
Physica A 471 (2017) 325–336

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Evaluation of an analytic, approximate formula for the
time-varying SIS prevalence in different networks
Qiang Liu ∗, Piet Van Mieghem
Delft University of Technology, Faculty of EECS, P.O. Box 5031, 2600 GA Delft, The Netherlands

h i g h l i g h t s

• An approximate formula for the time-dependent SIS prevalence is evaluated.
• The formula is based on spectral decomposition of the Laplacian matrix of networks.
• The formula is comparable with mean-field approximations.
• The Riccati equation approximates the Markovian SIS prevalence well.
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a b s t r a c t

One of the most important quantities of the exact Markovian SIS epidemic process is the
time-dependent prevalence, which is the average fraction of infected nodes. Unfortunately,
the Markovian SIS epidemic model features an exponentially increasing computational
complexity with growing network size N . In this paper, we evaluate a recently proposed
analytic approximate prevalence function introduced in VanMieghem (2016).We compare
the approximate functionwith theN-IntertwinedMean-Field Approximation (NIMFA) and
with simulation of the Markovian SIS epidemic process. The results show that the new
analytic prevalence function is comparable with other approximate methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world spreading phenomena can be described by an epidemic process on a network, such as the spreading of
diseases, of information and rumors, failures of computers in a network. The prevalence y(t), which is the average fraction
of infected nodes in a network at time t , contains a wealth of information about the spreading process on a graph. Given
the initial condition and the network topology, the prevalence can be determined at each time. However, the prevalence
is not easy to calculate, because the topology is complex for large scale networks. Mean-field approximations are usually
introduced to allow a feasible computation.

The Susceptible–Infected–Susceptible (SIS) epidemicmodel is a basicmodel of epidemiology [1,2]. The network topology
is represented by a graph constructed by nodes and links. For each node, there are two states: a susceptible (or healthy) and
an infected state. Each infected node can infect its healthy neighbors, with an infection rate β . Each infected node can also be
cured at a constant rate δ. There exists an epidemic threshold τc , such that, when the effective infection rate τ = β/δ ≥ τc ,
the virus spreads, and the prevalence stays on a steady level for a long time with a dynamic balance between infection and
curing. If τ < τc , the virus will extinct from the network exponentially fast for sufficiently long time. However, the exact
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SIS epidemic threshold of general graphs is unfortunately unknown. Some approximate thresholds have been proposed [3–
5], such as the lower bound τ

(1)
c = 1/λ1, where λ1 is the largest eigenvalue (spectral radius) of the adjacency matrix A of

the graph, and the heterogeneous mean-field threshold τHMF
c = E[D]/E[D2

], where D is the degree of a randomly chosen
node. However, the accuracy of these approximate thresholds and also the accuracy of the mean-field prevalence varies
over networks. In this paper, we compare the exact prevalence, the N-Intertwined Mean-Field Approximation (NIMFA) and
a new analytical prevalence function introduced in [6].

The paper is organized as follows. In Section 2, we briefly introduce the new analytical approximate function for the
prevalence proposed in [6]. In Section 3, we compare the prevalence function with simulation results and NIMFA on the
Erdős–Rényi graph, the cycle graph, the star graph, and the Barabási–Albert power-law graph. In Section 4, we further
investigate the approximation of the remainderΨ by higher degree polynomials rather than constants. Finally, we conclude
the paper. Background on SIS, NIMFA and the simulation are placed in the Appendix.

2. Tanh-formula: an analytical approximate function for time-dependent analysis of prevalence

A Bernoulli random variable Xj(t) ∈ {0, 1} indicates the infection state of node j at time t: Xj(t) = 1 means that the
node j is infected at time t , while Xj(t) = 0 refers to a healthy or cured node j at time t . The Laplacian matrix of a graph are
denoted by Q .

