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Abstract

In this paper, we are analyzing the interactivity time, defined as
the duration between two consecutive tasks such as sending emails,
collecting friends and followers and writing comments in online social
networks (OSNs). The distributions of these times are heavy tailed
and often described by a power-law distribution. However, power-
law distributions usually only fit the heavy tail of empirical data and
ignore the information in the smaller value range. Here, we argue that
the durations between writing emails or comments, adding friends and
receiving followers are likely to follow a lognormal distribution.

We discuss the similarities between power-law and lognormal dis-
tributions, show that binning of data can deform a lognormal to a
power-law distribution and propose an explanation for the appearance
of lognormal interactivity times. The historical debate of similarities
between lognormal and power-law distributions is reviewed by illustrat-
ing the resemblance of measurements in this paper with the historical
problem of income and city size distributions.

1 Introduction

Massive data from online social media and online social networking (OSN)
enables accurate analysis of the human behavior and of the interaction times
between individuals through technology such as in word-of-mouth market-
ing, opportunistic networking and viral spreading. Empirical measurements
contradict the commonly assumed exponential distribution of Poissonian
inter-event times [1] in spreading processes or epidemic models. Multiple
publications [2, 3, 4, 5, 6, 7, 8] report that the interactivity time, defined as

∗Faculty of Electrical Engineering, Mathematics and Computer Science, P.O Box 5031,
2600 GA Delft, The Netherlands; email : N.Blenn@, P.F.A.VanMieghem@tudelft.nl

1

ar
X

iv
:1

60
7.

02
95

2v
1 

 [
cs

.S
I]

  1
1 

Ju
l 2

01
6



the duration between two consecutive tasks like sending emails, accessing
web pages, instant messaging and phone calls, follow power-law distribu-
tions. These findings recently led to non-Markovian analyses, addressed in
the work of Cator et al. [9], Iribarren and Moro [10], Van Mieghem and van
de Bovenkamp [11] and Schweizer et al. [12]. Given that the inter-activity
distributions are heavy tailed, word-of-mouth spreading, viral infections or
dynamics of memes are expected to endure or survive longer, compared to
basic Markovian models [10, 13]. Barabasi [2] infers that heavy-tailed dis-
tributions may arise from a priority queue, where individuals execute tasks
of which the majority can be completed in short time, but some tasks wait
long due to a perceived priority. Barabasi’s priority queue model fits the
distribution of durations between events quite well, leading to a power-law
distribution with an exponent γ around 1.

A power-law random variable X ≥ τ has the probability density function

fX(t) = ct−γ t ≥ τ (1)

where c = 1−γ
τ1−γ and τ > 0 is the lower bound for X. The probability density

function (pdf) of a lognormal random variable X for t ≥ 0 is

fX (t) =
exp

[
− (log t−µ)2

2σ2

]
σt
√

2π
(2)

where (µ, σ) are called the parameters of the lognormal pdf, that are the
mean and variance of logX as shown in Appendix A.

When we assume that inter-event durations are power-law distributed,
we encounter the following issues:

1. In many cases, only a part of the data (the tail larger than τ) is
modeled by a power-law. The lower bound τ in (1) does not correspond
to the physical minimum of the random variable X, but τ is fitted from
the data by ignoring smaller values that do not obey the power-law.
Often, these smaller values may have a large probability to occur, so
that their neglect is difficult to justify. In other words, only a part of
the process (above τ) is modeled by a power-law (1), while the other
part (below τ) is not.

2. Most processes or measurements possess both a lower as well as an
upper bound. Apart from the lower bound τ , an upper bound κ is
often invoked, at which a cut-off is observed: the power-law behavior
is confined to the range τ ≤ X ≤ κ, although Xmin < τ and Xmax > κ.
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However, it is often unclear whether the process in the deep tail still
obeys a power-law distribution or some other, much faster decreasing
distribution. The upper bound κ is usually empirically determined,
rather than based on the physical maximum of X. As long as

Pr[X > κ] = c

∫ ∞
κ

t−γdt =
(κ
τ

)1−γ

is small (with respect to the measurement precision), the upper bound
κ is justified, else other validation arguments are needed.

3. We demonstrate here that the binning of data (either by the data-
provider or by the researcher) alters the shape of a lognormal distri-
bution into an apparent power-law.

Particularly in relation to human activities or behaviors, we question in
this paper the widely assumed power-law distribution.

