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a b s t r a c t

The N-Intertwined Mean Field Approximation (NIMFA) is a reasonably accurate approx-
imation of the exact SIS epidemic process on a network. The average fraction of infected
nodes in the NIMFA steady state, also called the steady-state prevalence, in terms of the
effective infection rate can be expanded into a power series around the NIMFA epidemic
threshold. In this paper, we investigate the convergence of the steady-state prevalence
Taylor expansion. We determine the radius of convergence in some special types of
graphs. We also show that the radius of convergence of the steady-state prevalence
expansion depends upon the network topology, in particular, the average degree of the
network and the spectral gap of the adjacency matrix play a role.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Epidemic models can describe virus spreading and information propagation in human activities [1]. The Susceptible–
Infected–Susceptible (SIS) model is an epidemic model where each infected item can be cured, and becomes susceptible
again after recovering from the infection state [2]. In the SIS epidemics on a network, the ratio between the infection rate
β and the curing rate δ is called the effective infection rate τ = β/δ. The SIS model features a phase transition [3] around
the epidemic threshold τc . The spreading process can reach the metastable state [4] if the effective infection rate τ is
above the epidemic threshold τc . In the metastable state, the viruses can infect a sizeable portion of the population on
average and stay in the network for a long time [5]. A first-order mean-field approximation [6] of the epidemic threshold
τ
(1)
c = 1/λ1, where λ1 is the spectral radius of the adjacency matrix A, was shown [7] to be a lower bound for the exact
epidemic threshold τc .

The exact Markovian SIS model [6] in the network G with N nodes consists of 2N states, which is intractable to solve
for large networks. The N-Intertwined Mean-Field Approximation [8] was proposed by introducing the network topology
into the deterministic model [9,10], which can approximate the exact SIS epidemics well in some networks. NIMFA
approximates the exact Markovian 2N linear equations into N non-linear differential equations under the assumption
that the states of the nodes are uncorrelated. The steady-state infection probabilities vi∞(τ ) of each node i in NIMFA
can be expanded [11] in a power series in terms of the effective infection rate τ at NIMFA epidemic threshold τ

(1)
c and

explicitly repeated in Appendix A. Mathematically, the radius of convergence of a power series corresponds to the radius
of the largest disk in which the series converges [12], which is of practical significance to validate a Taylor expansion.
Practically, we can faster compute the nodal infection probability of the NIMFA steady-state by the truncated expansion
with enough terms and an effective infection rate τ within the radius of convergence, instead of numerically solving the
governing equation (1). Thus, the radius of convergence of the series, that purely depends upon the underlying topology,
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determines the largest effective infection rate for the Taylor expansion. However, the convergence of the Taylor expansion
(A.1) in Appendix A of the nodal infection probability in NIMFA is still an open question and has not been studied yet.

In this paper, we focus on the NIMFA steady-state prevalence, which is defined as the average fraction of infected
nodes in the NIMFA steady state. We numerically investigate the radius of convergence of the steady-state prevalence
expansion and illustrate that the convergence of the prevalence expansion highly depends on the underlying topology.
Specifically, we investigate the behaviour of the radius of convergence in some special types of graphs, e.g., regular graph,
star graph, path graph, Erdős–Rényi (ER) random graph and scale-free graph, which helps to estimate the valid range
of the effective infection rate τ for the steady-state NIMFA prevalence expansion (4). We also identify the topological
properties that influence the radius of convergence in sparse networks and clustered networks.

The outline of the paper is as follows. In Section 2, we briefly review the NIMFA SIS epidemics, provide related notations
and describe the method for practical estimation of the radius of convergence. Section 3 investigates the behaviour of the
radius of convergence in some special types of graphs. In Section 4, we investigate the topological properties that dominate
the radius of convergence. Finally, we summarize the paper in Section 5.

2. Expansion of the NIMFA steady-state prevalence

2.1. NIMFA prevalence

The probability vi(t) that node i is infected is given in NIMFA [8] by the following first-order nonlinear differential
equation

dvi(t)
dt

= β

N∑
j=1

aijvj(t) − vi(t)
(
β

N∑
j=1

aijvj(t) + δ
)
.

where aij ∈ {0, 1} is the entry of the adjacency matrix A of the underlying graph. If aij = 1, then there is a link between
node i and node j, and otherwise aij = 0. With the infection probability vector v(t) = (v1(t), v2(t), . . . , vN (t))T , the
governing equation of NIMFA in matrix form [2] is

dv(t)
dt

= βAv(t) − diag
(
v(t)

)(
βAv(t) + δu

)
(1)

where diag
(
v(t)

)
is a diagonal matrix with the infection probability vector v(t) and u is the all-one vector. By solving

the governing equation (1) with the initial state v(0) = (v1(0), v2(0), . . . , vN (0))T , we can obtain the NIMFA prevalence,
i.e. the average fraction of infected nodes, as y(t) =

1
N

∑N
i=1 vi(t).