The prevalence of the exact Markovian SIS epidemic process obeys the equation [7],

dy(t)
dt

= −y(t) +
τ

N
E

w(t)TQw(t)


(1)

where w(t) = [X1(t), . . . , XN(t)] is the network state vector. From [8, Art. 77], the quadratic Laplacian w(t)TQw(t) in (1)
equals the number of the links which have only one end node infected at time t . The Eq. (1) has a clear physical meaning
that the changing rate of prevalence y is equal to the difference between the expectation of the number of links with one
end node infected E[wTQw] and the prevalence y. More generally, the exact governing Eq. (1) also applies in temporal
networks [9], where the connections between nodes changewith time and the Laplacian Q (t) is time-varying. After spectral
decomposition of E[wTQw] in [6], the governing equation is,

dy(t)
dt

= (τµN−1 − 1)y(t) − τµN−1y2(t) − Ψ (2)

where µN−1 is the algebraic connectivity, the second smallest eigenvalue of the Laplacian matrix Q and the parameter Ψ is
a time-dependent remainder derived in [6]. In [6], the remainderΨ is bounded by two constants and (2) reduces to a Riccati
differential equation that can be solved explicitly. By assuming that the remainder Ψ is constant and equal to c , the solution
of (2) is

ỹ(t) =
1
2


1 −

1
τµN−1


+

Ξ

2
tanh

τµN−1Ξ

2
t + arctanh

2y0 −


1 −

1
τµN−1


Ξ

 (3)

where Ξ =


(1 −

1
τµN−1

)2 −
4c

τµN−1
and y0 = y(0). Eq. (3) is called the tanh-formula, which describes the time-dependent

prevalence of epidemic process on networks. Moreover, the tanh-formula (3) only depends on the algebraic connectivity
µN−1 of the network apart from the constant c and the initial condition y0. For a same initial condition [6], the prevalence
is bounded by the explicit analytic function of time ỹ(t)|c=cU ≤ y(t) ≤ ỹ(t)|c=cL , when the remainder Ψ is bounded by
cL ≤ Ψ ≤ cU . The tanh-formula (3) is the result of an approximation of the spectral decomposition of the Laplacian Q and
properties of the Bernoulli vector w, which is entirely different from a mean field concept.

The remainder Ψ is time-dependent, which makes it hard to find a suitable constant c for Eq. (3). Due to the absorbing
state in a SIS Markovian process, the steady-state of the finite-state SIS model is the trivial overall-healthy state. A possible
way to describe the SIS metastability is by adding a self-infection process, where every healthy node can be self-infected
with rate ϵ, which is the so-called ϵ-SIS model [10]. Without an absorbing state, the ϵ-SIS Markov chain has a unique steady
state, which can be used to approximate the metastable state of the classic SIS model (ϵ = 0). Another way is to remove the
all-healthy state preventing the virus from dying out [11]. However, the drawback of the above-mentioned approximations
for the metastable state is that the steady state in the modified models is independent of the initial conditions, but the
metastable state depends on the initial conditions [12]. If we assume that the prevalence is approximately equal to ym in
the metastable state, where dy/dt ≈ 0, the remainder Ψ in the metastable state is

Ψm ≈ (τµN−1 − 1)ym − τµN−1(ym)2. (4)

A suitable c = Ψm for (3) can be selected since the metastable state lasts long, and the remainder Ψ in the metastable
state is almost constant. Although formula (3) assumes that parameter c is independent of the prevalence y, we will present
simulation results, which show that when c = Ψm, the tanh-formula (3) performs exactly in the metastable state and also
well in the initial transition regime.
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For a fixed network with constant algebraic connectivity µN−1 and effective infection rate τ , the time-dependent
prevalence y(t) of the exact Markovian SIS epidemic model should only be determined by the initial condition. If we choose
c = Ψm in the tanh-formula (3), then the prevalence ỹ(t) is determined both by the initial condition y0 and the prevalence
in the metastable state ym. In (3), only the algebraic connectivity µN−1 appears, and other information of the network is
condensed, via Ψ , into the constant c.

3. Comparison of tanh-formula, NIMFA, and simulation

We present simulation results on four basic graph models: the Erdős–Rényi (ER) random graph, the star graph, the cycle
graph, and the Barabási–Albert power-law graph [13]. The Erdős–Rényi random graph Gp(N) hasN nodes and is constructed
by independently connecting two nodeswith probability p. The star graphwithN nodes has only one center node connected
to N −1 leaf nodes, but leaf nodes do not connect to each other. The cycle graph is a graph where nodes are placed in a cycle
and only two nearest neighbor nodes on that cycle are connected. In the comparison, the network size of the three above-
mentioned kinds of graphs is N = 50, because the prevalence is more sensitive to the change of the number of infected
nodes, and is better observed on small graphs. In the power-law graph, the network size is relatively larger with N = 1000
in order for the degree distribution to be clearly power law [14]. The simulation method is described in Appendix C.

