based on 106 realizations. The time is measured in units of 1/δ. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

state and already infected a substantial part of the population. Thus, the action of control is preferred to be taken earlier than
the average spreading time E[Tm]. The average spreading time together with the expected number of infected individuals in
the metastable state can guide public health officials in establishing the amount of resources and the available time for the
implementation of their mitigation strategies.

Due to the limitation of the analytical methods, an event-driven simulator SSIS (see Appendix B) for the SIS spreading
process on a network is implemented based on the Gillespie algorithm [15] to estimate the spreading time. For an unaltered
graph and a fixed effective infection rate τ , the epidemic begins with one initially infected node and lasts for the period
of tlimit time units which is ensured to be long enough to make the spreading process reach the metastable state but not
the absorbing state. We record every time point tk when the kth event happens, as well as the corresponding number of
the infected nodes i(tk) immediately after the kth event. Assume that 0 < t1 ≤ t2 ≤ · · · ≤ tm < tlimit , then m events
have occurred on the timeline before the time limit tlimit . After identifying the metastable state and the stability time ts (see
Appendix B), we then determine the spreading time tm in each realization. The spreading time can be determined from the
time tm when the number of infected nodes i(tm) first equals to the number i(ts) of infected nodes at the stability ts of the
metastable state. The random variable Tm corresponds to the spreading time tm in all realizations that do not go extinct.
Fig. 1 illustrates the estimation scheme of the spreading time ts in a complete graph K50, which also shows the Gaussian-like
distribution of the number of infected nodes in the metastable state.

3. Distribution of the spreading time Tm

We first investigate the distribution of the spreading time Tm in the Markovian SIS process. The hitting time THi is the
first time when the Markov process reaches the state with i infected nodes, starting from one initial spreader. The epidemic
process in the complete graph KN is a birth and death process. Assume that the time is measured in units of 1/δ, the average
hitting time E[THi ] from one initial spreader can be analytically derived [14] as

E[THi ] =

i−1∑
j=1

i−j−1∑
k=0

(N − i+ k)!τ j+k−i

j(N − j)!
(4)

in the modified SIS (MSIS) model [16], where the absorbing state is removed in MSIS Markovian chain. However, a hitting
time analysis is tractable when the spreading process can be described as a simple, analytically tractable Markov chain [14].

Fig. 2 exemplifies the average hitting time E[THi ], from one initial spreader, as a function of the fraction y = i
N of the

infected nodes in the complete graph K50 with different effective infection rate τ . NIMFA approximates the average number
of infected nodes in themetastable state for a complete graph KN with N nodes as is = ⌊N

(
1− 1

τ (N−1)

)
⌋. When the effective

infection rate τ is above the epidemic threshold τc , the average hitting time E[THi ] exhibits two different regimes in the
average fraction y of infected nodes as shown in Fig. 2. In Regime 1, where y < is

N , the average hitting time E[THi ] increases
exponentially-like as eκy, where the rate κ decreases with the effective infection rate τ . In Regime 2, where y > is

N , the
average hitting time E[THi ] increases faster than an exponential function.

Fig. 2 suggests that the average hitting time E[THn ] scales approximately exponentially with the number n of infected
nodes around the average number E[I(ts)] of infected nodes in the metastable state. Assuming that the hitting time THn
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Fig. 2. The average hitting time E[THi ] to the state with i infected nodes in the complete graph K50 with different effective infection rate τ , given that there
is one initially infected node. The average fraction of infected nodes in the metastable state via NIMFA is marked.

