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Abstract—Cascading failures are one of the main reasons
for blackouts in electrical power grids. Stable power supply
requires a robust design of the power grid topology. Currently,
the impact of the grid structure on the grid robustness is
mainly assessed by purely topological metrics, that fail to capture
the fundamental properties of the electrical power grids such
as power flow allocation according to Kirchhoff’s laws. This
paper deploys the effective graph resistance as a metric to
relate the topology of a grid to its robustness against cascading
failures. Specifically, the effective graph resistance is deployed
as a metric for network expansions (by means of transmission
line additions) of an existing power grid. Four strategies based on
network properties are investigated to optimize the effective graph
resistance, accordingly to improve the robustness, of a given
power grid at a low computational complexity. Experimental
results suggest the existence of Braess’s paradox in power grids:
bringing an additional line into the system occasionally results in
decrease of the grid robustness. This paper further investigates
the impact of the topology on the Braess’s paradox, and identifies
specific sub-structures whose existence results in Braess’s paradox
in power grids. Careful assessment of the design and expansion
choices of grid topologies incorporating the insights provided
by this paper optimizes the robustness of a power grid, while
avoiding the Braess’s paradox in the system.

I. INTRODUCTION

The electrical power grid is crucial for economic prosperi-
ties of modern societies. Disruptions to electrical power grids
paralyze the daily life and cause huge economical and social
costs for these societies [5], [16], [32]. The strong dependency
of other crucial infrastructures such as telecommunication,
transportation and water supply on electrical power grids
amplifies the severity of large scale blackouts [13]. The key
importance of the power grid encourages further research
into sustaining power system reliability and developing new
approaches to evaluate and mitigate the risk of cascading
blackouts.

Cascading failures are one of the main reasons for large
scale blackouts [7]. Cascading failures are the consequence of
the collective dynamics of a complex power grid. Large scale
cascades are typically due to the propagation of a local failure
into the global network [36]. Consequently, analyzing and
mitigating cascading failures requires a system level approach.
Recent advances in the field of network science [8], [14]
provide the promising potential of complex network theory
to investigate the robustness of power grids at a system level.
The robustness of power grids in this paper refers to their
maintenance of function after cascading failures triggered by
targeted attacks.

Analyzing and improving the network robustness includes
two parts. The first goal is the proposal of a proper metric that
characterizes the robustness of a specific class of networks
[24], [29]. A second goal is to propose efficient strategies
on graph modification in order to increase the value of the
proposed robustness metric. Consequently, an effective robust-
ness metric that incorporates the essence of the power grids
and effective strategies for graph modification are required to
improve the robustness of power grids.

The effective graph resistance is a graph metric which char-
acterizes the essence of electrical power grids such as power
flow allocation according to Kirchhoff’s laws. Researchers
in [17] shows that the effective graph resistance effectively
captures the impact of cascading failures in a power grid.
The lower the effective graph resistance is, the more robust
a power grid is against cascading failures. Moreover, adding
a link decreases the effective graph resistance [9]. This paper
focuses on enhancing the grid robustness against cascading
failures by applying the effective graph resistance as a metric
for network expansion.

Determining the right pair of nodes to connect in order
to maximize the robustness is a challenge. Exhaustive search,
i.e. checking all the possibilities, is computationally expensive.
Compared to exhaustive search, this paper proposes four
strategies that provide a trade-off between a higher decrease
of the effective graph resistance and a lower computational
complexity.

Exhaustively evaluating the impact of each link addition on
robustness reveals the occurrence of Braess’s paradox in power
grids. Braess’s paradox, originally found in traffic networks
[2], shows that adding a link can decrease the robustness of the
network. Specific sub-structures that might result in Braess’s
paradox by adding an extra link are investigated. Simulation
results indicate that the effective graph resistance effectively
identifies a link whose addition increases the robustness while
avoids the Braess’s paradox. Moreover, most of the strategies
highly increase the robustness at a low computational com-
plexity.