We denote the eigenvalues of the adjacency matrix A by λ1 ≥ λ2 ≥ · · · ≥ λN , and denote by xk the eigenvector,
normalized by xTk xk = 1, corresponding to eigenvalue λk. The infection probabilities vi∞ of node i in the steady state are
non-zero if the effective infection rate τ =

β

δ
is above the NIMFA epidemic threshold τ

(1)
c = 1/λ1. For simplicity without

the loss of generality, we set the curing rate equal to δ = 1, and then the infection rate equals β = τ . In this paper, we
focus on the steady-state prevalence y∞(τ ) =

1
N

∑N
i=1 vi∞(τ ) in terms of the effective infection rate τ .

2.2. Expansion of the NIMFA steady-state prevalence

Before discussing the Taylor expansion of the NIMFA steady-state prevalence y∞(τ ), we note that the Taylor series of
the steady-state infection probability vi∞(τ ) in terms of the effective infection rate τ about the epidemic threshold τ

(1)
c

does not exist in physical space. The physical space here defines the space of all steady-state infection probability vi∞(τ )
as solution of (1) that are possible (i.e. a probability must be non-negative). Van Mieghem [6] obtains that the steady-
state infection probability vi∞(τ ) = 0 for any effective infection rate τ ≤ τ

(1)
c . The derivative of the steady-state infection

probability vi∞(τ ) with respect to the effective infection rate τ on the left-side of τ (1)
c follows dvi∞(τ )

dτ

⏐⏐
τ=(τ (1)c )− = 0. Invoking

the fact [11] that dvi(t,τ )
dτ

⏐⏐
τ=(τ (1)c )+ =

λ1
N

(x1)i∑N
i=1(x1)

3
i

> 0 for the effective infection rate τ > τ
(1)
c , left and right derivatives are

not equal, implying that the infection probability vi∞(τ ) is not an analytic function of the effective infection rate τ at
epidemic threshold τ

(1)
c . Consequently, the Taylor series does not exist. In other words, the radius of convergence R of the

expansion of the NIMFA steady-state prevalence equals R = 0.
The expansion of the steady-state infection probability with the effective infection rate τ ↓ τ

(1)
c can be derived from

βAv∞(t) − diag
(
v∞(t)

)(
βAv∞(t) + δu

)
= 0 (2)

for the effective infection rate τ → τ
(1)
c . Mathematically, we extend the solution of (2) to complex τ . Hence, the steady-

state infection probability vi∞(τ ) is allowed to be negative for τ < τ
(1)
c , as illustrated in Fig. 1. Thus, the infection

probability vi∞(τ ) in the extended mathematical space is analytic at s = τ−1
= (τ (1)

c )−1
= λ1, where the mathematical

space includes all solutions of Eq. (2) for vi∞(τ ), regarded as a complex function of τ , ignoring its probabilistic and physical
meaning. Although the negative steady-state infection probability has no physical significance, the Taylor series of the
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Fig. 1. Illustration of the steady-state infection probability vi∞ of node i as a function of s = τ−1 , where node i is an arbitrary node in the network.
The red line represents the steady-state infection probability in the physical space, and the blue line represents the extended solution of (2) in the
mathematical space.

steady-state infection probability in z = (τ (1)
c )−1

− τ−1 around z = 0 still coincides with the NIMFA positive infection
probability for the effective infection rate τ > τ

(1)
c , as shown in Fig. 1, by analytic continuation [12, Chap. IV].

The NIMFA steady-state infection probability vector v∞(τ ) can be expanded in a Taylor series around z = 0 as

v∞(τ ) =

∞∑
j=1

αjz j =

∞∑
j=1

αj((τ (1)
c )−1

− τ−1)j. (3)

where z := (τ (1)
c )−1

− τ−1. The coefficient vector αj in the expansion equals αj =
∑N

k=1 cj(k)xk = Xc j, where the
matrix X contain as columns the eigenvector of the adjacency matrix A, and cj(k) satisfy [11] the recursions (A.2)–(A.4) in
Appendix A. We ignore the trivial solution vi∞(τ ) = 0 with all-zero coefficients cj(k) and focus on the non-zero infection
probability. The expansion of the steady-state infection probability vi∞(τ ) with the recurrence relation of the coefficients
cj(k) are derived in [11] and revisited (A.2)–(A.4) in Appendix A. Thus, the expansion of the NIMFA steady-state prevalence
can be represented by

