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Abstract

Epidemic models are increasingly used in real-world networks to understand di§usion phenom-

ena (such as the spread of diseases, emotions, innovations, failures) or the transport of information

(such as news, memes in social on-line networks). A new analysis of the prevalence, the expected

number of infected nodes in a network, is presented and physically interpreted. The analysis method

is based on spectral decomposition and leads to a universal, analytic curve, that can bound the

time-varying prevalence in any Önite time interval. Moreover, that universal curve also applies to

various types of Susceptible-Infected-Susceptible (SIS) (and Susceptible-Infected-Removed (SIR))

infection processes, with both homogenous and heterogeneous infection characteristics (curing and

infection rates), in temporal and even disconnected graphs and in SIS processes with and with-

out self-infections. The accuracy of the universal curve is comparable to that of well-established

mean-Öeld approximations. At last, we provide bounds on the prevalence in any connected graph.

1 Introduction to SIS epidemics on networks

Epidemic processes on a network can approximately describe an amazingly large variety of real-world

processes [1], such as the spread of a disease, a digital virus, a message in an on-line social network,

an emotion, the propagation of a failure or an innovation and other di§usion phenomena on networks

(competing opinions, social contagion [2]). While the study of epidemics dates back to the great

Bernoulliís, the investigation of the role of the underlying graph on the dynamics of the susceptible-

infected-susceptible (SIS) process was only initiated 15 years ago with the seminal paper of Pastor-

Satorras and Vespignani [3]. The relatively new Öeld of network science [4, 5, 6, 7, 8, 9] aims to study

the interplay between dynamic processes on a graph and the characteristics of that underlying graph.

In [10], we discussed the ìLocal rule-Global emergent propertiesî (LrGep) class, where the collective

action of the local rules executed at each node in the network gives rise to a complex, emergent global

network behavior. Prominent examples of the LrGep-class are epidemic models and more general

reaction-di§usion processes [1], the Ising spin model [11], the Kuramoto coupled-oscillator model [12],

cellular automata [13], sandpiles as models for self-organized criticality [14, 15, 16] and opinion models

[17, 18]. The fascinating binding of these LrGep class members is that many LrGep models feature a

phase transition [19], they all depend heavily on the underlying topology and many processes in nature
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seem well described by LrGep models. The simplicity of the local rules disguises the overwhelming

complexity of the global emergent network behavior that these local rules create. Even one of the

simplest members of the LrGep class, the SIS process, is intricate and not su¢ciently understood.

However, the Markovian SIS process on networks allows for the highest degree of analytic treatment,

which is a major motivation for the continued e§ort towards its satisfactory understanding. Here, we

report on a universal property of the SIS prevalence and we propose a new analytic approximation

with an accuracy comparable to the well-established mean-Öeld models [1].

We consider an unweighted, undirected graph G containing a set N of N nodes and a set L of L
links. The topology of the graph G is represented by a symmetric N # N adjacency matrix A. In

an SIS epidemic process [20, 21, 22, 23, 1, 24], the viral state of a node i at time t is speciÖed by

a Bernoulli random variable Xi (t) 2 f0; 1g: Xi (t) = 0, when node i is healthy, but susceptible and

Xi (t) = 1, when node i is infected. A node i can only be in one of these two states: infected, with

probability Pr[Xi(t) = 1] or healthy, with probability Pr[Xi(t) = 0], but susceptible to the infection.

We assume that the curing process for node i is a Poisson process with rate )i and that the infection

rate over the link (i; j) is a Poisson process with rate +ij . Only when infected, node i can infect each

node k of its healthy direct neighbors with rate +ik. All Poisson curing and infection processes are

independent. This description deÖnes the continuous-time, Markovian heterogeneous SIS epidemic

process on a graph G. We do not consider non-Markovian epidemics [25, 26] and assume that the

infection characteristics in the graph, i.e. all curing and infection rates, are independent of time. The

fraction of infected nodes is deÖned as

S (t) =
1

N

NX

i=1

Xi (t) (1)

and its expectation, called the prevalence or the order parameter, equals

y (t) = E [S (t)] =
1

N

NX

i=1

Pr [Xi (t) = 1] (2)

exploiting the property E [Xi] = Pr [Xi = 1] of a Bernoulli distribution, which enables to avoid com-

putations with the probability operator in favor of the easier, linear expectation operator. In that

setting, the exact Markovian heterogeneous SIS governing equation [27, 8] for the infection probability

of node i is
dE [Xi (t)]

dt
= E

"