This paper is organized as follows: Section II introduces
the model of cascading failures in power grids. Section III
presents the computation of the effective graph resistance in
power grids. Strategies to add a transmission line are illustrated
in Section IV. The experimental methodology is illustrated
in Section V and the improvement of the grid robustness is
evaluated in Section VI. Section VII concludes the paper.



II. MODEL OF CASCADING FAILURES IN POWER GRIDS

A power grid is a three-layered network consisting of gen-
eration, transmission and distribution parts. A graph can rep-
resent a power grid where nodes are generation, transmission,
distribution buses and substations, and links are transmission
lines. Additionally, links are weighted by the admittance (or
impedance) values of the corresponding transmission lines.

Electrical power in a grid is distributed according to Kir-
choff’s laws. Accordingly, impedances, voltage levels at each
individual power station, voltage phase differences between
power stations and loads at terminal stations control the power
flow in the grid. This paper approximates the flow values in a
grid by using a linear DC flow equation [25] that approximates
the nonlinear AC power flow equation [12].

The maximum capacity Cl of a line l is defined as the
maximum power flow that can be afforded by the line. As in
[17], we assume that the maximum capacity of a transmission
line is proportional to its initial load Ll(0) as follows:

Cl = αlLl(0) (1)

where αl is called the tolerance parameter of the line l.

In a power grid, transmission lines are protected by relays
and circuit breakers. A relay of a transmission line measures
the load of that line and compares the load with the maximum
capacity Cl computed by equation (1). When the maximum
capacity is violated, and this violation lasts long enough, the
relay notifies a circuit breaker to trip the transmission line
in order to prevent the line from permanent damage due to
overloading. We assume a deterministic model for the line
tripping mechanism. A circuit breaker trips at the moment the
load of a transmission line exceeds its maximum capacity.

The failure of a transmission line changes the balance of
the power flow distribution over the grid and causes a redis-
tribution of the power flow over the network. This dynamic
response of the system to this triggering event might over-
load other transmission lines in the network. The protection
mechanism trips these newly overloaded transmission lines and
the power flow is again redistributed potentially resulting in
new overloads. This cascading failure continues until no more
transmission lines are overloaded.

III. EFFECTIVE GRAPH RESISTANCE IN POWER GRIDS

This section explains the complex network preliminaries,
presents the effective graph resistance, and elaborates on how
it is computed in electric power grids.

A. Complex Network Preliminaries

The topology of complex networks can be represented by
a graph G(N,L) consisting of N nodes connected by L links.
Graphs with N nodes are completely described by an N ×N
adjacency matrix A, in which the element aij = 1 if there is
a link between nodes i and j, otherwise aij = 0. In case of
a weighted graph, the network is represented by the weighted
adjacency matrix W where the element wij is a real number
that characterizes a certain property of the link i ∼ j. The
weight can be distances in transportation networks, the delay
in the Internet, the strength of the interaction in the brain
networks, and so on.

The weighted Laplacian matrix Q = ∆−W of G is an N×
N matrix, where ∆ = diag(di) is the N ×N diagonal degree
matrix with the element di =

∑N
j=1 wij . The eigenvalues of

Q are non-negative and at least one is zero [26]. Thus, the
smallest eigenvalue of Q is zero. The eigenvalues of Q are
ordered as 0 = µN ≤ µN−1 ≤ . . . ≤ µ1.

Graph metrics measure the structural and spectral proper-
ties of networks. The degree di of a node i specifies the number
of connected neighbors to that node. The largest eigenvalue λ1

(also called the spectral radius) of the adjacency matrix highly
influences the dynamic processes on networks such as virus
spreading and synchronization processes [23]. The eigenvector
corresponding to the spectral radius is called principle eigen-
vector x1 that characterizes the influence of link/node removal
on spectral radius [19], [30]. The second smallest eigenvalue
µN−1 of the Laplacian matrix Q is coined by Fiedler [10] as
the algebraic connectivity αG. The corresponding eigenvector
is called the Fiedler vector. The entries of the Fiedler vector
provide a powerful heuristic for community detection [21] and
graph partitioning [20]. The strategies illustrated in Section IV
are based on these structural and spectral graph metrics.