y∞(τ ) =
1
N
uTv∞(τ ) =

∞∑
j=1

bjz j (4)

where the coefficient bj =
1
N u

Tαj, and u is the all-one vector.
We define the truncated Taylor series with J terms as

y(J)
∞
(τ ) =

J∑
j=1

bjz j (5)

and investigate the accuracy and convergence of the expansion y(J)∞(τ ). The steady-state prevalence expansion y∞(τ )
converges, if for every arbitrarily small number ϵ > 0, there exists an order Jc such that |y(J)∞ − y∞| < ϵ for all J > Jc . The
radius of convergence R is a nonnegative real number or ∞ such that the series (4) converges if |z| = |(τ (1)

c )−1
− τ−1

| < R
and diverges if |z| = |(τ (1)

c )−1
− τ−1

| > R in the complex z-plane. Fig. 2 shows the NIMFA steady-state prevalence
expansion y(J)∞(τ ) as a function of J for two different effective infection rate τ in an example graph. Fig. 2 illustrates that
the prevalence expansion y(J)∞(τ ) converges to the NIMFA steady-state prevalence y∞(τ ) if the effective infection rate τ is
small (e.g., τ < 1.5τ (1)

c ), but diverges if τ is large enough (e.g., τ > 2.5τ (1)
c ) along with a large term z.

2.3. Estimation of the radius of convergence

For the power series y∞(τ ) =
∑

∞

j=1 bjz
j where z = (τ (1)

c )−1
− τ−1 expanded at z = 0, the radius of convergence R in

the complex z-plane is given by [12]

R−1
= lim

j→∞

⏐⏐⏐⏐bj+1

bj

⏐⏐⏐⏐ = lim sup
j→∞

j
√

|bj| (6)

Unfortunately, the radius of convergence R of the prevalence expansion in a general graph is intractable to derive
analytically. The method of Domb–Sykes plot and Mercer–Roberts plots [13], which are usually applied to estimate the
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Fig. 2. Steady-state prevalence expansion y(J)∞(τ ) as a function of order J . The example graph topology is illustrated in the subplot (a). The red dash
lines represent the NIMFA steady-state prevalence y∞(τ ) following the NIMFA equation (2).

radius of convergence of a series if the sign of the coefficients bj follows a pattern, is also impractical since the coefficients
bj could present an unpredictable sign pattern in a general graph.

In the following sections, we assess the convergence of the expansion numerically. We regard that the prevalence
expansion (4) is convergent if the prevalence y(J)∞ with a large enough order J approximates the NIMFA steady-state
prevalence y∗

∞
solved by Eqs. (1), i.e., |y(J)∞ − y∞| < ϵ for all J > Jc . In the following simulations, we set Jc = 150 and

ϵ = 0.001y∞. We have numerically verified that the setting of Jc = 150 is large enough to assess the convergence of the
expansions in the following simulations.

3. Radius of convergence R of the expansion in some specific graphs

We first investigate the behaviour of the coefficients bj and the radius of convergence R of the expansion of the
steady-state prevalence in some special types of graphs, e.g., complete graphs, regular graphs, star graphs, path graphs,
Erdős–Rényi random graphs and scale-free graphs.

3.1. Complete graphs and regular graphs

In the complete graph KN , the NIMFA steady-state prevalence is

y∞(s) = 1 −
1

τ (N − 1)
=

1
λ1

((τ (1)
c )−1

− s) (7)

where s = τ−1. The prevalence (7) is analytic in the whole complex plane. Hence, the radius of convergence R is infinity.
The coefficient b1 =

∑N
i=1(x1)i
N c1(1) = (λ1

∑N
i=1(x1)

3
i )

−1
=

1
N−1 , and bj = 0 for j > 1, which is consistent with (7). Fig. 3a

illustrates that the exact solutions of the steady-state governing equation (2) in a complete graph has two branches, and
the branch corresponding to the non-trivial real solution (red line) is analytic for the reciprocal of any effective infection
rate s = τ−1.

In the r-regular graph with the average degree E[D] = r , the steady-state prevalence is y∞(s) =
1
r ((τ

(1)
c )−1

− s), which
implies the steady-state prevalence expansion (4) also has an infinite radius of convergence.