We present measurements of inter-event durations from Digg.com and
Reddit.com, two online social news aggregators [14, 15, 16], and from the
Enron data set1, a collection of emails sent by employees of the company
Enron, and argue that a lognormal distribution is a valid candidate for the
distribution of human inter-event durations in Section 2. The problem of
fitting a lognormal is explained in Section 3, followed by previously reported
lognormally distributed data sets in Section 4. Existing theoretical models
are compared in Section 5, a plausible interpretation for lognormal human
behavior is proposed in Section 6 and Section 7 concludes. Mathematical
properties of the lognormal distribution are deferred to the Appendix A.
Appendix B presents results of likelihood tests for the observed distributions.

2 Observations and Measurements from OSN

All events in an OSN are based on users’ activities, such as posts, friend-
requests and comments. A complete data set including all activities of users
from Digg.com for a duration of 4 years, described in Tang et al. [14] and
Doerr et al. [15], allows us to analyze the time frame in which users of
Digg.com add their friends. Doerr et al. [19] found that reaction times in a
retweet network from Twitter and Digg are close to a lognormal distribution
with parameters µ = 10.1 and σ = 2.2. The process of adding friends
shows bursts of activity also observed and analyzed in email communication

1Enron Email Data-set, Leslie Kaelbling and Melinda Gervasio,
http://www.cs.cmu.edu/∼enron/
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[2, 10, 23, 17, 18]. In these publications the question arises, whether the
observed distribution of inter-activity times is described by a power-law,
lognormal or a cascading Poisson process.

Malmgren et al. [17, 18] describe that circadian and weekly activity
cycles in human behavior are the factors that lead to heavy tails. They pro-
posed a cascading Poisson process, consisting of a nonhomogeneous Poisson
process that reflects periodicity and a homogeneous Poisson process describ-
ing active intervals, which is shown to model the interactivity distributions
of e-mail communication.

Because the network of Digg.com is directed (like in Twitter.com or other
OSNs), a user can be followed by other users to become their “friend”, while
a user cannot add followers. This means that the process of adding friends
is solely based on the user himself, whereas obtaining followers depends
on the activities of other users. The random variable Tfriend denotes the
time between the addition of two friends and, similarly, Tfollower is the time
between receiving two followers.

Figure 1: Time difference (in seconds) between the addition of two consec-
utive friends.

Figures 1 and 2 depict the distribution of durations between adding
friends Tfriend and of receiving followers Tfollower for 7.4 million friendship
relations in Digg. Fitting the data, i.e. all realizations of Tfriend, by the
state of the art technique by Clauset et al. [20] to a power-law (1) results
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in an exponent γ = 1.53 for τ = 59s, whereas all realizations of Tfollower are
fitted best by a lognormal (2) with parameters µ = 10.45 and σ = 2.75. For
Tfollower an estimated p-value of 0.0 indicates that a power-law fit provides
not the best solution, whereas the p-value for Tfriend of 0.23 indicates a
reasonable fit for a power-law distribution.

Figure 2: Time differences (in seconds) between the receipt of two consecu-
tive followers.

The reason that the distribution of Tfollower does not fit the lognormal
distribution over the whole range lies in the nature of Digg.com. Tang et al.
[14] showed that only a few users were active over a long period, while just
a fraction of them was actually submitting stories. Only 2% of all registered
users succeeded to have their submissions “promoted” to the frontpage [15].
Since the username of a submitter appears next to the story, these users
receive a lot of followers during the relatively small period that their story
was listed on the front page. Therefore, fTfollower(x) is large for small x in
Fig. 2. In summary, even ignoring the small time values, the random vari-
able Tfriend and Tfollower possess different distributions. The process that
generates Tfriend is more likely described by a variant of Barabasi’s prior-
ity queue model, leading to power-law behavior. Since the random variable
Tfollower is generated by the collective dynamics of different individuals (that
are likely weakly dependent), central limit law arguments may point towards
the lognormal distribution [1, p. 121-126].
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Similar properties occur in sending and receiving emails. Obviously, a
user can only send an email when he is online, whereas emails arrive at a
user’s inbox at his email server at all times. We analyzed the durations
between receiving and sending emails in the Enron data set, which contains
emails of all employees of Enron during roughly 6 years, starting in January
1998 until February 2004. Similar distributions arise as shown later in Figs. 9
and 10.