B. Effective graph resistance in power grids

Effective resistance Rij is the electrical resistance between
nodes i and j computed by series and parallel manipulations
when a graph is seen as an electrical circuit where each link in
the graph has a unit resistance. According to the Ohm’s law,
the effective resistance Rij is the potential difference between
nodes i and j when a unit current is injected at node i and
withdrawn at node j. The effective graph resistance RG is the
sum of the effective resistance Rij over all pairs of nodes in the
network RG =

∑N
i=1

∑N
j=i+1Rij . Effective graph resistance

takes into account all the possible paths between two nodes
and the total weight on each path.

Computation of the effective graph resistance for a power
grid necessitates the topology of the grid (i.e. interconnection
of nodes) and reactance (or susceptance) values of the trans-
mission lines in the grid. The weighted Laplacian matrix Q of
a power grid reflects the interconnection of nodes by transmis-
sion lines. The weight wij corresponds to the susceptance (the
inverse of reactance) value of the line l = i ∼ j. The effective
resistance Rij between a pair of nodes is computed as [26]:

Rij =
(
Q̂−1

)
ii

+
(
Q̂−1

)
jj
− 2

(
Q̂−1

)
ij

(2)

where Q̂−1 is the Moore-Penrose pseudo-inverse of the Q.

In terms of eigenvalues of the weighted Laplacian matrix
Q, the effective graph resistance can be written as [26]

RG = N

N−1∑
i=1

1

µi
(3)

where µi is the ith eigenvalue of Q and N is the number
of nodes in a power grid. In this paper, we use equation (3),
which is computationally efficient, to compute the effective
graph resistance.



IV. STRATEGIES FOR ADDING A TRANSMISSION LINE

As a response to blackouts, additional transmission lines
are placed aiming to increase the robustness of power grids.
Determining the right pair of nodes to connect in order to max-
imize the robustness is the challenge. An exhaustive search,
identifying the best pair of nodes to connect by checking
all Lc =

(
N
2

)
− L possibilities, is computationally expensive

especially when the number of nodes increases. Therefore,
strategies that determine the transmission line to be added
based on topological and spectral properties of a network,
provide a trade-off between a scalable computation and a high
increase of the grid robustness.

Topological and spectral metrics, such as degree, algebraic
connectivity and spectral radius, characterize the connectivity
of a network and highly influence the dynamic processes ex-
ecuted on a network [10], [27]. The effective graph resistance
is shown to be able to anticipate the robustness of power grids
with respect to cascading failures [17]. This section investi-
gates four strategies, studied in [33], for selecting a link whose
addition potentially minimizes the effective graph resistance
and accordingly maximizes the robustness. A strategy defines
a link l = i ∼ j, where l is not existed before. The selection
criteria of nodes i and j for each strategy are illustrated in the
rest of this section.

A. Degree product

The nodes i and j have the minimum product of degrees
min(didj), where di =

∑N
j=1 wij . If there are multiple node

pairs with the same minimum product of degrees, one of these
pairs is randomly chosen.

The complexity for the strategy is O(N2 − N + 2Lc)
computed as follows: (i) O(N(N − 1)) is for counting the
degrees of all the nodes. (ii) O(Lc) is for computing didj
for Lc unconnected node pairs. (iii) O(Lc) is for finding the
minimum product min(didj).

B. Principle eigenvector

The nodes i and j correspond to the ith and jth components
of the principal eigenvector x1 that have the maximum product
max((x1)i(x1)j) of the principle eigenvector components. The
principal eigenvector x1 belongs to the largest eigenvalue of
the weighted adjacency matrix W .