The tanh-formula approximation ỹ(t) in (3) is compared with the NIMFA prevalence y(1)(t) in (B.5) and the simulation
results. The constant c in the tanh-formula (3) is selected as the remainder Ψm of the metastable state from the simulation.
In each realization of the simulation, the same number of infected nodes are picked up randomly at t = 0 and the fraction of
infected nodes in the epidemic processes is sampled at the same time points (the sampling rate is 100 points per normalized
time unit1). Then, the simulated prevalence is obtained by averaging the sampled values over all the 106 realizations at each
time point.

In the following, we compare the tanh-formulawith NIMFA and simulation results under three different regimes: τ > τc ,
τ ≈ τc and τ < τc .

3.1. ER random graph

In Fig. 1(a) where the normalized effective infection rate is x = τ/τ
(1)
c = λ1τ = 3.12 for the ER random graph, the

effective infection rate τ is above the threshold τc , whichmeans that the virus can spread over the entire network. If the virus
is able to spread on the network, the epidemic will stay in a metastable state for a very long time [1,15]. The prevalence in
the metastable state is determined both by the effective infection rate τ and the initial fraction of infected nodes. Moreover,
the time for an epidemic process to reach the metastable state also varies with different initial conditions [16]. Fig. 1(a)
shows that for a same effective infection rate τ , even only one additional initially infected node can make a significant
increase in the prevalence in the metastable state. The main reason for this difference is that, there is a non-negligible die-
out probabilitywhen the number of initially infected nodes is small [12].When all nodes are infected initially, the prevalence
in the metastable state reaches to a maximum and is very well estimated by the upper bound NIMFA.

Fig. 1(b) shows similar resultswith a higher normalized effective infection rate x = τ/τ
(1)
c = 5.21.With a higher effective

infection rate τ , NIMFA performs better compared to Fig. 1(a). When all nodes are infected initially, the NIMFA prevalence
is almost the same as the simulated prevalence. The tanh-formula approximation (3) performs well, when the effective
infection rate τ is high.

Fig. 2 illustrates the prevalence with the normalized effective infection rate x = 0.83. The prevalence decreases
exponentially fast for sufficiently large time [17,6]. On a different scale, the curves are similar and NIMFA upper bounds
the prevalence. When the effective infection rates τ < τc , the constant c in tanh-formula (3) always equals 0 as deduced
from (4). Both NIMFA and the tanh-formula perform well.

For the condition that the effective infection rate τ is around τ
(1)
c , the change of prevalence with time t is more complex.

Since the NIMFA threshold τ
(1)
c = 1/λ1 is a lower bound of the actual threshold τc , when τ

(1)
c ≤ τ ≤ τc , NIMFA fails to

estimate the exponentially decreasing prevalence. Indeed, Fig. 3(a) shows that the NIMFA prevalence (B.5) converges to
a non-zero value, but the exact prevalence decreases exponentially fast to zero. In Fig. 3(b), the effective infection rate
τ is around the actual threshold and the prevalence experiences an increasing period and then decreases to 0 slowly.
Though there does not exist an obvious metastable state, the virus can survive for a relatively long time period. The tanh-
formula (3) also fails to estimate the exact prevalence when τ is around τc , since the analytical approximation ỹ(t) is always
monotonically increasing or decreasing.

3.2. Cycle graph

On cycle graphs, the diameter, which is the longest shortest path, is N/2 − 1 for N even or (N − 1)/2 − 1 for N odd. The
diameter of the cycle graph is much larger than that of a general ER random graph. Generally, the virus spreads slower in a

1 A normalized time unit is defined when the curing rate δ = 1. Physically, one node is cured per time unit on average.
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(a) The normalized effective infection rate x = τ/τ
(1)
c = 3.12. (b) The normalized effective infection rate x = 5.21.