A third data set from Reddit.com2, an OSN in which users mainly sub-
mit, comment or vote on bookmarks. The pdf of the duration T between
consecutive comments and submissions in Reddit are shown in Fig. 3.

Figure 3: Time difference between commenting and bookmark submission
in Reddit.com

The tails of the distributions in Fig. 3 seem nicely fitted by a power-law
distribution with exponents γ ≈ 1. However, as mentioned in the introduc-
tion, the increasing regime in fT (t) for small values of t, the peak of fT (t)
nor the concave form of the pdf can be modeled by a power-law distribution.

2The Reddit.com data-set is hosted at Google BigQuery
(bigquery.cloud.google.com/dataset/fh-bigquery).
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3 Fitting a lognormal distribution

The two main approaches are based on the pdf and the EDF (empirical dis-
tribution function3), after a logarithmic transformation of the data. Figure 4
depicts the data fitted4 to the distribution function of a normal distribution
(4) and shows that the parameters of the EDF are about the same as those
in Fig. 2 (pdf approach).

Figure 4: Empirical distribution function (EDF) of the inter-follower dura-
tions Tfollower (same data as in Fig. 2).

3.1 The effect of binning

3.1.1 Theory

We generate [1, p. 41] n realizations of a lognormal random variable X,
which we denote by the set {xk}1≤k≤n = {x1, x2, . . . , xn}. All n realiza-
tions lie in the interval [xmin, xmax], where the minimum value is xmin =
min1≤k≤n xk and the maximum value is xmax = max1≤k≤n xk. The bin-
ning operation [1, p. 580-581] divides the entire data interval [xmin, xmax]

3The empirical distribution function is sometimes also called empirical cdf : the cumu-
lative distribution function (cdf) based on an empirical measure.

4Fitting data to a EDF usually flattens interesting parts of a pdf, especially the tail of
a distribution. Still, the benefit lies in the fact that binning is not needed and “raw” data
can be directly fitted [1, p. 580-581].
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into m sub-intervals of length ∆x = xmax−xmin
m and the j-th subinterval

[xmin + (j − 1) ∆x, xmin + j∆x] for 1 ≤ j ≤ m is associated with a bin hj ,
that contains the number of realizations of X or data points of set {xk}1≤k≤n
lying within the j-th subinterval,

hj ≈ n
∫ xmin+j∆x

xmin+(j−1)∆x
fX (u) du

Clearly, for a given set {xk}1≤k≤n, increasing the binsize ∆x decreases the
number of bins m.

The effect of binning on the pdf fX (t) is depicted in Fig. 5, where n = 106

realizations from a lognormal random variable with parameters µ = 10 and
σ = 2 are drawn. As demonstrated in Appendix A, the scaled random
variable Y = bX has parameter µY = µX + ln b, but σY = σX , implying
that “binning” only changes the parameter µ, but leaves the parameter
σ invariant! By binning (scaling) the distribution with different binsizes,
the “up-going regime”, where fX (t) increases with t, disappears and the
observable part of the distribution “evolves” towards a straight line on a
log-log plot. Binning the data with larger binsizes decreases the parameter
µ, even to the extent that µ may become negative. If µ − σ2 decreases,
the maximum of the lognormal at eµ−σ

2
tends to zero (infinitely far to the

left on a log-log scale). Therefore, just the decreasing part of the quadratic
shape of (2) will be visible in a log-log plot.

3.1.2 Data analysis

Binning the data in different time units, say per minute instead of per second,
scales the distribution by a factor of 60 (since 60 seconds equals 1 minute),
which will shift the parameter µmin of the CDF towards the left to µmin =
µsec− ln(60) ≈ µsec− 4.1. However, a remarkable property of the lognormal
distribution is that the parameter σ will not change after linear scaling as
shown in the Appendix A.

An important consequence of a binning operation is illustrated in the
pdfs in Fig. 6 and Fig. 7, that show the pdf of Tfollower binned per minute
and per hour, respectively. Conforming to the theory, the parameter µ
decreases by a factor of about ln 60 ≈ 4.1, while the parameter σ keeps its
value, but the shape of the distribution changes. The distribution, binned
per hour, is shown in Fig. 7, where the distribution can be confounded
with a power-law distribution (with exponential cut-off). Moreover, this
misinterpretation may be justified, because the exponent γ = 1.57 of a
power-law fitted to the hourly binned data is close to the exponent γ = 1.53
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Figure 5: The effect of different binsizes on a lognormal random variable

found for the Tfriend distribution in Fig. 1. Fig. 8 shows the complementary
cumulative distribution function of Tfollower binned per hour, fitted using
the method of Clauset et al. [20]. The resulting power-law exponent in Fig.
8 is γ = 1.81. The visualization in Fig. 8 is misleading because the original
distribution is, as shown earlier, a lognormal distribution.