The complexity of the strategy is O(N3 + 2Lc) com-
puted as follows: (i) O(N3) is for computing the principle
eigenvector x1 assuming the adoption of the QR algorithm
[11] for computation. (ii) O(Lc) is for computing (x1)i(x1)j
for Lc unconnected node pairs. (iii) O(Lc) is for finding the
maximum product max((x1)i(x1)j).

C. Fiedler vector

The nodes i and j correspond to the ith and jth components
of the Fiedler vector y that satisfy ∆y = max(|yi−yj |), where
|yi − yj | is the absolute difference between the ith and jth

components of the Fiedler vector [31].

For this strategy, the complexity is O(N3 +2Lc) computed
as follows: (i) O(N3) is for computing the Fiedler vector yi as-
suming the adoption of the QR algorithm [11] for computation.

TABLE I: A summary of the strategies and the order of their
computational complexity.

Node i Node j Complexity Order
DegProd arg min

i,j
(didj) O(N2)

PrinEigen arg max
i,j

((x1)i(x1)j) O(N3)

FiedlerVector arg max
i,j

(|yi − yj |) O(N3)

EffecResis arg max
i,j

(Rij) O(N3)

Exhaustive Search arg min
i,j

(RG) O(N5)

(ii) O(Lc) is for computing |yi−yj | for Lc unconnected node
pairs. (iii) O(Lc) is for finding the maximum of the difference
|yi − yj |.

D. Effective resistance

The nodes i and j have the highest effective resistance
max(Rij). The pairwise effective resistance Rij is computed
by equation (2). Similarly, if multiple node pairs have the
maximum effective resistance, one of these pairs is randomly
chosen.

The complexity for the strategy is O(N3 +4Lc) computed
as follows: (i) O(N3) is for computing Q̂−1. (ii) O(3Lc) is
for computing Rij for Lc unconnected node pairs. (iii) O(Lc)
is for finding the maximum Rij .

Table I summarizes all the strategies that identify a link
l = i ∼ j and the order of their corresponding computational
complexity. Table I also presents the complexity order of the
exhaustive search in order to compare with the complexity
of the four strategies. The complexity order O(N5) of the
exhaustive search is computed by O(N2) for checking all the
possibilities multiplied by O(N3) for computing the effective
graph resistance after a link addition.

V. EXPERIMENTAL METHODOLOGY

The experimental method presented in this section eval-
uates the robustness of the improved power system against
cascading failures triggered by deliberate attacks. This ap-
proach can be used to assess the performance of the effective
graph resistance as a metric for link addition on improving the
robustness of power grids. This section elaborates on attack
strategies and the quantification of the grid robustness after
cascading failures.

A. Attack Strategies

This paper designs attack strategies based on electrical
node significance centrality and link betweenness centrality.
The electrical node significance [16] is a flow-based measure
for node centrality, specifically designed for power grids. The
electrical node significance δi of a node i is defined as the
total power Pi distributed by node i normalized by the total
amount of power that is distributed in the entire grid:

δi =
Pi∑N
j=1 Pj

(4)

An attack based on δi refers to target the link incident to the
node i that has the highest electrical node significance. Since



node i has the number di of incident links, the link with the
highest load is chosen.

The link betweenness centrality is a topological graph
metric quantifying the centrality of a link in complex networks
[28]. The betweenness centrality of a link is defined as the total
number of the shortest paths that traverse the link l.

Bl =

N∑
i=1

N∑
j=1

1l∈P(i,j) (5)

where 1{x} is the indicator function: 1{x} = 1 if the condition
{x} is true, else 1{x} = 0, and P(i, j) is the shortest path
between nodes i and j. An attack based on betweenness cen-
trality targets the link with the highest betweenness centrality.

Placing an additional line according to different strategies
(presented in Section IV) results in different improved power
systems. In order to compare cascading damages of these
improved systems, we always attack the same link identified by
the node significance centrality or link betweenness centrality
of the original power grid.