Fig. 3. The average hitting time E[THi ] to the state with i infected nodes in the star graph K1,49 with different effective infection rate τ , given that there is
one initially infected node [14]. The solid line represents the process started from a leaf, and the dash line represents the process started from the center.
The average fraction of infected nodes is

N in the metastable state via NIMFA is marked.

with small variance is correlated to the number n of infected nodes THn ∝ eκn, the spreading time can be regarded as the
random variable Tm(I(ts)) ≈ eκ I(ts)+b, where the number of the infected nodes I(ts) is approximately a Gaussian-like random
variable [16] with probability density function Pr [I (ts) = n] ≈ 1

σ̃
√
2π

exp
[
−

(n−µ̃)2

2σ̃2

]
. Therefore, we may infer that the pdf of

the spreading time is approximately given by

fTm (t) ≈
1

κtσ̃
√
2π

exp

[
−

( 1
κ
(log t − b)− µ̃)2

2σ̃ 2

]
=

1

σ t
√
2π

e−
(log t−µ)2

2σ2 , (5)

which is a lognormal distribution by replacing µ = κµ̃+ b and σ = κσ̃ .
We first show the spreading time Tm started from one initially infected node in two typical graphs including a complete

graph K50 and a star K1,49 with N = 50 nodes. Figs. 4 and 5 show the spreading time Tm for two values of normalized
effective infection rate x = τ/τc on a log–log scale, based on more than 107 realizations. For both graphs, the distribution
of the spreading time is fitted by a lognormal pdf (5) well around the peak probability, with some deviations in the tail. The
positive skewness of the distribution, shown in Figs. 4–5, means that the average spreading time E[Tm] is above the mode of
the spreading time, which is caused by the rapidly increasing average hitting time E[THn ] in (2), when the number of infected
nodes n exceeds the average number is of infected nodes in the metastable state. Comparing the distributions with different
normalized effective infection rate x in Figs. 4 and 5, the probability of the small value of the spreading time Tm decreases or
even disappears with increasing effective infection rate τ .

Further, Figs. 6–8 show the distributions of the spreading time Tm in an Erdős–Rényi (ER) randomgraph, a rectangle lattice
with N = 50 nodes and a BA (Barabási–Albert) power law graph with N = 1000 nodes, respectively, where the distribution
of the spreading time is influenced by the position of the initially infected spreader and the effective infection rate τ . Taking
the lognormal distribution as a reference distribution in the quantile–quantile plots, we find the spreading time also fits
the lognormal pdf well when the value of the spreading time is not very large, but deviates in the tail, with a heavier tail
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Fig. 4. The distribution of spreading time Tm in the complete graph K50 with the effective infection rate x, which is based onmore than 5×107 realizations.
Both axes are on log-scale while only x-axis in the subgraph is on log-scale. The skewness of the distribution is 4.8 for x = 2 and 11.4 for x = 3.

Fig. 5. The distribution of spreading time Tm in the star K1,49 with the effective infection rate x, which in based on more than 107 realizations. Both axes
are on log-scale while only x-axis in the subgraph is on log-scale. The skewness of the distribution is 11.4 for x = 5 and 15.3 for x = 7.

than the lognormal distribution. Fig. 6 presents the distribution of the spreading time Tm in 103
∼ 107 realizations for a

connected ER random graph G0.2(50). We observe that the deep tails can be reached only when the number of realizations
is extremely large (over 106 realizations). If the number of realizations is not large enough, the spreading time is restricted
around its average without extreme values. Then, the good fit of the distribution by a lognormal pdf may lead to an incorrect
conclusion that the spreading time is precisely lognormal.

We also observe that the more regular the graph is, the better the distribution of spreading time Tm fits a lognormal pdf.
That regularity agrees with the governing rule of a lognormal, as the limit distribution of a sum of the logarithm of random
variable that each does not differ much [5]. In the star or the power-law graph, viruses usually need more time to infect one
more node with a very small degree. Fig. 3 for a star graph shows that the function of the hitting time THi as the number
of infected nodes i increases faster than an exponential around is, which may lead to a heavier tail in the distribution of
the spreading time, as shown in Fig. 5. We also mark the stability time ts via simulation in Figs. 6–7, which shows that the
stability time ts lies closely to the tail of the distribution of the spreading time Tm, and is larger than the average spreading
time E[Tm].