3.2. Star graphs K1,N−1

In the star graph K1,N−1 with N − 1 leaf, the NIMFA steady-state infection probability [14] for the centre node equals
vc∞ =

(N−1)−s2
(N−1)+s and vc∞ = 0, while the NIMFA infection probability for the leaf node equal vl∞ =

(N−1)−s2
(N−1)(s+1) and vl∞ = 0,

where s = τ−1. Thus, the steady-state prevalence follows y∞ =
1
N

(
(N−1)−s2
(N−1)+s +

(N−1)−s2
(s+1)

)
, which has the nearest singularity

s = −1. The radius of convergence R of the expansion (4) equals R =
√
N − 1 + 1 in a star graph, which implies the

expansion (4) converges for any effective infection rate τ > τ
(1)
c . Fig. 3b illustrates the NIMFA prevalence y∞(τ ) in a star

graph, where the non-zero solution corresponds to the expansion (2) has the singularity at s = −1.

3.3. Path graphs PN

Since the computation of the NIMFA prevalence in a path graph is intractable, we numerically investigate the radius
of convergence of the prevalence expansion. Fig. 4 shows the function of the absolute coefficients |bj| in the prevalence
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Fig. 3. Exact steady-state prevalence y∗
∞

by the solution of Eq. (2) in the complete graph K7 and the star graph K1,9 .

Fig. 4. Coefficient |bj| as a function of order j in path graphs PN with N nodes. The red markers represent positive coefficients, and the blue markers
represent negative. The function |bj| is fitted by the function ek1 j+k2 . Subplot (b) shows the function log |bj| for small order j.

expansion in path graphs with different network size N , while the period and the sign pattern of the coefficients bj is too
complicated to predict. Fig. 4b shows that the absolute coefficients |bj| resembles an exponential function |bj| ≈ ek1j+k2

if the order j is larger than a critical order jc . Hence, the radius of convergence R can be estimated by R ≈ e−k1 ,
which is almost the same as the radius of convergence estimated in Section 2.3. Further, the NIMFA prevalence with
z = (τ (1)

c )−1
− τ−1 < e−k1 can be estimated by

y∗

∞
(τ ) ≈

jc−1∑
j=1

bjz j +
∞∑
j=jc

ek1j+k2z j =

jc−1∑
j=1

bjz j + ek2
(ek1z)jc

1 − ek1z
(8)

Fig. 5b shows that the radius of convergence R decreases with increasing network size N in path graphs PN but not
monotonically, i.e., R reaches the maxima at N = 5. The radius of convergence R decays as an exponential function of the
network size if N > 8, and tends to be very small in path networks with a large size, which implies that the effective
infection rate τ must be extremely close to the epidemic threshold τ

(1)
c to converge the prevalence expansion (4) in large

path networks.

3.4. ER random graphs

We first present the behaviour of the coefficient bj in the prevalence expansion in ER random graphs Gp(N) with
link density p. Fig. 6 shows that the coefficients bj can be negative for a small link density p. The coefficients bj are
always positive if the link density p is large enough, which implies that the NIMFA prevalence function in ER graphs has
a dominating positive singularity [15]. The absolute coefficients |bj| also follow an exponential function |bj| ∼ ekj, and
the radius of convergence R can be estimated by R ≈ e−k. Fig. 7a shows the distribution of the radius of convergence R
in ER random graph Gp(N). The distribution type does not differ much for different link density p, while the tail of the
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Fig. 5. Radius of convergence R of the steady-state prevalence expansion as a function of network size N in path graphs PN .

Fig. 6. Coefficient |bj| as a function of order j in ER random graphs Gp(N) with N = 30 nodes and link density p. The red markers represent positive
coefficients and the blue markers represent negative. The slope of the function log |bj| with order j is denoted by k.

Fig. 7. Subplot (a): Histogram of the radius of convergence R in ER random graphs Gp(30) based on 2 × 104 realizations for each link density p.
Subplot (b): Average radius of convergence E[D] in ER random graphs Gp(N) as function of link density p for different network size N .

distribution becomes a little heavier with the increasing link density p. A larger link density p implies more regular ER
random graphs, which leads to a higher probability for a large radius of convergence R.

Fig. 7b shows the average radius of convergence E[R] in ER random graphs increases with the link density p, and
resembles a quadratic function E[R] = a0+a1p+a2p2 for a network size N . If the link density is large enough, e.g., p > 0.7
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Fig. 8. Subplot (a): Histogram of the radius of convergence R in scale-free graphs with network size N = 250 based on 2× 104 realizations for each
average degree E[D]. Subplot (b): Average radius of convergence E[D] in scale-free graphs as a function of average degree E[D] for different network
size N based on 104 realizations. Average spectral gap E[λ1 − λ2] in scale-free graphs as a function of average degree E[D] for different network
size N based on 2 × 103 realizations.

in Gp(70), the radius of convergence of the prevalence expansion in ER random graphs can be extremely large with a high
probability because the ER graph tends to a regular graph.