B. Robustness Evaluation

The robustness of power grids is evaluated by the criticality
of the additional line and the damages after cascading failures
triggered by targeted attacks. To assess the criticality of the
newly added transmission line based on the effective graph
resistance, we deploy an analogous approach as in [18]: the
criticality of an added line l in a graph G is determined by the
relative decrease of the effective graph resistance ∆RlG that is
caused by the addition of a link l:

∆RlG =
RG −RG+l

RG
(6)

where RG+l is the effective graph resistance of the grid after
adding a link l into G. Evaluation of equation (6) results in
the theoretical robustness level of a power grid.

Initially, a transmission line identified by the four strategies
and exhaustive search is added into the power grid. Then, the
newly obtained grids are attacked and the cascading damages
are quantified.

The damage caused by the cascade is quantified in terms of
normalized served power demand DS: served power demand
divided by the total power demand in the network. Computing
the normalized served demand for an interval of tolerance
parameters [αmin, αmax] results in a robustness curve of a grid.
The normalized area below the robustness curve is computed
by a Riemann sum [28]:

r =

∑m+1
i=1 DS(αi)∆α

αmax − αmin
(7)

where the closed interval [αmin, αmax] is equally partitioned
by m points and the length of the resulting interval is ∆α =
αmax−αmin

m+1 . DS(αi) is the normalized served demand when
the tolerance parameter of the network is αi ∈ [αmin + (i −
1)∆α, αmin + i∆α]. Since the maximum value of DS is 1,
(αmax − αmin) refers to the maximum possible area below
the robustness curve ensuring that the value of r is between
0 and 1. Evaluation of equation (7) for the robustness curve
results in the experimental robustness level of a power grid
with respect to cascading failures.

VI. NUMERICAL ANALYSIS

This section investigates the effectiveness of the effective
graph resistance as a metric for line addition, the impact
of structures on the Braess’s paradox, and the performance
of the four strategies. First, the power grid is expanded by
adding single links according to the minimization of the
effective graph resistance, and the criteria of the four strategies.
Then, the robustness of the improved power grid is assessed
quantitatively under targeted attacks.

A. Assessing effectiveness of the effective graph resistance

Exhaustively adding all the possible links provides us
all the possibly improved grids. Quantifying the cascading
damages of all the improved grids under targeted attacks
provides the benchmark for the evaluation of the effective
graph resistance. The reactance value on each added line is
assumed to be the average of all the existing transmission
lines. The simulations are performed by MATCASC [15], a
MATLAB based cascading failures analysis tool implementing
the model in Section II.

Figure 1 shows the performance of the effective graph
resistance on identifying a critical link under a fixed tolerance
parameter α = 2 in IEEE 57 and 118 power systems. The
original and improved power systems are attacked based on
the node significance centrality computed by equation (4).
In Figure 1, the horizontal line (i.e. the black line) is the
served demand DS for the original power grid after cascading
failures. The curve is the served demand for each improved
power grid after adding each possible line. The curve above
the horizontal line shows an increase of the robustness after a
link addition, while the curve below the horizontal line presents
a decrease of the robustness by adding a link. This counter-
intuitive phenomenon is linked to Braess’s paradox known for
traffic networks, stating that adding extra capacity or links to
a network occasionally reduces the overall performance of a
network [3].

0.8

0.7

0.6

0.5

0.4

0.3

F
ra

c
ti
o
n

 o
f 
s
e
rv

e
d
 d

e
m

a
n
d
 (

D
S

)

1400120010008006004002000

Line ID

        IEEE 57
 DS_Original grid
 DS_Improved grid
 DS_DegProd
 DS_PrinEigen
 DS_Fiedler
 DS_EffecResis
 DS_MinimumEGR

(a) IEEE 57

0.9

0.8

0.7

0.6

0.5

0.4

F
ra

c
ti
o
n
 o

f 
s
e
rv

e
d
 d

e
m

a
n
d
 (

D
S

)

6000500040003000200010000

Line ID

        IEEE 118
 DS_Original grid
 DS_Improved grid
 DS_DegProd
 DS_PrinEigen
 DS_Fiedler
 DS_EffecResis
 DS_MinimumEGR

(b) IEEE 118

Fig. 1: The performance of the effective graph resistance in
IEEE 57, IEEE 118 power system with the tolerance parameter
α = 2.