The infection time is exponentially distributed in the classic Markovian SIS process. More generally, we extend the
investigation of the spreading time Tm in a non-Markovian process, which is more common in real-world situations, such as
information spread in online social networks and real diseases with incubation periods [17]. We assume that the infection
and curing processes are independent in a non-Markovian SIS model, where the curing process is still Poissionian with rate
δ, and the infection process at each node infects its neighbors in a time T that is Weibullean, with the pdf

fT (x) =
α

b

( x
b

)α−1
e−(x/b)

α
. (6)

In order to compare the Weibull with the exponential distribution, we fix the average infection time to 1
β
, so that b =(

Γ
(
1+ 1

α

)
β
)−1

. Thus, the shape parameter α tunes the power-law start and the tail of the Weibull distributions with the
same mean infection time E[T ] = 1

β
.
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Fig. 6. The distribution of the spreading time Tm in a connected ER random graph G0.2 (50) with 50 nodes started from the initial spreader with dinitial = 4,
x = τ/τc = 5.

Fig. 7. The distribution of the spreading time Tm in a grid La(5, 10) with 5 × 10 nodes started from the initial node with dinitial = 2 and dinitial = 4,
x = τ/τc = 5 where τ = 1.35. The histogram is based on 5× 105 realizations.

Fig. 8. The distribution of the spreading time Tm in a power law graph G1000 with 1000 nodes starting from one initial node. The histogram is based on
2× 105 realizations.

Figs. 9 and 10 show the distribution of spreading time Tm as a function of the shape parameter α in a complete graph and
a star graph. The pdf of the spreading time remains heavy-tailed, and the shape parameter α shifts themode of the pdf of the
spreading time. The tail of the distribution of the spreading time tends to a lognormal pdf better with the increasing shape
parameter α in the complete graph.
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Fig. 9. The distribution of the spreading time Tm with the different shape parameter α in the complete graph K50 with the effective infection rate
x = τ/τc = 4. The exponential case (α = 1) is indicated in black. The histograms are based on more than 5× 105 realizations.

Fig. 10. The distribution of the spreading time Tm with the different shape parameter α in the star graph K1,49 with the effective infection rate x = τ/τc = 5.
The exponential case (α = 1) is indicated in black. The histograms are based on more than 5× 105 realizations.

The characteristic times with heavy-tailed distribution in Markovian processes have been observed in a few previous
research, such as the inter-record time in the extremal process [18], the time of ruin in the risk model [19] and the first
return time of randomwalks [20]. In this section, we show that the spreading time in the SIS model on a network resembles
a lognormal-like distribution with different deep tails, regardless of the process being Markovian or non-Markovian, the
network topology and the initially infected node.

4. The average spreading time e[tm] in sis epidemic on networks

4.1. Effect of the effective infection rate on E[Tm]

We study the average spreading time E[Tm] as a function of the effective infection rate τ in a SIS process, started from
a same initially infected node. Figs. 11 and 12 illustrate the function of the average spreading time E[Tm] with the effective
infection rate τ in a complete graph and a star. The average spreading time E[Tm] is notmonotonicwith the effective infection
rate τ but exhibits a maximum, which means that a stronger virus may not lead to a shorter average spreading time E[Tm].

To better explain the above phenomenon, we define the spreading capacity as c = E[Im]
E[Tm]

, which approximately indicates
the average number of nodes that can be infected in a time unit in the early state of the spreading. Thus, a higher effective
infection rate leads to a smaller reciprocal of the spreading capacity 1/c , which describes the average time units to infect per
node. Meanwhile, the average number of infected nodes E[Im] in the metastable state increases with the effective infection
rate τ in a network when the effective infection rate is above the epidemic threshold τc . Therefore, the average spreading
time E[Tm], which is represented by E[Tm] = E[Im]

c , is influenced by E[Im] and the spreading capacity c simultaneously,
exhibits the property of non-monotony with the effective infection rate τ . The sub-graphs of Figs. 11 and 12 illustrate the
reciprocal of the spreading capacity 1/c and the average number of infected node E[Im] in the metastable state as a function
of the effective infection rate τ .
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Fig. 11. The average spreading time E[Tm] as a function of the effective infection rate x = τ/τc in a complete graph K50 . The subgraph illustrates the
average number E[Im] of infected nodes in the metastable state and the reciprocal of the spreading capacity 1/c with the normalized effective infection
rate x = τ/τc .