Fig. 1. Results on the ER graph G0.4(50) when the effective infection rate τ is above the epidemic threshold τc . The largest eigenvalue of adjacency matrix
A is λ1 = 20.8581 and the algebraic connectivity is µN−1 = 10.1090. The prevalence is the average fraction of infected nodes of 106 realizations.

Fig. 2. Results on the same ER graph G0.4(50). The normalized effective infection rate is x = 0.83 that the infection rate τ is below the threshold τc .

(a) The normalized infection rate x = 1.04. (b) The normalized effective infection rate is x = 1.25.

Fig. 3. Results on the graph G0.4(50) when the effective infection rate τ is around the epidemic threshold.

graph with longer diameter. In Fig. 4(a), where the normalized effective infection rate x = 5 is very large, the time for the
network to reach the metastable state is still long with only a few nodes infected initially. The approximate prevalence of
NIMFA and the tanh-formula increase faster to metastable state prevalence than the simulated prevalence. Similar to the ER
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(a) The normalized effective infection rate x = 5, above the epidemic
threshold.

(b) The normalized effective infection rate x = 3, around the threshold.

(c) The normalized effective infection rate x = 0.5, below the
threshold.

Fig. 4. Simulation and analytic results of the SIS epidemic process on the cycle graph with N = 50 and δ = 1. The largest eigenvalue of adjacency matrix
A is λ1 = 2 and the algebraic connectivity is µN−1 = 0.0158.

random graph, the addition of only one initially infected node increases the metastable prevalence substantially. However,
adding another infected node does not obviously shorten the time, which is needed by the epidemic process to reach the
metastable state. Furthermore, different from the ER random graph, there is still a gap between the NIMFA prevalence and
the simulated prevalence when all nodes infected initially. The epidemic threshold of cycle graphs [18] is about τc = 1.65
(x = 3.3) and the effective infection rate τ in Fig. 4(b) is around τc . NIMFA still fails to estimate the exact prevalence for
τ ≈ τc . Additionally, similar to the same condition that τ ≈ τc in ER random graphs, the tanh-formula approximation fails
to describe the non-monotonical prevalence. For the cycle graph, both the tanh-formula and NIMFA are not good enough
to estimate the time-dependent prevalence even with a high effective infection rate τ . Only when τ < τc , the analytic
tanh-formula and NIMFA are both working well as shown in Fig. 4(c).

3.3. Star graph

On star graphs, the location of the initially infected node is critical. The transition rate [11] from the state, where
the center node is infected, to the states that the center node and an arbitrary leaf node are infected, is (N − 1)β . The
curing rate is δ, which means that the transition rate from the state that the center node is infected to the state that all
nodes are cured (virus dies out) is δ. Given the two transition rates, the die-out probability at the first state transition is
δ/((N−1)β+δ) = 1/(τ(N−1)+1), which decreases linearlywith network sizeN . If a leaf node is infected initially, the die-
out probability at the first state transition is a relatively larger constant δ/(δ+β) = 1/(τ+1), whereβ is the rate of infecting
the center node. The virus needs to survive the dangerous period at the initial stage and after the central node is infected, the
virus begins to spread to the whole network. Fig. 5(a) shows the spreading delay at the initial stage when only a leaf node is
infected initially. The relative bigger die-out probability at the initial stage causes a gap in the prevalence in the metastable
state between the two different initial conditions that the center node or one leaf node is infected. Contrary to the cycle
graphs, star graphs have a very small diameter (only 2). The network reaches the metastable state very quickly and earlier



330 Q. Liu, P. Van Mieghem / Physica A 471 (2017) 325–336

(a) The normalized effective infection rate x = 7, above the
threshold.

(b) The normalized effective infection rate is x = 2.1, around the
threshold.

(c) The normalized effective infection rate x = 0.7, below the
threshold.