Braess’s paradox generally occurs in most complex net-
works, such as oscillator networks [35], mechanical and elec-
trical networks [6], hydraulic networks and other networks that
obey Kirchhoff’s laws [22]. In particular, Braess’s paradox also
exists in power systems [1], [35]. Our results are in line with
the occurrence of Braess’s paradox in power systems.



The performance of the effective graph resistance as a
metric for link addition and the performance of strategies
are labeled in the Figure 1 with markers. The added line
that minimizes the effective graph resistance increases the
robustness from 0.41 to 0.80. Compared to the possibly
maximal increase 0.86 by a single link addition, the effective
graph resistance achieves 93% accuracy in the IEEE 57 power
system. Similarly, the effective graph resistance achieves 87%
accuracy in the IEEE 118 power system. The simulation results
in Figure 1 validate the effectiveness of the effective graph
resistance to identify a critical link. The addition of the critical
link improves the robustness of power grids regardless of
the fact that the robustness can be decreased according to
Braess’s paradox. Moreover, the increase of the grid robustness
by adding the critical link according to the effective graph
resistance is over 87% of the upper bound of increase for a
single link addition.

B. Assessing the impact of the grid topology on Braess’s
paradox

Braess’s paradox in this paper refers to the decrease of
grid robustness by placing additional links. The relationship
between the grid topology and the Braess’s paradox in power
grids is investigated.

The Wheatstone bridge graph (shown in Figure 2) refers
to a graph consisting of four nodes, with four links creating
a quadrilateral. A fifth link connects two opposite nodes in
the quadrilateral, splitting the graph into two triangles [4].
We consider the subgraph with four nodes and four links as
the Wheatstone subgraph and the fifth link as the Wheat-
stone link. Braess’s paradox indicates that the construction
of the Wheatstone bridge graph by adding the Wheatstone
link occasionally decreases the robustness of power grids. Let
PWheatstone represent the percentage of the Wheatstone links and
PParadox be the percentage of the links, whose addition results
in Braess’s paradox. In order to investigate the impact of the
Wheatstone bridge graph on Braess’s paradox, the correlation
between the percentages PWheatstone and PParadox is quantified.
The number of Wheatstone links is computed by the number
of Wheatstone bridge subgraphs detected by FANMOD [34],
a tool for fast network motif detection.

Fig. 2: Wheatstone bridge graph

Figure 3 shows two types, Type I and Type II, of Wheat-
stone subgraphs from which a Wheatstone bridge graph is built

by adding the Wheatstone link (the dashed line). For each
subgraph, the number of the Wheatstone links is two times
the total number of subgraphs of Type I and Type II. The
percentage PWheatstone of Wheatstone links in all the possible
added links Lc is computed by PWheatstone =

2(NTypeI+NTypeII)
Lc

,
where NTypek is the number of subgraphs of Type k. Table
II shows the percentage PWheatstone of Wheatstone links and
the percentage PParadox in Figure 1. The correlation between
PWheatstone and PParadox is 0.96 suggesting the criticality of the
Wheatstone bridge graph (see Figure 2) to the occurrence of
Braess’s paradox.

(a) Type I (b) Type II

Fig. 3: Two types of subgraphs to build a Wheatstone bridge
graph by adding the Wheatstone link. The dashed lines are the
possible Wheatstone links.