For completeness we like to refer to Table 3 in Appendix B, where we list
fitted parameters, p values and the result of log-likelihood tests, conducted
using the method of Virkar and Clauset [51]. As shown in the table, the
larger the used binsizes, the higher the p values indicating that a power-law
fits the data. For small binsizes (low p values) the results are not conclusive
or rather in favor of a lognormal distribution.

To further demonstrate the effect, Figs. 6, 7 and 8 depict distributions
in which the data was artificially binned by minutes and hours. In reality,
such binning operation might occur if the data provider (the OSN or web
service) returns values per hour or even larger scales. In other words, data
measured in larger time steps over a certain total time range thus erases the
possibility to distinguish between a lognormal and power-law distribution.

The sending time of an email in the Enron data set until May 2001
was stored per minute, whereas afterwards (June 2001 - February 2004)
the sending time is stored with an accuracy of a second. The resulting
pdf of time differences between sent emails is plotted in Fig. 9, where the
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Figure 6: The probability density function (pdf) of the inter follower times
Tfollower binned per minute.

Figure 7: The probability density function (pdf) of the inter follower times
Tfollower binned per hour.
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Figure 8: The ccdf of the inter-follower time TFollower where data is binned
per hour.

black and red dots represent the measurements per second and per minute,
respectively. The parameters of the fitted lognormal (µ = 9.5, σ = 3.24) and
power-law distribution (γ ≈ 1) correspond to those of Digg.com in Fig. 2
and Fig. 1.

The pdf of inter-arrival times of received emails, split in observations
per minute (red) and per second (black) in Fig. 10, can be compared to the
durations of added followers, where the parameters are again in the same
range as shown before. We found that the EDF of the data (not shown)
agrees with the pdfs in Fig. 9 and Fig. 10, underlining the likeliness that a
lognormal random variable models the data better than a power-law.

4 Reported parameters of power-law and lognor-
mal distributions

Table 1 lists inter-arrival times and the fitted exponents found in publica-
tions in which the aspect of binning was ignored. Rather small power-law
exponents γ between 0.7 and 1.8 are found in multiple data sets of human
activity.

Lognormal distributions were reported for similar human activity as
shown in Table 2, which extends the collection of Limpert et al. [21]. The
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Figure 9: Time difference between consecutively sent emails per person in
the Enron data set.

oldest analysis was conducted by Boag [22] in 1949. Based on the scal-
ing invariance of σ as demonstrated in Appendix A, the parameter σ can
be compared over different measurements, whereas the parameter µ cannot,
since µ depends on the units in which the lognormal random variable is mea-
sured. Interestingly, all σ’s in Table 2 lie within an amazingly small range
of 0.35 ≤ σ ≤ 3.2, which shows that the parameter σ only varies over about
one order of magnitude in different measured phenomena. If σ is rather
small as in our measurements where 2.73 ≤ σ ≤ 3.24, the first term in (10)
dominates and a quadratic function appears in a log-log plot. Consequently,
these rather small values of σ and those in Table 2 contradict the common
deductions made from (10) in Appendix A, namely that only for large values
of σ power-law and lognormal distributions are indistinguishable. Equations
(8) and (9) in Appendix A explain why the lognormal distribution may seem
linear in a certain regime.