3.5. Scale-free graphs

Fig. 8a shows the histogram of the radius of convergence in scale-free networks with network size N = 250 and
different average degree E[D]. The radius of convergence in scale-free networks resembles a Gaussian distribution for the
average degree E[D] > 2. Fig. 8b shows the average radius of convergence E[R] increases with the average degree E[D],
which is in line with the analysis in ER random graphs that the denser and more regular graph usually leads to a higher
radius of convergence.

We observe that the network size N almost does not influence the average radius of convergence E[R], which reminds
invariant topological properties with the network size N in scale-free networks. Fig. 8b shows that the average spectral
gap E[λ1 − λ2] also differs little with increasing the network size N in scale-free networks, which hints that the radius of
convergence R in scale free graphs may be dominated by the spectral gap λ1 − λ2.

4. Effect of the topological properties on R

In the last section, we illustrate that the prevalence expansion in a dense or regular network usually has a large radius
of convergence R. The prevalence expansion is valid for any effective infection rate τ if the radius of convergence R > λ1.
We investigate the relatively small radius convergence R < λ1, which often occurs in sparse networks and clustered
networks.

4.1. Effect of the network topology on R

Since the radius of convergence R of the steady-state prevalence expansion (4) can be estimated by the inverse of the
convergence order of the absolute coefficient |bj|, i.e., R =

1
limj→∞

j
√

|bj|
. We first investigate the behaviour of the absolute

coefficient |bj|.

Lemma 1. The convergence order of the coefficients |bj| = |uTαj| in the prevalence expansion (4) is upper bounded by the
convergence order of the norm of coefficients ∥αj∥ and the norm of coefficients ∥c j∥, i.e.

lim
j→∞

|bj|
1
j ≤ lim

j→∞

∥αj∥
1
j = lim

j→∞

∥c j∥
1
j (9)

where the coefficient vector αj = Xc j.

Proof. See Appendix B. □
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Then we investigate the convergence order of the coefficient |bj| by making use of the coefficient vector c j. Defining
z = (τ (1)

c )−1
− τ−1 and substituting the infection probability vector v∞(τ ) =

∑
∞

j=1 αjz j into (2), we can obtain that

A
∞∑
j=1

αjz j − (λ1 − z)
∞∑
j=1

αjz j = diag

⎛⎝ ∞∑
j=1

αjz j

⎞⎠ A

⎛⎝ ∞∑
j=1

αjz j

⎞⎠ (10)

Equating the coefficients of the term z j for j ≥ 2 yields

λ1αj − Aαj = αj−1 −

j−1∑
k=1

diag(αk)Aαj−k (11)

Invoking the coefficient αj = Xc j, we multiplying XT on both sides of (11) and arrive

(λ1I − Λ)c j = c j−1 − XT
j−1∑
k=1

diag(Xck)AXc j−k (12)

where the adjacency matrix A = XΛXT , and Λ is the diagonal matrix with Λii = λi.
For m = 1, we introduce the basis vector em and obtain that (c j)1 = eT1

(
XT ∑j

k=1 diag(αk)Aαj+1−k

)
, which yields that

|(c j)1| =

⏐⏐⏐⏐eT1
(
XT

j∑
k=1

diag(Xck)AXc j+1−k

) ⏐⏐⏐⏐ ≤

 j∑
k=1

diag(ck)Ac j+1−k


≤ λ1

j∑
k=1

∥(ck)∥ · ∥c j+1−k∥ = 2λ1∥c1∥ · ∥c j∥ + λ1

j−1∑
k=2

∥ck∥ · ∥c j+1−k∥ (13)

Supposing that limj→∞ |(c j)1|
1
j = maxi∈N{limj→∞ |(c j)i|

1
j }, i.e., ∥c j∥ ≤

√
N|(c j)1|, we arrive at

|(c j)1| ≤
λ1

1 − λ1∥c1∥
√
N

j−1∑
k=2

∥(ck)∥ · ∥c j+1−k∥ (14)