Fig. 5. Simulation and analytic results of the SIS epidemic process on the star graph with N = 50 and δ = 1. The largest eigenvalue of adjacency matrix A
is λ1 = 7 and the algebraic connectivity is µN−1 = 1.

than the tanh-formula approximation. For an epidemic process with a lower effective infection rate τ around the epidemic
threshold τc , as shown in Fig. 5(b), both NIMFA and the tanh-formula approximation fail to estimate the prevalence. Fig. 5(c)
shows the results of τ < τ

(1)
c where the effective infection rate τ is below the threshold, which verifies the conclusion

in [6] that the prevalence can still increase at the initial stage, even if the effective infection rate τ is below the threshold.
The NIMFA prevalence y(1)(t) shows the same trend as the prevalence y(t). Fig. 5(a), (b) and (c) illustrate that, if the virus
spreads from the center node, NIMFA gives a very good prediction for the initial increase (but not good in the long term
when the effective infection rate τ ≈ τc), irrespective of the effective infection rate τ . The tanh-formula (3) only works well
when τ is higher or lower than the threshold with a leaf node infected initially.

3.4. Barabási–Albert power-law graph

The power-law network is generated start from 3 initial nodes, and each time a new node with 3 edges is added to the
graph. The newly added node is connected to an existing node jwith probability dj/2L, where dj is the degree of node j and
L is the current number of the edges. Fig. 6(a) and (b) show the comparison of the three methods on a power-law graph
with network size N = 1000. Also, the prevalence is obtained by averaging 106 realizations of the simulation. When the
infection rate is above the threshold with x = 6.79, both the tanh-formula (3) and NIMFA show an accurate approximation
to the prevalence. With the infection rate x = 0.68 below the threshold, the prevalence decreases exponentially fast to 0,
and both the tanh-formula (3) and NIMFA are also accurate as shown in Fig. 6(b). However, when the infection rate x = 1.36
is around the threshold as shown in Fig. 6(b), both the tanh-formula and NIMFA fail to estimate the prevalence.

In the power-law graph, we find that NIMFA is accurate at the very short initial stage, which is similar to the results in
the star graph when the center node is infected initially. Nevertheless, the accuracy of tanh-formula (3) is comparable with
NIMFA in the long run.
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(a) The normalized effective infection rate x = 6.79, above the
threshold.

(b) The infection rates are around and below the threshold.

Fig. 6. Results on the Barabási–Albert power-law graph N = 1000.

4. Approximating the remainder Ψ with polynomials of higher degree

In this section, the remainder Ψ in the Eq. (2) and the constant c in (3) will be further discussed. As mentioned above,
the remainder Ψ is considered as a constant to derive the tanh-formula (3), and we have chosen (4) in this paper. Thus,
the difference Ψ − c determines the accuracy of the tanh-formula (3), especially in the transition regime of the prevalence.
Fig. 7 presents the time-dependent remainder Ψ with one node infected initially, for effective infection rates above the
thresholds in an ER random graph G0.4(50) (the same graph as in Section 3.1). Fig. 7 indicates that the time-dependent Ψ

has an undershoot in the transition regime of prevalence. Comparing Fig. 7 with Fig. 1(a) and (b), a larger undershoot of
the remainder Ψ in the transition regime leads to a less accurate tanh-formula (3). Furthermore, the length of the time
interval of the undershoot, which is also the length of the transition regime of the prevalence, decreases with the increase
of the normalized effective infection rate x, while the amplitude of the undershoot increases with x. From [6], the quadratic
Laplacian is derived aswTQw = µN−1N(S−S2)+R, where the parameterR is a correction and also explicitly expressed in [6].
Only in complete graphs where µN−1 = N and E[R] = 0, the remainder Ψ has a physical meaning Ψ (t) = τNVar[S(t)],
where the variance of the fraction S of infected nodes is prominent. The remainder Ψ is hard to handle because Ψ contains
both the variance of the number of infected nodes Var[S] and a correction R, where R is related to the projections [6] of
the network state w on the eigenvectors of the Laplacian Q . An equation of Var[S] is possible to obtain, but higher order
moments will be introduced [6]. Apart from taking Ψ as constant in (2), another possible way is to approximately express
Ψ as a function of the prevalence y: Ψ (t) ≈ f (y(t)). We apply the minimum Chi-square method to fit the curves in this
paper [19]. In the ER random graph with a high effective infection rate τ > τc , we find that the remainder Ψ can be fitted
very well by quartic polynomials Ψ (t) ≈ ay4(t) + by3(t) + cy2(t) + dy(t) + e, where a, b, c, d, e are constant coefficients.
Thus, a closed non-linear governing equation can be obtained as

dy
dt

= (τµN−1 − 1)y − τµN−1y2 − (ay4 + by3 + cy2 + dy + e). (5)