5 The Historical Debate of the Power-law versus
Lognormal Distribution

Mitchell [40] discusses the fascinating and abundant appearance of power-
law distributions and mentions processes such as self-criticality, that are
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Figure 10: Time difference between consecutively received emails per person
in the Enron data set.

related to phase transitions, as the main producers of power-laws, but she
remarks that the precise nature as well as the deviations from a power-law
are still open to debate. Table 2 illustrates that the research on lognormal
distributions has a long history. Unfortunately, also the processes that pro-
duce (almost) lognormal behavior are not well understood. Mitzenmacher
[41] overviews processes leading to power-law and lognormal distributions,
emphasizing that minor changes in the process will lead to either a power-
law or a lognormal distribution. Mitzenmacher mentions the work of Gabaix
[42], who analyzed the size distribution of cities in the United States. In-
terestingly, Gabaix [42] found that the city size distribution follows a Zipf
distribution, which is a power-law distribution (1) with an exponent γ = 1.
Gabaix argues that cities cannot become infinitely small, a fact that imposes
a lower bound to their size. When modeling the size of cities as a Markov
chain with a fixed number of cities, which grow stochastically as proposed
by Gibrat [43], then the steady state of the Markov chain will follow Zipf’s
distribution with an exponent γ = 1. If there is no lower bound on the city
size, so that cities can be arbitrarily small, then the distribution degenerates
to a lognormal distribution.

Gibrat [43], whose work is often associated with the law of proportionate
effect [39], argues in his model that transition probabilities or the variance
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Data-set Exponent (γ) Reference

Time between sending Emails 1 Barabasi (2005) [2]
Time between sending Emails 1.2 Eckmann et al. (2004) [3]
Time between clicks in website usage 1, 1.25 Gonçalves and Ramasco (2008) [4]
Time between similar actions in web data 1.1, 1.2, 1.8 Radicchi (2008) [5]
Time between messages in instant-messaging 1.53 Leskovec and Horvitz (2008) [6]
Time between phone calls 0.9 Candia et al. (2008) [7]
Time between phone calls 0.7 Karsai et al. (2012) [8]
Time between sending Emails 1 Karsai et al. (2012) [8]
Time between sending short messages 0.7 Karsai et al. (2012) [8]

Table 1: Power-law exponents found for durations between technology re-
lated human dynamics

of transition probabilities in a growth process are independent from the size.
Gibrat, who estimated the distribution of city sizes, concluded that the law
of proportionate growth leads to a distribution that is lognormal. However,
Simon [44] showed that Gibrat’s law of the proportionate effect may lead to
other heavy-tailed distributions as well.

Champernowne [45] and Cordoba [46] analyzed the income distribution
of England and Wales with Markov theory. Again, their crucial assumption
is that incomes have a lower bound.

Eeckhout [47] analyzed the distribution of city sizes by using accurate
data from the US census in 2000 and found that the heavy tail obeys Zipf’s
law. But, the entire distribution is better described by a lognormal than
a Pareto distribution. By comparing the census data from 1990 and 2000,
Eeckhout shows that the growth of a city is independent of its size. The
parameters of the lognormal distribution found by Eeckhout are µ = 7.28
and σ = 1.75.

The difference with the above mentioned Markov chain approach lies in
the fact that Eeckhout [47] modeled the process by a multiplicative process,
which leads to a lognormal distribution. This multiplicative process, pro-
posed by Kapteyn [48] in 1903 for the first time and later coined the “Law of
Proportionate Effect” by Gibrat [43], is based on the central limit theorem
applied to a multiplicative process, which leads to lognormal distributed
sizes [1]. Gibrat’s growth process is defined as

St = at × St−1 (3)

where the size St of an item at state t depends upon the previous size St−1

times a positive, random factor at. By taking the logarithm of both sides in
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Table 2: Literature of lognormal distributions (excerpt)

µ σ process reference

5.547 2.126 email forwarding Iribarren and Moro [10]
≈ 8 ≈ 2 email forwarding Stouffer et al. [23]
µ1 = 1 hour
µ2 = 2 days email forwarding Stouffer et al. [24]
2.47 0.38 infection times Nishiura [25]
2.47 0.36 latency periods of diseases Limpert [21]
14 days 1.14 latency periods of diseases Sartwell [26]
100 days 1.24 latency periods of diseases Sartwell [26]
2.3 hours 1.48 latency periods of diseases Sartwell [26]
2.4 days 1.47 latency periods of diseases Sartwell [26]
12.6 days 1.50 latency periods of diseases Sartwell [26]
21.4 days 2.11 latency periods of diseases Sartwell [26]
9.6 months 2.5 survival times after cancer diagnosis Boag [22]
15.9 monts 2.8 survival times after cancer diagnosis Feinleib and Macmahon [27]
17.2 months 3.21 survival times after cancer diagnosis Feinleib and Macmahon [27]
14.5 months 3.02 survival times after cancer diagnosis Boag [22]
60 years 1.16 age of onset of Alzheimer Horner [28]
4 days incubation periods (viral infections) Lessler et al. [29]
3 to 5 ≈ 2 task completion Linden [30]
0.5 1.4 strike duration Lawrence [31]