')iXi (t) + (1'Xi (t))
NX

k=1

+kiakiXk (t)

#

(3)

When node i is infected at time t and Xi (t) = 1, only the Örst term on the right-hand side between

the brackets [:] a§ects and decreases with rate ')i the change in infection probability with time
dPr[Xi(t)=1]

dt (left-hand side in (3)). When node i is healthy, Xi (t) = 0 and (1'Xi (t)) = 1, only the
second term between the brackets [:] increases dPr[Xi(t)=1]

dt by a rate
PN
k=1 +kiakiXk (t) due to all its

infected, direct neighbors. We deÖne the Bernoulli random vector w (t) = (X1 (t) ; X2 (t) ; : : : ; XN (t))

at time t, the nodal curing vector e) = ()1; )2; : : : ; )N ) and the weighted adjacency matrix eA with

element eaij = +ijaij , that can change with time t as in temporal networks [28]. If +ki = +ik, the

corresponding heterogeneous SIS prevalence di§erential equation is (see Theorem 1 in Appendix A)

N
dy (t)

dt
= 'E

h
e)Tw (t)

i
+ E

h
(w (t))T eQ (t)w (t)

i
(4)
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where the time-depending, weighted Laplacian eQ (t) = e+(t)' eA (t) is an N #N positive semi-deÖnite

symmetric matrix, with the diagonal matrix e+(t) = diag
(
ed1; ed2; : : : ; edN

)
and the infection strength of

node k is edk =
PN
i=1 +kiaki. In a homogeneous SIS process, where all +ij = + and )j = ), (4) simpliÖes

[29] to,
dy (t!; 5)

dt!
= 'y (t!; 5) +

5

N
E
h
w (t!; 5)T Qw (t!; 5)

i
(5)

where 5 = )
* is the e§ective infection rate, t

! = t) is the normalized time, Q = +'A is the Laplacian
of the graph G with + = diag(d1; d2; : : : ; dN ) and di is the degree of node i. The corresponding

governing equation for the prevalence of the SIR process is deduced in [30] . Assume in a temporal

network that the infection characteristics do not change, but only links in the graph change at time t:

A (t' ") = A1 and A (t+ ") = A2 for any arbitrarily small real " > 0. Since the number N of nodes

does not change, the number of infected nodes is continuous at time t. Thus, the Bernoulli vector

w (t) = lim"!0w (t' ") = lim"!0w (t+ ") is continuous at time t and the prevalence di§erential

equation (4) shows that

dy (t)

dt

****
t+"

'
dy (t)

dt

****
t#"

=
1

N
E
h
(w (t))T

(
fQ2 ' fQ1

)
w (t)

i
(6)

implying that the derivative of the prevalence is likely not continuous at the time when the topology

changes. On the other hand, the derivative dy(t)
dt is continuous when the topology does not change

(nor the infection characteristics). Thus, the SIS prevalence on temporal networks may show a dis-

continuous slope at time t, from which a topology change at that time t may be inferred.

Figure 1: A sketch of an epidemic state in a graph at time t!, described by (5), illustrates the three

sets: (a) the set of infected nodes containing NS (t!) = 7 nodes (in black), (b) the set of susceptible

nodes (in green) and (c) the cut-set (in red): the number of links with one infected node and here

equal to wT (t!)Qw (t) = 6 links.
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2 The cut-set

The evolution of the nodal infection, described by (3), reáects the ìlocal ruleî of the SIS process,

whereas the SIS prevalence di§erential equation (4) describes the ìglobal emergent propertiesî. In