Moreover, a quadratic fitting polynomial of the remainder Ψ ≈ fy2 + gy + h leads to an analytically solvable Riccati
differential equation

dy
dt

= (τµN−1 − 1 − g)y − (τµN−1 + f )y2 − h. (6)

Here, we present an example of expressing the remainderΨ as a function of the prevalence y. Fig. 8(a), (b) and (c), which
are correspond to Fig. 1(a), illustrate the fitting results of the remainderΨ (y)with quartic, cubic and quadratic polynomials,
respectively.When all nodes are infected initially, the remainderΨ (y) is fitted well with a quadratic polynomial; when only
a few nodes infected initially, higher order polynomials are better to fit the remainder Ψ (y). Fig. 8(d) shows the comparison
of the simulated prevalence and the solutions of the approximated governing equations in form (5), where the remainderΨ

is fitted with polynomials. All the approximate governing equations describe the prevalence well. Thus, a Riccati governing
equation as in (6) is simpler to describe an epidemic process if we know the coefficients f , g, h of the quadratic polynomial
fy2 + gy + h.

However, substituting the remainder Ψ with polynomials is not always possible. As illustrated in Fig. 9, the effective
infection rate τ is around the threshold τc . There are multiple values of remainder Ψ mapping to a same certain value of the
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Fig. 7. Time-dependent Ψ : the transition regime and the undershoots.

(a) Fitting by quartic polynomials of prevalence y. (b) Fitting by cubic polynomials of prevalence y.

(c) Fitting by quadratic polynomials of prevalence y. (d) Solutions of equations in form (5) and the simulated prevalence.

Fig. 8. An example: remainder Ψ corresponding to Fig. 1(a) (above the threshold), fitted by polynomials of prevalence y.

prevalence y. Fig. 9 illustrates the comparison of the prevalence y(t) and the solution of the approximate governing equation
dy
dt = (τµN−1 − 1)y − τµN−1y2 − (1.66y2 − 0.81y − 0.03), which corresponds to the fitting curve of the remainder Ψ in
Fig. 9. Fig. 9 also demonstrates that the approximate equation fails to describe the epidemic prevalence. Moreover, when the
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Fig. 9. Remainder Ψ and the quadratic fitting polynomial with normalized effective infection rate x = 1.25 (around the threshold) corresponding to
Fig. 3(b) of the ER graph.

(a) The remainder Ψ is fitted by quadratic polynomial. (b) Prevalence comparison.

Fig. 10. Corresponding to Fig. 2 (below the threshold), comparison of the NIMFA prevalence, simulated prevalence and solution approximate equation.
The approximate solution shows an improvement in the accuracy than that tanh-formula (3) with the constant c = 0.

effective infection rate τ ≈ τc , higher order approximate polynomials of the remainderΨ also cannot improve the accuracy
of Eq. (2).

When the effective infection rate τ < τc and a large number of nodes are infected initially, the remainder |Ψ | can also
be large at the initial stage of the epidemic process and Ψ ≉ 0. Fig. 10(a) shows that the remainder Ψ is well fitted with
a quadratic polynomial when τ < τc . Furthermore, Fig. 10(b) illustrates the improvement of the approximate governing
equation with fitted Ψ , comparing with tanh-formula (3), where the remainder Ψ is considered as a constant c.

We also apply the approximate governing Eq. (6) to the cycle graph, where both the tanh-formula (3) and NIMFA show
an inaccuracy in estimating the prevalence. Fig. 11 illustrates the fitting result of the remainder Ψ with the quadratic
polynomial 0.15y2 − 1.00y − 0.03. As shown in Fig. 11, the solution of the approximate governing equation with fitted
Ψ performs better than the tanh-formula (3), where Ψ is considered as a constant c.