time of individual activities Mohana et al. [32]
0.43 1.634 call duration Spedalieri et al. [33]
3.5 0.70 message holding time Barcelo and Jordán [34]
7.439 0.846 transmission holding time Barcelo and Jordán [34]
3.29 0.890 channel holding time Barcelo and Jordán [34]
3.3 0.89 channel holding time Barcelo and Jordán [34]
µ1 = 1.31 σ1 = 0.32
µ2 = 2.26 σ2 = 0.56 call holding time Bolotin [35]

citations Eom and Fortunato [36]
citations Redner [37]

1 to 2 0.35 − 0.45 citations Stringer et al.[38]
1.095 citations Radicchi et al.[55]

µ1 = 3.7 σ1 = 0.8
µ2 = 5.6 σ2 = 3.1 retweeting behavior Doerr et al.[19]
5.29 0.42 distribution of votes on pages of Digg.com Van Mieghem et al. [39]
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(3) and denoting ξt ≡ ln at, we obtain, after iteration,

lnSt = lnS0,i + ξ1 + ξ2 + . . .+ ξt

By the Central Limit Theorem [1],
∑t
k=1 ξk−tµ
σ
√
t

d→ N(0, 1), we arrive at, for

large t,

Pr[lnSt ≤ y]→ 1√
2π

∫ y−tµ
σ
√
t

−∞
e−u

2/2 du

from which approximately

lnSt ∼= tµ+
√
tσN(0, 1)

where µ denotes the mean and σ2 the variance of the sequence {ξk}1≤k≤t.
For large t, a power-law distribution (1) tends to zero as O (t−γ), while a

lognormal distribution (2) tends considerably faster as O
(
t−1 exp

[
− log2 t

2σ2

])
to zero, illustrating that the deep tails are significantly different. Malevergne
[49] addressed this fact by the concept of a slowly varying function, in par-
ticular, for x→∞ and t > 0, the power-law distribution (1) features

lim
x→∞

fX(t · x)

fX(x)
= t−γ

The lognormal distribution (2) on the other hand is not slowly varying. In
the limit x → ∞, a lognormal distribution will, for t > 1, always tend to
zero:

lim
x→∞

fX(t · x)

fX(x)
= lim

x→∞

1

t
e−

(ln(t))2

2σ2 e− ln(t)· ln(x)−µ
σ2 = 0

This different tail behavior questions whether exponential bin sizes should
be used in a log-log plot, because these may hide the rapid decrease in the
tail.

6 An explanation of lognormal human interactiv-
ity times

Perhaps, a plausible explanation of the appearance of lognormal human in-
teractivity times is that the logarithm log T of a human interactivity time
T is Gaussian or normally distributed (see Appendix A), most likely as a
consequence of the Central Limit Theorem. Roughly speaking, the Cen-
tral Limit Theorem applies for a large number of weakly dependent random
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variables, where none of them is dominant. Thus, rather than concentrat-
ing on the time T , it seems more natural to focus on the random variable
log T as the decisive quantity. The logarithm of a human related measure
often occurs: for example, in our hearing system, the intensity of sound is
logarithmically experienced. But more importantly, the large variability in
human performance also seems logarithmically distributed [50, 30] and the
measured interactivity times are strongly related to the large differences in
human performance and/or behavior.

On the other hand, if Y is an exponential random variable with mean
1

γ−1 for Y ≥ log τ (else Y = 0) and X = eY , then

Pr [X ≤ t] = Pr [Y ≤ log t] = 1− e−(γ−1)(log t−log τ) = 1−
(
t

τ

)1−γ

so that d
dt Pr [X ≤ t] = γ−1

τ1−γ t
−γ is a perfect power-law probability density

function as in (1). However, if log T ≥ log τ were exponentially distributed
with mean 1

γ−1 , the memoryless property of the exponential distribution [1,
p. 43] would indicate that

Pr [log T ≥ t+ u| log T > u] = Pr [log T ≥ t]

In other words, given that the logarithm of a human interactivity time is
larger than u time units, the probability that log T exceeds t+u time units is
equal to the probability that log T exceeds t time units, for any u and t larger
than log τ , precisely as if the log-interactivity time u never has been spent
or waited, which is quite counterintuitive for a duration between consecutive
activities. Alternatively, with u = log s and s > τ , the memoryless property
of log T implies “scale-freeness in T”:

Pr

[
log

T

s
≥ t| log

T

s
> 0

]
= Pr [log T ≥ t]

which shows, ignoring the condition log T
s > 0, the independence on the

“scale s”. But, we have shown in Section 3.1 that rescaling the human
interactivity time (by different bin sizes) definitely alters the distribution.