Fig. 12. The average spreading time E[Tm]with x = τ/τc in a star graph K1,49 with 49 leaves, started from the center of the graph. The subgraph illustrates
the average number E[Im] of infected nodes in the metastable state and the reciprocal of the spreading capacity 1/c with the normalized effective infection
rate x = τ/τc .

4.2. Effect of the shape parameter α on E[Tm]

We now investigate the effect of the shape parameter α in the Weibull-distributed infection time with pdf (6) on the
average spreading time E[Tm], where theMarkovian infection process is a special casewithα = 1. As discussed in Section 4.1,
the average spreading time depends on the spreading capacity c and the average fraction y(ts) of infected nodes in the
metastable state, both of which are influenced by the shape parameter α.

The average number of infection attempts during a recovery time is a physically more general description than the
effective infection rate in non-Markovian epidemics [17]. Considering the distribution of the infection attempts over an
infectious period of a node, the occurrence of events is not uniformly distributed over an interval when the infection process
is non-Markovian. Forα < 1, the infection events tend to happen earlier than the Poisson-distributed events (forα = 1 )with
high probability, while for α > 1, the infection events tend to happen later. Therefore, the timing of the infection attempts
relative to the curing timeof a node influences the epidemics process even for the same average number of expected infection
attempts [8]. Physically, the reciprocal of the spreading capacity 1/c , which describes the average time units to infect per
node before the metastable state, also increases for a higher α.

Fig. 13 shows that the average fraction y(ts) of infected nodes in the metastable state depends on both the effective
infection rate τ and the shape parameter α. Specifically, the average fraction y(ts) of infected nodes in the metastable state
decreases with a higher parameter α for a same effective infection rate τ . Fig. 14 suggests that log(τ ) ∼ log(Ny(ts))

α
for the same

number Ny(ts) of infected nodes in the metastable state, which implies that τ α
∼ y(ts) in the complete graph when τ < 1.

This relation is consistent with the conclusion that the epidemic threshold τc(α) in the non-Markovian SIS epidemics scales
as (τ (1)

c )
1
α , where τ

(1)
c = τc(1) is the epidemic threshold in the Markovian SIS model [7]. As Fig. 14 shows in the star graph,

the Weibull shape factor α barely influences the fraction y(ts) of infected nodes in the metastable state when the effective
infection rate τ ≥ 1.

Fig. 15 shows that, both in the complete graph and the star, the average spreading time E[Tm] does not always increase
monotonically with the shape parameter α, but exhibits amaximumwhen the effective infection rate τ is small. For a higher
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Fig. 13. The average fraction of infected nodes in the metastable state for the same τ in the non-Markovian SIS process in a complete graph K50 and a star
graph K1,49 .

Fig. 14. The reciprocal of the parameter α as a function of log(τ ) in the complete graph K50 for the same fraction of infected nodes in the metastable state.

Fig. 15. The average spreading time E[Tm] as a function of the parameter α for the same effective infection rate τ in the complete graph K50 and in the star
graph K1,49 .

α, the timing of the infection attempts is postponed while the fraction of infected nodes in the metastable state decreases.
These two factors leads to the non-monotonicity of the average spreading time E[Tm] with the shape parameter α, and
implies that increasing the parameter α may not shorten the average spreading time E[Tm].
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Fig. 16. The average spreading time E[Tm] starting from one initially infected node as a function of the network size in the complete graph KN .