For m > 1, we similarly obtain that

|(c j)m| =
1

λ1 − λm

⏐⏐⏐⏐eTm
(
c j−1 − XT

j−1∑
k=1

diag(Xck)AXc j−k

) ⏐⏐⏐⏐
≤

1
λ1 − λ2

∥c j−1∥ +
1

λ1 − λ2

 j−1∑
k=1

diag(ck)Ac j−k


≤

1
λ1 − λ2

∥c j−1∥ +
λ1

λ1 − λ2

j−1∑
k=1

∥ck∥ · ∥c j−k∥ (15)

The recurrence relations (14) and (15) show that the upper bound of the maximal convergence order of the coefficient
|(c j)m|, i.e. maxi∈N{limj→∞ |(c j)i|

1
j }, as well as the upper bound of limj→∞ |bj|

1
j and the lower bound of the radius of

convergence R, are coupled to the largest eigenvalue λ1 and the spectral gap λ1 − λ2. We further propose a heuristic
lower bound of the radius of convergence of the steady-state prevalence expansion (4) in Appendix C.

From the equation of coefficients (11), we also obtain the inequality

∥λ1I − A∥ · ∥αj∥ ≥ ∥(λ1I − A)αj∥ ≥ ∥αj−1 −

j−1∑
k=1

diag(αk)Aαj−1−k∥ (16)

which leads to the recurrence relation

∥αj∥ ≥
1

λ1 − λN

⏐⏐⏐⏐∥αj−1∥ −
⏐⏐⏐⏐ j−1∑

k=1

diag(αk)Aαj−1−k
⏐⏐⏐⏐⏐⏐⏐⏐ (17)

The recurrence relation (17) implies that the lower bound of the norm coefficient ∥αj∥, as well as the upper bound of the
radius of convergence R, is related to the maximal difference of eigenvalues λ1 − λN .
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Fig. 9. Correlation between the radius of convergence R and the topological properties, e.g., the largest eigenvalue λ1 , the spectral gap λ1 − λ2 , the
maximal difference of eigenvalues λ1 −λN . The plot is based on 2×105 realizations of sparse random graphs. The random sparse graph is generated
with the network size uniformly chosen in N ∈ [10, 120] and the link density uniformly chosen in p ∈ [

2
N , 2

N + 0.3], i.e., the additional number of
links on the spanning tree is (p −

2
N ) N(N−1)

2 .

4.2. Numerical tests

Since a large number of real-world networks are sparse networks with a small average degree, we first investigate
the radius of convergence R in random sparse networks with N nodes and L links, which are generated in two steps to
guarantee the connectivity. First, at step 1, we generate a (uniformly chosen) random spanning tree based on a complete
graph with N nodes [16]; and then, at step 2, we add additional L − N + 1 links, randomly and uniformly, on the
complementary graph of the spanning tree. Fig. 9 shows the correlation between the radius of convergence R and the
topological properties, e.g., the largest eigenvalue λ1, the spectral gap λ1 − λ2, the maximal difference of eigenvalues
λ1 − λN . The above three topological properties all present a high correlation with the radius of convergence, while the
spectral gap λ1 − λ2 has the highest correlation coefficient.

We also present the radius of convergence R in modular ER random graphs G(N,m, p, pm), where N is the number of
nodes, m is the number of modules, p is the overall link density and pm is the proportion of links within modules [17,18].
Fig. 10 shows that the correlation between the spectral gap and the radius of convergence is still high in modular ER
random graphs, while the correlation between the radius of convergence R and the other properties, e.g., the largest
eigenvalue λ1 and the maximal difference of eigenvalues λ1 − λN , degrades much.

We further explore the relation between the radius of convergence R and the topological properties in 10 real-world
networks. The topologies of these networks are obtained from Newman network collection1 and Pajek data sets.2 Fig. 11
shows that the spectral gap λ1−λ2 has a stronger correlation than the largest eigenvalue λ1 with the radius of convergence
R. Moreover, the spectral gap λ1 − λ2 can act as an indicator to estimate the radius of convergence R in sparse networks.

We verify that the spectral gap of the adjacency matrix plays a critical role in the radius of convergence. The spectral
gap is also an indicator of the spectral expansion [19], which describes the goodness of connectivity and Cheeger constant
of a graph [20]. A larger spectral gap could increase the radius of convergence and improve the validity of the NIMFA
stead-state prevalence expansion, which coincides with the fact that NIMFA approaches the exact SIS model better in
well-connected networks.