Besides the Wheatstone bridge graph that occasionally
introduce Braess’s paradox as shown in several literatures [1],
[6], [22], we further investigate other sub-structures that may
lead to the Braess’s paradox. Figure 4 shows other three types,
Type III to Type V, of subgraphs resulting in Braess’s paradox
when a single link is added. The dashed lines in Figure 4 are
the possible links that cause the Braess’s paradox. Table III
shows the percentages PWheatstone and PParadox after considering
the number of links added into Type III, IV and V. The
percentage PWheatstone increases from 6.73% to 25.00% in IEEE
57 power system. An increase of the PWheatstone from 4.53%
to 15.44% is also observed in IEEE 118 and from 1.34% to
4.11% in IEEE 247 power system. Accordingly, the correlation
between PWheatstone and PParadox increases to 0.971. The results
indicate that the subgraphs from Type I to Type V provide an
effective indication for the occurrence of the Braess’s paradox
in power grids. The impact of other characteristics of power
grids, such as the reactance values and the loading profiles, on
the occurrence of Braess’s paradox is still an open question.

IEEE57 IEEE118 IEEE247
Lc 1516 6717 30026
NTypeI 0 20 30
NTypeII 51 132 171

PWheatstone(%) 6.73 4.53 1.34
PParadox (%) 53.16 20.67 4.57

TABLE II: The percentage PWheatstone and PParadox in IEEE
power systems

Based on the Wheatstone bridge graph, we analyze the
impact of the reactance value of the Wheatstone link (see for
example the dashed line in Figure 2) on the Braess’s paradox.
Figure 5 shows the relation between the reactance value and
the percentage PParadox of the links that decrease the robustness.



(a) Type III (b) Type IV

(c) Type V

Fig. 4: Three types of subgraphs resulting in Braess’s paradox
by adding an extra link.

IEEE57 IEEE118 IEEE247
Lc 1516 6717 30026

NTypeIII 95 256 299
NTypeIV 91 216 255
NTypeV 0 15 8

PWheatstone(%) 25.00 15.44 4.11
PParadox (%) 53.16 20.67 4.57

TABLE III: The percentage PWheatstone and PParadox in IEEE
power systems

The inserted figure shows that as the reactance increases from
the minimum to the maximum reactance of all the existing
links, the percentage PParadox first increases and then starts to
fluctuate. The difference between PParadox in the inserted figure
is 0.06 in IEEE 57 and 0.04 in IEEE 118 power systems.
Consequently, the average reactance value of all the existing
links is considered as the reactance value of the Wheatstone
link in this paper. By continuously increasing the reactance
value on the Wheatstone link, the percentage PParadox decreases
due to the descent of the power flow in the Wheatstone link.
At a certain point of the reactance, the percentage PParadox
converges to a constant value in IEEE 118 system.

C. Assessing the effectiveness of strategies

To assess the effectiveness of the four strategies in Section
IV, the IEEE 118 power system, consisting of 118 buses and
186 lines, is considered as a use case. For each line identified
by each strategy, equation (6) is evaluated and its impact on
the effective graph resistance is determined. Table IV shows
the lines to be added identified by strategies and their impact
on the decrease of RG.

In Table IV, the strategy based on the Fiedler vector selects
the line connecting bus 111 and bus 117 and its addition causes
11.3% decrease of the effective graph resistance. Strategies
based on the degree product and the effective resistance have
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Fig. 5: The percentage PParadox under different reactance values
in IEEE 57, IEEE 118 power system.

Strategy line ID ∆Rl
G(%)

DegProd l87−117 9.0

PrinEigen l87−111 4.2

Fiedler l111−117 11.3

EffectiveResis l87−117 9.0

TABLE IV: Added lines identified by the strategies and their
impact on the decrease of RG.

an equal performance that decrease the effective graph resis-
tance by 9%. The strategy based on the principle eigenvector
decreases the effective graph resistance by 4.2%. Compared
to other strategies, the strategy based on the Fiedler vector
performs the best.