4.3. Effect of the network size on E[Tm]

We now investigate the effect of the network size N on the average spreading time E[Tm]. Figs. 16–18 show the average
spreading time E[Tm] starting fromone initially infected node as a function of the network size for a complete graph KN , a star
K1,N , and an ER randomgraphGp(N). Referring to the average fraction of infected nodes y(1)(ts) = 1− 1

(N−1)τ in themetastable
state in a complete graph with N nodes via NIMFA [16], we can estimate the effective infection rate τ = 1

(1−y(ts))(N−1)
for a

fixed average fraction y(ts) of infected nodes in the metastable state. Similarly, in an ER graph, the effective infection rate
τ = 1

(1−y(ts))(N−1)p
for a fixed fraction y(ts) of infected nodes in themetastable state is estimated by the NIMFA approximation

y(1)(ts) = 1− 1
(N−1)pτ , where the link probability p = 2 logN

N . The effective infection rate τ in a star is estimated by the NIMFA

approximation [16] that y(1)(ts) = N−τ−2

N+1

{
1

τ−1+1
+

1
τ−1+N

}
≈

τ
1+τ

when N ≫ τ .
We ignore the curing events and consider a Susceptible–Infected (SI) process in the complete graph. The average time

when Im nodes are infected [5] follows
∑Im

n=1
1

τn(N−n) , where y(ts) = Im
N ≈ 1− 1

Nτ
is fixed. Thus, we obtain

E[Tm] ≈
Im∑
n=1

1
τn(N − n)

=
2

τN

Im∑
n=1

1
n
∼ 2(1− y(ts)) log(y(ts)N), (7)

which scales logarithmically with the network size N . For an SIS process, Figs. 16–18 show that the average spreading time
E[Tm] via simulation approximately scales logarithmically as a log(N) + b for different fractions y(ts) of infected nodes in
the metastable state in a complete graph, an ER random graph and a star. The process needs more time to infect a same
fraction of nodes in a network with a larger size. The slope a of the fit is larger for a smaller fraction y(ts) of infected nodes in
the metastable state, which means the average spreading time E[Tm] tends to increase more quickly with the network size
N when the fraction y(ts) of infected nodes in the metastable state is smaller. We observe the similar trend of the average
spreading time with the network size N in the complete graph and the ER random graph. Actually, when the link density p
in an ER random graph is above the critical link density pc = logN

N , the graph is already dense and follows similar behaviors
as the complete graph [5].

5. Conclusion

We define the spreading time as the time when the number of infected nodes in the metastable state is first reached,
starting from the outbreak of an epidemic.

We investigated the distribution of the spreading time. The average hitting time E[THi ] to the state i around the average
number of infected nodes in the metastable state approximates an exponential function, where the number of infected
nodes in themetastable state resembles a Gaussian-like distribution. Thus, we observe that the spreading time Tm resembles
a lognormal-like distribution with different deep tails, which is exhibited both in the Markovian and the non-Markovian
infection process.

We further investigated the properties of the average spreading time. Because the number of infected nodes in the
metastable state and the spreading capacity are influenced by the effective infection rate simultaneously, the average
spreading time E[Tm] is not necessarily monotonous with the effective infection rate τ but exhibits a maximum, which
means that a higher effective infection rate τ may not lead to a shorter average spreading time E[Tm]. Similarly, both the
fraction of infected nodes in the metastable state and the timing of the infection attempts are influenced simultaneously by
the parameter α of the Weibullean infection times, which leads to non-monotonicity of the average spreading time E[Tm]
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Fig. 17. The average spreading time E[Tm] starting from one initially infected node with the average degree as a function of the network size in the ER
random graph G2pc (N).