5. Summary

In this paper, we investigate the convergence of the NIMFA steady-state prevalence expansion (4) in terms of the
effective infection rate at NIMFA epidemic threshold. The network topology alters the radius of convergence R of the
steady-state prevalence expansion (4), which is infinite in regular graphs and becomes finite in irregular graphs. The
average radius of convergence increases with the density (the average degree) in random graphs, e.g., ER random graph
and scale-free graphs. The radius of convergence R is also coupled to the eigenvalues of the adjacency matrix, especially,
a smaller spectral gap λ1 − λ2 usually decreases the radius of convergence in sparse networks and clustered networks.

1 http://www-personal.umich.edu/mejn/netdata/.
2 http://vlado.fmf.uni-lj.si/pub/networks/data/.

http://www-personal.umich.edu/mejn/netdata/
http://vlado.fmf.uni-lj.si/pub/networks/data/
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Fig. 10. Correlation between the radius of convergence R and the topological properties, e.g., the largest eigenvalue λ1 , the spectral gap λ1 −λ2 , the
maximal difference of eigenvalues λ1 −λN . The plot is based on 2×105 realizations of modular ER random graphs G(N,m, p, pm) with N ∈ [10, 100],
m ∈ [1, 6], p ∈ [0.05, 0.3] and pm ∈ [0.5, 0.9].

Fig. 11. The relation between the radius of convergence R and the topological properties (i.e., the spectral gap λ1 − λ2 and the largest eigenvalue
λ1) in 10 real-world networks. The networks Adjnoun, Dophins, Karate, Lesmis, Netscience, Polbooks are collected from Newman network collection,
and the networks Erdos971, USAir97, and Yeast are collected from Pajek data sets. We extract the giant component of each network and regard all
links as undirected and unweighted.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

This research is supported by the China Scholarship Council (CSC). We are grateful to Hale Cetinay and Albert Senén
Cerdà for useful comments.

Appendix A. Recurrence of the coefficients cj(k) in the expansion of vi∞(τ)

The steady-state infection probability vi∞(τ ) of node i in SIS epidemics with the effective infection rate τ ↓ τ
(1)
c follows

vi∞(τ ) =

∞∑
j=1

N∑
k=1

cj(k)(xk)i((τ (1)
c )−1

− τ−1)j (A.1)

where all coefficients cj(k) for the non-trivial solution vi∞(τ ) are determined in a recursive way as follows [11].
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Defining T (m, l, k) =
∑N

q=1(xm)q(xl)q(xk)q, the coefficients cj(m) obey, for m > 1 and j > 2, the recursion

cj(m) =
cj−1(m)
λ1 − λm

{1 − c1(1)(λ1 + λm)T (m,m, 1)} −
c1(1)

λ1 − λm

N∑
k=1;k̸=m

(λ1 + λk)cj−1(k)T (m, k, 1)

−
1

λ1 − λm

j−2∑
n=2

N∑
l=1

N∑
k=1

cj−n(l)cn(k)λkT (m, l, k) (A.2)

while, for j = 2 and m > 1,

c2(m) = −
1

λ1 − λm

T (m, 1, 1)
λ1T 2(1, 1, 1)

(A.3)

and c1(m) = 0. For m = 1, there holds that c1(1) = (λ1
∑N

j=1(x1)
3
j )

−1 and for j = 1, the coefficients cj(1) satisfy the
recursion

cj(1) = −
1

λ1T (1, 1, 1)

N∑
k=2

(λ1 + λk)cj(k)T (1, 1, k) −

j−1∑
n=2

N∑
l=1

N∑
k=1

cj+1−n(l)cn(k)λkT (1, l, k) (A.4)

Appendix B. Proof for Lemma 1

Proof. Without loss of generality, we assume that the convergence order of the elements |(αj)i| for i = 1, . . . ,N are
different, and the coefficient |(αj)k| has the maximum convergence order, i.e., limj→∞ |(αj)k|

1
j = maxi∈N{limj→∞ |(αj)i|

1
j }.

Then there exists a critical order jc such that |(αj)k| = maxi∈N |(αj)i| for j > jc . The absolute coefficients |bj| follows

lim
j→∞

|bj|
1
j = lim

j→∞

⏐⏐⏐⏐ 1N uTαj

⏐⏐⏐⏐ 1j ≤ lim
j→∞

(
1
N

N∑
i=1

|(αj)i|

) 1
j

= lim
j→∞

|(αj)k|
1
j

⎛⎝ 1
N

+
1
N

N∑
i=1,i̸=k

|(αj)i|
|(αj)k|

⎞⎠ 1
j

= lim
j→∞

|(αj)k|
1
j (B.1)

Meanwhile, the norm of the coefficients ∥αj∥ follows

lim
j→∞

∥αj∥
1
j = lim

j→∞

|(αj)k|
1
j

⎛⎝1 +

N∑
i=1,i̸=k

|(αj)i|2

|(αj)k|2

⎞⎠ 1
2j

= lim
j→∞

|(αj)k|
1
j (B.2)

Hence, we obtain the relation that limj→∞ |bj|
1
j ≤ limj→∞ ∥αj∥

1
j .