5. Conclusion

In this paper, we compare the tanh-formula approximation (3) with the prevalence, which is obtained by averaging
106 realizations of the Markovian epidemic process, and the NIMFA prevalence. The results show that, when the effective
infection rate τ is above or below the threshold τc , the tanh-formula (3) perform well to estimate the time-varying
prevalence y(t). If the effective infection rate τ is around the threshold, formula (3) usually fails as well as NIMFA. However,
even with the effective infection rate τ is large, the tanh-formula (3) are not accurate in cycle graphs.

The tanh-formula (3) needs an extra fitting parameter c to estimate the time-varying prevalence. The parameter c can
be chosen as the remainder Ψ in the metastable state, which may be inaccurate for the prevalence at the initial spreading
stage. The remainder Ψ of the Riccati governing Eq. (2) is discussed further. Other than approximating the remainder with
a constant Ψ = c in the transient regime, polynomials of the prevalence y are more accurate to approximate the governing
Eq. (2) by applying Ψ ≈ f (y), where the coefficients of the polynomials are needed as fitting parameters. By fitting the
remainder Ψ by a quadratic polynomial, the approximate governing Eq. (6) remains a Riccati differential equation, which is
analytically solvable and which describes the Markovian epidemic process better.
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Fig. 11. The remainder Ψ corresponding to Fig. 4(c) with one node infected initially, fitted with quadratic polynomial 0.15y2 − 1.00y − 0.03. Also, there
is an improvement in accuracy between Eq. (6) with two extra fitting coefficients and the tanh-formula (3) with constant c.
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Appendix A. Exact Markovian process

In the exact Markovian SIS epidemic model on a graph with N nodes, there are 2N states, since each node can be either
infected or susceptible [17]. Each network state is denoted by an N-digits binary number xN(i)xN−1(i) . . . x2(i)x1(i), where
i is the integer representation of the network state of the Markov process and i =

N
k=1 xk(i)2

k−1. The adjacency matrix of
the network is A = {aij|1 ≤ i ≤ N, 1 ≤ i ≤ N}.

If a network is in state i at time t , then Xj(t) = xj(i) for 1 ≤ j ≤ N . The transition between states is a Poisson process [17],
for j ∉ I : I → I


{j} at rate β


k∈I

akj

for j ∈ I : I → I\{j} at rate δ
(A.1)

where I is the set of infected nodes, and


k∈I akj is the number of infected neighbors of node j. The probability state vector
sT (t) = [s1(t), s2(t), . . . , s2N (t)] represents the probabilities of all possible states of the epidemic in the network at time t .
At time t , the probability that the network is in state i is si(t) = Pr[X1(t) = x1(i), X2(t) = x2(i), . . . , XN(t) = xN(i)]. If none
of the neighbors of node j is in I , the infection rate β


k∈I akj = 0 and there is no transition path I → I


{j}. Thus, the state

transition graph of a SIS Markov process is determined by the topology of the network.
The exact SIS Markovian process is specified by an 2N

× 2N linear matrix QSIS which is the infinitesimal generator. Given
the initial state probability vector s(0), the time-dependent state probability vector can be obtained by solving [17],

(s′(t))T = sT (t)QSIS . (A.2)

From the definition of the joint infection probability si(t), by summing over all the si(t)with Xj(t) = 1, the nodal infection
probability of node j can be derived as [10],

Pr[Xj(t) = 1] = E[Xj(t)] =

2N−1
i=1

si(t)xj(i). (A.3)

The fraction of infected nodes at time t is S(t) =
1
N

N
j=1 Xj(t). The prevalence can be written as y(t) = E[S(t)] =

1
N

N
j=1 E[Xj(t)].

The equation set (A.2) contains 2N linear differential equations, which is infeasible to be calculated to obtain the state
probability vector s(t) for realistic network size N > 15.