Fig. 18. The average spreading time E[Tm] starting from the center as a function of the network size in the star graph K1,N .

with the shape parameter α. Finally, we showed that the average spreading time E[Tm] scales logarithmically as a function
of the network size N , given that the average fraction y(ts) of infected nodes in the metastable state is fixed.
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Appendix A. Determination of the metastable state and the stability time

We define a Bernoulli random variable Xi (t) ∈ {0, 1} as the infectious state of node i, where Xi (t) = 1 indicates that
node i is infected and Xi (t) = 0 indicates that node i is susceptible at time t . The prevalence y(t) = 1

N E[I(t)] of an SIS process
is the expected fraction of infected nodes at time t , where I(t) =

∑N
i=1Xi(t) is the number of infected nodes. We present

several definitions of the metastable state in the SIS process on finite graphs derived from the prevalence y(t) in this section.

Definition 1(a). In an epidemic process, the metastable state is reached at the stability time ts, which is the smallest time
obeying dy(t)

dt

⏐⏐
t=ts
= 0.

It seems reasonable to define the start of the metastable state when the prevalence y(t) reaches its first extremum.
However, the SIS prevalence y(t), started frommultiple initial spreaders, may pass multiple extrema in the transient regime
in a specific network,which demonstrates that Definition 1(a) is not precise. In addition, as shown in Fig. A.19, the prevalence
y(t) may monotonically decreases when the average number of infected nodes in the metastable state is smaller than the
number of the initially infected nodes. Therefore, this definition may not be adequate for the computation of the spreading,
starting from multiple initially infected nodes.
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Fig. A.19. The exact prevalences y(t|1) started from one infected node and the exact prevalence y(t|8) started from all infected nodes in a complete graph
K8 with the effective infection rate τ = 0.5. The red line represents the difference between the two prevalences y(t|1) and y(t|8). The green dash line
represents the prevalence y(t|1) excluding early extinction probability. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Definition 1(b). In an epidemic process, the metastable state is reached at the stability time ts, which is the smallest time
obeying dy(t)

dt

⏐⏐
t=ts
= 0, and |y(t)− y(ts)| ≤ ϵ for ∀t > ts + αE[Tabsorbing ], where 0 < α < 1. The positive real numbers α and

ϵ need to be agreed upon.

To remedy the defect of Definition 1(a), we try to bound the prevalence y(t) in an interval around the fraction y(ts) of
infected node at the stability time ts. However, the prevalence y(t) will inevitably exceed the bound because the prevalence
will reach an absorbing state y(t) = 0 finally. Therefore, it is hard to determine the two parameters ϵ and α that allows
|y(t)− y(ts)| ≤ ϵ for ∀t > ts + αE[Tabsorbing ].

Definition 1(c). In an epidemic process, the metastable state is reached at the stability time ts, which is the smallest time
obeying y(ts|i) = y(ts|N).

Because we cannot bound the prevalence y(t) in the metastable state, we consider to use the prevalence y(t|N) started
from I0 = N initial nodes as a reference curve and locate the start of the metastable state as the intersection point in time
with the prevalence y(t|I0 = i), where the prevalence y(t|N) with all initial spreaders converges fastest to the metastable
state.

Fig. A.19 shows that there exists a gap between the prevalences y(t|1) and y(t|N) in the metastable state due to the
different probability of extinction, which means that the prevalence started from a different number of initial nodes will
not intersect before the absorbing state. Fig. A.19 also shows that the difference between the two prevalences y(t|1) and
y(t|N) becomes narrower with the time, which implies that the decreasing rate of the prevalence is also influenced by the
initial infection condition.We expect that all the prevalences y(t|I0) with I0 ∈ (1, 2, . . . ,N) initially infected nodes will meet
only in the absorbing state, which demonstrates the infeasibility to locate the metastable state by the intersection of the
prevalence curves.

Definition 1(d). In an epidemic process, themetastable state is reached at the stability time ts, which is the first time obeying
dy(t)
dt

⏐⏐
t>ts

< 0.

Definition 1(d) means that the last extremum of the prevalence y(t) is located as the start of the metastable state,
and the average fraction of infected nodes monotonically decreases after the stability time ts. The prevalence y(t) is the
average fraction of infected nodes, which includes the realizations that die out early as well as the realizations that reach
the metastable state, thus

y(t) = y(t)
⏐⏐
I(t)>0 Pr[I(t) > 0] + y(t)

⏐⏐
I(t)=0 Pr[I(t) = 0]. (A.1)

The fraction y(t)
⏐⏐
I(t)>0 approximates gradually the fraction y(t) with the decreasing extinction probability Pr[I(t) = 0].