From these arguments, we can infer that a power-law time T is less
defendable than a lognormally distributed T .

7 Conclusion

In this paper, the interactivity durations of individuals, between creating
friendship relations, writing emails, commenting and voting on online con-
tent are analyzed. We found that the distribution of durations to add friends
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follows a power-law with an exponent of γ ' 1.8, whereas the durations
to acquire followers are well described by a lognormal with µ ≈ 10.5 and
σ ≈ 2.8. Due to the small probability of executing two tasks in a small time
interval (typically ignored in fitting a power law), we claim that a lognor-
mal distribution covers the entire activity time range better than a power
distribution.

In addition, we show that binning of lognormally distributed data can
seriously affect the perception: the parameter µ shifts towards smaller val-
ues, but the parameter σ of a lognormal distribution does not change after
a binning or scaling operation. In the extreme case, only the heavy tail of
the lognormal distribution (2) remains, which follows a power-law distribu-
tion (1) with an exponent of γ close to 1. As explained in the Appendix,
there exists an interval in which the lognormal distribution is indistinguish-
able from a power-law distributions with power-law exponent γ ≈ 1 + ε, for
small ε > 0.

Similar observations and concerns, discussed for a long time in the litera-
ture of city size and income distributions and reviewed in Section 5, supports
that a lognormal distribution is modeling the whole data range better than
power-laws. Finally, Section 6 argues that the logarithm of a quantity as-
sociated with human activities rather than the quantity itself is the better
descriptor, because human performance seems to fit a lognormal.
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A The lognormal random variable and distribu-
tion

A lognormal random variable [1, p. 57] is defined as X = eY where Y =
N
(
µ, σ2

)
is a Gaussian or normal random variable. Hence, X ≥ 0. The

distribution function FX(t) = Pr[X ≤ t] = Pr[Y ≤ log t] is

FX(t) =
1

σ
√

2π

∫ log t

−∞
exp

[
−(u− µ)2

2σ2

]
du =

1

2

(
1 + erf

(
t− µ
σ
√

2

))
(4)

where erf(x) is the error function. The probability density function (pdf) of a
lognormal random variable X follows from the definition fX(t) = d

dt Pr[X ≤
t], for t ≥ 0, as (2), where (µ, σ) are called the parameters of the lognormal
pdf, while the mean and variance are [1, p. 57]

E [X] = eµe
σ2

2

and
Var [X] = e2µeσ

2
(
eσ

2 − 1
)

The limit σ → 0 reduces to a Dirac delta function at t = eµ, thus limσ→0 fX (t) =
δ (t− eµ).

Given the mean and variance, the parameters of the lognormal are found
as

σ2 = log

(
1 +

Var [X]

(E [X])2

)
(5)

and

µ = logE [X]− σ2

2
(6)

Although E [X] ≥ 0, we remark that the parameter µ can be negative.
Moreover, (5) and (6) show that the scaled lognormal random variable Y =
bX, where b is a positive real number, has mean σY = σ and µY = µ +
log b. Hence, scaling by a factor b does not change the parameter σ, which
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has interesting consequences for binning and measured data: the unit (e.g.
second versus hours) in which the random variable is measured does not
alter the parameter σ, only the parameter µ.

The change of the argument t→ eu in fX (t) leads to

fX (eu) = e−µ+σ2

2

exp

[
−(u−(µ−σ2))

2

2σ2

]
σ
√

2π
(7)

illustrating that the scaled lognormal pdf eµ−
σ2

2 fX (eu) is a Gaussian pdf
N
(
µ′, σ2

)
with mean µ′ = µ − σ2. The maximum of fX (t) occurs at t =

eµ−σ
2

and equals maxt≥0 fX (t) = e−µe
σ2

2

σ
√

2π
, which follows directly from (7).