Invoking that the coefficient αj = Xc j and supposing limj→∞ |(c j)m|
1
j = maxi∈N{limj→∞ |(c j)i|

1
j }, we can obtain that

lim
j→∞

∥αj∥
1
j = lim

j→∞

∥c j∥
1
j = lim

j→∞

|(c j)m|
1
j = lim

j→∞

|(αj)k|
1
j (B.3)

which implies that ∥αj∥ and ∥c j∥ have the same convergence order. □

Appendix C. A lower bound of the radius of convergence R

We hereby heuristically propose a lower bound of the radius of convergence R. We rewrite (12) as

(λ1I − Λ)c j = XTαj−1 − XT
j−1∑
k=1

diag(αk)Aαj−1−k (C.1)

and define the vector c̃ j with (c̃ j)1 = 0 and (c̃ j)m = (c j)m for m > 2 and j > 2. We suppose that the norm of the coefficients
∥c̃ j∥ approximates ∥c j∥ well for a large network size N . Further denoting the matrix S := diag(0, 1

λ1−λ2
, . . . , 1

λ1−λN
) and

invoking ∥αj∥ = ∥c j∥, we can obtain the norm of coefficients ∥αj∥ follows

∥αj∥ ≈ ∥c̃ j∥ = ∥SXTαj−1 − SXT
j−1∑
k=1

diag(αk)Aαj−1−k∥
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Fig. C.12. Radius of convergence R for 4.5× 104 realizations of connected ER random graphs sorted by the estimated lower bound Rlb . The red line
represents the proposed lower bound of the radius of convergence Rlb . The ER random graph Gp(N) is generated with the network size uniformly
chosen in N ∈ [10, 120] and the link density uniformly chosen in p ∈ [0.05, 2

N + 0.3].

≤ ∥Sαj−1∥ + ∥S
j−1∑
k=1

diag(αk)Aαj−1−k∥

≤ ∥S∥ · ∥αj−1∥ + ∥S∥
j−1∑
k=1

∥diag(αk)∥ · ∥A∥ · ∥αj−1−k∥

≤
1

λ1 − λ2
∥αj−1∥ +

λ1

λ1 − λ2

j−1∑
k=1

∥αk∥ · ∥αj−1−k∥ (C.2)

Defining qj as the upper bound of ∥αj∥, we have a new recurrence formula of qj for j > 2 as

qj = hqj−1 + g
j∑

k=0

qkqj−k (C.3)

with q0 = 0, q1 = ∥α1∥ and q2 = ∥α2∥, where h :=
1

λ1−λ2
and g :=

λ1
λ1−λ2

. Further defining the generating function
G(z) =

∑
∞

j=0 qjz
j, we can derive that the generating function G(z) follows

gG2(z) = (1 − hz)G(z) + (gq21 + hq1 − d2)z2 − q1z (C.4)

We define the functional equation F (z,G) = gG2(z) − (1 − hz)G(x) − (gd21 + hd1 − d2)z2 + d1z. Bender [21] shows
that if there exist real positive numbers r > 0 such that the function equation F (r,G(r)) = 0 and ∂F (z,G(z))

∂G

⏐⏐
z=r = 0,

the convergence order of positive coefficients qj follows limj→∞
j

√
qj = r−1. In our case, we can compute that r =

h+2gd1−2
√
gd2

h2+4hgd1+4g2d21−4gd2
. According to Lemma 1, the radius of convergence for the prevalence expansion follows

R =
1

limj→∞
j
√

|bj|
≥

1
limj→∞

j
√

∥αj∥
≥

1
limj→∞

j
√
qj

= r (C.5)

Thus, we can obtain a lower bound of the radius of convergence for the prevalence expansion

Rlb =
h + 2gd1 − 2

√
gd2

h2 + 4hgd1 + 4g2d21 − 4gd2
(C.6)

Fig. C.12 shows the radius of convergence R and the proposed lower bound Rlb of (C.6) in more than 4.5 × 104

realizations in random sparse graphs. The radius of convergence R and the lower bound Rlb present similar behaviours,
but the proposed Rlb only provides a loose lower bound for the radius of convergence R, which hints that the precise
radius of convergence R cannot be inferred only by the eigenvalues of the adjacency matrix.
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