However, the extinction probability Pr[I(t) = 0] is hard to estimate in a general network mathematically.

Definition 1(e). In an epidemic process, the metastable state is reached at the stability time ts, which is the smallest time
obeying dy(t)

dt

⏐⏐
t>ts

< ϵ, where the average fraction of infected nodes is y(t) = 1
N E[I(t)], with I(t) ≥ 1 is the number of infected

nodes at time t , and ϵ is a small positive real number that needs to be agreed upon.
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Algorithm 1 Simulation for SIS epidemics
1: Inputs:

GN : the network with N nodes;
I0: the initial spreader(s);
β: the infection rate; δ: the curing rate;
tlimit : the time limit; tcurrent : the current time;

2: Outputs:
i(t): the number of infected nodes at time t;

3: Initialization:
tcurrent ← 0;
Insert the events Ωn,1(0) for the initially infected nodes on the timeline;

4: while tcurrent < tlimit do
5: Find the earliest un-handled event Ωn(t) on the timeline;
6: tcurrent ← t;
7: if Ωn(t) is an infection event then
8: if Node n is susceptible then
9: Node n becomes infected;

10: i(t)← i(t)+ 1;
11: Insert the event Ωn,0(t ′), where t

′

← t + rand(1/δ) and rand(1/δ) is an
exponentially distributed random time interval with mean 1/δ;

12: for each neighborm of node n do
13: Generate t

′′

← t + rand(1/β), where rand(1/β) is an exponentially
distributed random time interval with mean 1/β;

14: if t ′′ < t
′ then

15: Insert the event Ωm,1(t
′′

);
16: end if
17: end for
18: end if
19: else if Ωn(t) is a curring event then
20: Node n is cured;
21: i(t)← i(t)− 1;
22: end if
23: end while

In the above definition, we introduce the prevalence

y(t) = y(t)
⏐⏐
I(t)>0 =

y(t)
1− Pr[I(t) = 0]

(A.2)

subject to the condition that the process does not die out, where Pr[I(t) = 0] is the extinction probability. The prevalence y(t)
excluding early extinction, as illustrated in Fig. A.19, tends to stay almost constant instead of decaying as the prevalence y(t)
after reaching the extremum. We consider that the metastable state starts when the prevalence y(t) stays almost constant.
Actually, the prevalence y(t) excluding early extinction is a monotonically increasing function, which only stays constant
when t → ∞, as follows from general Markov theory [5]. The prescribed stringent parameter ϵ can be determined as a
small value. Definition 1(e) is also consistent with the definition of the quasi-stationary state, which leads to the almost
steady average number of infected nodes without extinction realizations.

In summary, we choose Definition 1(e) as our preferred definition of the metastable state and the stability time ts in this
paper.

Appendix B. Simulation for a SIS process on networks

There are two kinds of events in the SIS process which are infection events and curing events. All the events are marked
on a same timeline and are handled by the order of their time after the beginning of the simulation. We denote by Ωn,1(t)
the infection event that node n becomes infected at time t , and Ωn,0(t) the curing event that node n becomes cured at time
t . The process of SSIS (Simulation for SIS epidemics) is described by Algorithm 1.

We set the parameter ϵ = 0.01 in Definition 1(e) and run the SSIS repeat for an unaltered graph, a fixed effective infection
rate τ and the same initial condition. The prevalence can be obtained by y(t) = 1

N E[I(t)], where the random variable I(t)
denotes the number of infected nodes i(t) in all realizations. Then we determine the stability time ts as the first time when
y(ts+∆t)−y(ts)

∆t < ϵ, where the time sample interval ∆t = 0.01 in our simulations.
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