Moreover, we find easier from (7) than from (2) that limu→−∞ fX (eu) =
fX (0) = 0 and that f ′X (0) = 0. This means that any lognormal starts at

t = 0 from zero, increases up to the maximum at t = eµ−σ
2
> 0 after which

it decreases towards zero at t→∞. Thus, the lognormal is bell-shaped, but,
in contrast to the Gaussian, the lognormal pdf is not symmetric around its
maximum at t = eµ−σ

2
and can be seriously skewed.

The expression for the lognormal pdf in (2) can be rewritten [49] in a
“power-law”-like form as

fX (t) =
e−

µ2

2σ2

σ
√

2π
t−α(t) (8)

where the exponent α (t) equals

α (t) = 1 +
log t− 2µ

2σ2
(9)

which illustrates that a lognormal random variable behaves as a power-law
random variable, provided the last fraction in (9) is negligibly small, say ε.

The latter happens when
∣∣∣ log t−2µ

2σ2

∣∣∣ < ε. Thus, when t ∈ [e2µ−2σ2ε, e2µ+2σ2ε]

or in terms of the lower bound τ = e2µ−2σ2ε and upper bound κ = e2µ+2σ2ε

defined in Section 1, the pdf (2) of a lognormal random variable is almost
indistinguishable from the pdf (1) of a power-law random variable with
power exponent γ ≈ 1 + ε. The t-interval [e2µ−2σ2ε, e2µ+2σ2ε] exceeds the
maximum eµ−σ

2
of the lognormal pdf and is clearly longer when σ is larger

(as well as the tolerated accuracy ε increases). Malvergne et al. [49] mention
that, if σ = 3.4, then the exponent α (t) in (9) varies less than 0.3 units over
a range of three orders of magnitude.
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Taking the logarithm on both sides of (2) results in

ln(fX(t)) = − 1

2σ2
ln(t)2 + (

µ

σ2
− 1) ln(t)− ln(

√
2πσ)− µ2

2σ2
(10)

If σ is large, then the second term ( µ
σ2 − 1) ln(t) in (10) dominates, which

leads to a straight line with in a log-log plot resembling a power-law with
exponent γ = 1. On the other hand, if σ is small or µ = σ2, the first,
quadratic term in (10) dominates.

B Distinguishing power-law from lognormals by
likelihood testing

We apply the method of Clauset et al. [20] and Virkar and Clauset [51]
to our data to distinguish between power-law and lognormal distributions.
Clauset et al. [20] approached the problem of estimating the exponent γ in
(1) by testing different distributions. In their data, lognormals and power-
laws were not clearly distinguishable either: for some tested data-sets, a
lognormal distribution actually achieved a higher p-values (goodness of fit)
than power-laws, but log ratio tests suggested that other tested distributions
are closer to power-laws. By using the technique in [20] to fit the distribution
of Tfriend, a power-law with exponent γ = 1.53 was found with a reasonable
p-value of 0.23. The distribution of Tfollower is most likely not a power-
law because the p-value of 0.0. Table 3 lists the parameters for all used
datasets using Clauset and Virkar’s fitting technique [51] with the according
log-likelihood (Log-lh) and p values. A positive log-likelihood ratio indicates
that the power-law is favored over the lognormal.

Distribution power-law lognormal Log-lh # of data-points
(binned in) Exponent (γ) p xmin µ σ p LR

adding friends Tfriend (seconds) 1.53 0.23 59 0.54 2.26 0.0015 418.67 7,156,722
adding follower Tfollower (seconds) 2.03 0.0 12 10.45 2.75 0 -1327.5 6,734,405
adding follower Tfollower (hours) 1.81 0.37 116 6.43 3.1 0 -297.66 41,184
sending emails (seconds) 2.33 0.0 86 9.53 3.24 0 -373.7441 68,346,901
sending emails (minutes) 2.03 0.21 1 6.9 3.32 0 -391.13 62,031,701
receiving emails (seconds) 2.01 0.0 1 10.31 2.73 0 -958.67 69,528,701
receiving emails (minutes) 2.21 0.05 182 6.23 3.54 0 -136.31 15,365,001
commenting on Reddit.com (seconds) 1.08 0.0 112 10.2 3.13 0 -0.0024 180,156,539
commenting on Reddit.com (hours) 1.91 0.01 64 0.88 2.41 0 -20.73 50,044

Table 3: Estimated parameters using the method of Clauset et al. [20]
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