To validate the results from Table IV, the original and
improved IEEE 118 power systems are attacked based on
the electrical node significance and the link betweenness, and
damages after cascading failures are quantified. Figures 6 and 7
show the robustness curves for improved power grids under an
interval of tolerance parameters [αmin, αmax] with ∆α = 0.05,
and highlight the improvement of the grid robustness. In order
to quantify the performance of the four strategies in improving
the grid robustness, the robustness value r in equation (7) for
each robustness curve is shown in Table V.

Figure 6 and Table V show the performance of the strate-
gies in the IEEE 118 power grid under the attack based on the
node significance. The strategy based on the Fiedler vector
has a robustness value r = 0.777 which is an increase by
1.8% compared to the original grid robustness (i.e. 0.763).
The strategy based on the degree product and on the effective
resistance have an equal performance. These two strategies
have the same robustness value r = 0.769 and increase
the robustness by 0.8%. The strategy based on the principle
eigenvector has the lowest performance and its robustness
value is r = 0.757 that decreases the robustness by 0.8%.

Figure 7 and Table V present the performance of the
strategies under the betweenness based attack. The strategy
based on the Fiedler vector has the highest robustness value
r = 0.991, which is an increase by 8.2% compared to the
original grid robustness (i.e. 0.916). The strategy based on
the degree product and on the effective resistance have an
equal performance with the same robustness value r = 0.949.
The robustness is increased by 3.6% compared to the original



grid robustness. In contrast, the strategy based on the principle
eigenvector with r = 0.915 slightly decreases the robustness
by 0.1%. The performance order of the strategies shown
in Figures 6 and 7 and Table V is in agreement with the
theoretical results in Table IV.
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Fig. 6: The performance of the four strategies in IEEE 118
power system under different tolerance parameters. The attack
strategy is based on the node significance centrality.
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Fig. 7: The performance of the four strategies in IEEE 118
power system under different tolerance parameters. The attack
strategy is based on betweenness centrality.

When the computational cost for finding the optimal links
to add is prohibitive, the strategy based on the Fiedler vector
with the highest performance is preferable compared to other
strategies. Assuming that computing the Fiedler vector for
large grids is not an option, the strategy based on the degree
product can be an alternative. The degree based strategy is
more likely to be chosen than the strategy based on the
effective resistance due to the fact that these two strategies

Strategy line ID r r
(Node Siginificance attack) (Betweenness attack)

DegProd l87−117 0.769 0.949
PrinEigen l87−111 0.757 0.915

Fiedler l111−117 0.777 0.991
EffectiveResis l87−117 0.769 0.949

TABLE V: Critical lines identified by the four strategies and
the robustness value r in IEEE 118 power system.

have comparable performance, while the strategy based on the
degree product has lower computational complexity.

VII. CONCLUSION AND DISCUSSION

This paper investigates the effective graph resistance as a
metric for network expansions to improve the grid robustness
against cascading failures. The effective graph resistance takes
the multiple paths and their ability to accommodate power
flows into account to quantify the robustness of power grids.
The experimental verification on IEEE power systems demon-
strates the effectiveness of the effective graph resistance to
identify single links that improve the grid robustness against
cascading failures. Additionally, when computational cost for
finding optimal links is prohibitive, strategies that optimize
the effective graph resistance can still identify an added link
resulting in a higher level of robustness. Specifically, the strat-
egy based on the Fiedler vector performs the best compared to
other strategies and increases the robustness by 8.2% in IEEE
118 power system under the betweenness based attack, while
reduces the computational complexity from O(N5) to O(N3).

The occurrence of Braess’s paradox in power grids suggests
that the robustness can be occasionally decreased by placing
additional links. In particular, a badly designed power grid may
cause enormous costs for new lines that actually reduce the
grid robustness. The experimental results in this paper provide
insights in designing robust power grids while avoiding the
Braess’s paradox in power grids.
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