Appendix B. NIMFA prevalence

For a fixed graph, the exact SIS governing equation of node j(1 ≤ j ≤ N) is [17],

dE[Xj(t)]
dt

= −δE[Xj(t)] + β

N
k=1

akjE[Xk(t)] − β

N
k=1

akjE[Xj(t)Xk(t)]. (B.1)
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Eq. (B.1) is not closed due to the existence of joint expectation E[Xj(t)Xk(t)]. The governing equation of the joint expectation
is derived as [20],

dE[XiXj]

dt
= −2δE[XiXj] + β

N
k=1

aikE[XjXk] + β

N
k=1

ajkE[XiXk] − β

N
k=1

(aik + ajk)E[XiXjXk] (B.2)

where 3-variable joint expectations are introduced. Governing equations of nth joint expectations always introduce (n+1)th
joint expectations. Eventually, the governing equation of the Nth joint expectation is involved, which closes the equations
ending up with a total of 2N equations.

The N-Intertwined Mean-Field Approximation (NIMFA) reduces the computational complexity of the exact Markovian
epidemic process (B.1), by assuming independence E[Xi(t)Xj(t)] = E[Xi(t)]E[Xj(t)]. Consequently, NIMFA does not calculate
joint expectations and the number of equations decreases from 2N toN . However, the linearMarkov equations become non-
linear differential equations. The infection probability vj(t) of NIMFA for node j in G satisfies the differential equation,

dvj(t)
dt

= β

N
k=1

ajkvk(t) − vj(t)

β

N
k=1

ajkvk(t) + δ


(B.3)

which is written in vector form with the NIMFA infection probability vector V (t) = [v1(t), v2(t), . . . , vN(t)] and the
adjacency matrix A, as [17],

dV (t)
dt

= βAV (t) − diag

vi(t)


βAV (t) + δu


, (B.4)

where diag

vi(t)


is a diagonal matrix with elements v1(t), v2(t), . . . , vN(t) and u is the all-one vector.

The inequality E[Xi(t)Xj(t)] ≥ E[Xi(t)]E[Xj(t)] holds for a Markovian SIS epidemic [21], but not necessarily for non-
Markovian SIS epidemic spread. Comparing (B.1) and (B.3), we deduce that dE[Xi(t)]

dt ≤
dvi(t)
dt and E[Xi(t)] ≤ vi(t). Hence, the

NIMFA prevalence

y(1)(t) =
1
N

N
i=1

vi(t) (B.5)

upper bounds the exact prevalence y(t).

Appendix C. The SSIS simulator

Due to the infeasible computation of the 2N states Markov chain, the exact prevalence of a Markovian epidemic process
is unavailable. The Simulator of SIS (SSIS), which is a continuous-time Markov process simulator, is applied to obtain the
prevalence [22]. The SSIS simulator can simulate the epidemic processwith different topologies andparameters. For each run
of the simulator (or realization of the SIS process), the fluctuating time-dependent fraction of infected nodes is obtained.
Since we can never obtain the exact prevalence y(t) = E[S(t)] without solving approximately 2N equations for general
graphs, here we consider the simulated prevalence as accurate enough after averaging the results of 106 realizations of the
fractions of infected nodes.

The simulator is based on the Gillespie Algorithm which is used to simulate chemical reactions [23,24]. In the SSIS
simulator, the infection and curing events of each node happen randomly on a time line. Since both the infection and
curing process are Poisson processes, the length of the time interval between two consecutive events is exponentially
distributed. By generating all the consecutive events with an exponentially distributed random time interval on the time
line, the network state can be obtained at any arbitrary time. There are two kinds of exponentially distributed random time
intervals: the curing time and the infection time. For example, once a node j is infected at time t0, a random curing time
TC is generated and a curing event is marked on the time line for node j at time t0 + TC . At time t0 + TC , node j will be
cured and return to the healthy state. Meanwhile, a random infection time TI is also generated for every neighbor of node j.
Furthermore, if the infection time TI is generated for a specific neighbor k and TI < TC , an infection event of node k ismarked
on the time line at time t0 + TI , which means that, if node k is healthy at t0 + TI , then node k will be infected. If TI > TC , no
infection event is marked on the time line, because before neighbor k can be infected, node j has already been cured and lost
the ability of infection. At time t = 0, we choose Ny(0) (the number of initially infected nodes Ny(0) is chosen as an integer
in {1, 2, . . . ,N}) random nodes in the network and mark infection events on them. By generating the events of infection
and curing on the time line in chronological order starting from time t = 0, the network state w(t) can be obtained at an
arbitrary time t .
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