(3), (4) and (5), the second, non-linear term quantiÖes the coupling between process and underlying

topology. Fig. 1 illustrates that this physical interaction is embedded in the cut-set wT (t)Qw (t),

which equals the number of links with one end node infected at time t. Links with one end node

infected are called infective links in [31]. Given that one node is infected initially and that the

e§ective infection rate 5 is well above the epidemic threshold 5c, the early infection spreads as the

ripples in a pool caused by throwing a stone in the water. First the direct neighbors become infected,

then the neighbors of those neighbors and so on. This early spread can be speciÖed by the expansion

of the graph [8, p. 371], a graph metric which determines the number of nodes at k hops from the

initial node. In this early phase, the epidemic grows exponentially with time and the cut-set boundary

is analogous to ìconcentric circles in a poolî around the initially infected node [32]. After some time,

infected nodes cure and move in Fig. 1 to the set of susceptible nodes. When the number of successive

shells around the initial node exceeds the average hopcount [8, p. 360 & Chapter 16], i.e. number of

links of the shortest path between two arbitrary nodes, the Önite size of the graph prevents exponential

increase in the number of nodes reached from an initial node. Hence, two e§ects, curing and Önite

graph structure, limit the growth of an epidemic. After the early phase, the cut-set as well as its

border line between infected and healthy nodes cease to resemble simple geometric concentric circles

and start exhibiting a complicated shape. Determining the largest cut-set, which corresponds to the

fastest possible viral increase (see (4)) in the network, is NP-hard, as well as Önding the smallest

cut-size that is related [33, p. 95] to the isoperimetric constant 8, which upper bounds the epidemic

threshold 5c ( 1
. , as shown by Ganesh et al. [34]. In spite of its computational di¢culty, the key to

understanding an infectious spread lies in the cut-set, which is the place to prevent epidemic spread.

The latest dynamic control strategies [35] target the reduction of the cut-set wT (t)Qw (t) at each

time t.

3 Universality of the tanh-formula

Our major new result concerns ìuniversalityî: the time-varying prevalence y (t) of any Markovian SIS

process, be it homogeneous or heterogeneous in its infection or/and curing rates, in temporal or even

disconnected graphs, with or without self-infections, can be upper and lower bounded by a single,

universal curve. To simplify the explanation, we concentrate on a homogeneous SIS process and refer

to Appendices E and F for the other cases.

Our method, which is entirely di§erent from the mean-Öeld concept, is based on the spectral

decomposition of the cut-set wTQw and of the Bernoulli state vector w, whose components wj = Xj
are only zero or one. Physically, the dynamics (5) of the SIS epidemics, characterized by the Bernoulli

vector w and the Laplacian matrix Q, is mapped onto the Laplacian eigenspace, determined by the

underlying graph G. As shown in Appendix C, the Bernoulli vector w is projected onto the N

orthogonal axes formed by the real, normalized Laplacian eigenvectors x1; x2; : : : ; xN belonging to the

eigenvalues :1 ) :2 ) * * * ) :N = 0, respectively, and obeying the orthogonality condition xTk xm = 1
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if k = m, otherwise xTk xm = 0. The coordinates in the Laplacian eigenvector basis, <j = wTxj for

1 ( j ( N , completely specify the Bernoulli vector w. The relative success of the method is, in

contrast to the adjacency matrix, due to the knowledge of one eigenvector xN = 1p
N
u belonging to

the eigenvalue :N = 0 and where u = (1; 1; : : : ; 1) is the all-one vector. The corresponding coordinate

is <N = 1p
N
uTw =

p
NS, by the deÖnition (2) written in vector form as S = uTw

N . Since w is a

zero-one vector, the largest scalar product <j = wTxj is <N , which means that the Bernoulli vector w

is most close to the eigenvector xN . In addition, the norm of the Bernoulli vector equals the sum of

its components, wTw = uTw = NS, which allows to specify the second most ináuential coordinate

<N#1.

We consider a graph G consisting of k connected components, where the k smallest Laplacian

eigenvalues are zero, but :N#k > 0 (see Appendix B). For a connected graph (k = 1), the second

smallest eigenvalue :N#1 > 0 of the Laplacian Q, coined by Fiedler [36] the algebraic connectivity, is

studied over the last decades [33]. After spectral decomposition, the di§erential equation (5) becomes

dy (t!; 5)

dt!
= (5:N#k ' 1) y (t!; 5)' 5:N#ky2 (t!; 5)'2k (t!; 5) (7)

where the remainder 2k (t!; 5) is explicitly given in (21). If 2k (t!; 5) equals a constant c, then (7)

reduces to a Riccati di§erential equation, which can be solved exactly. Assuming that we can bound

2k (t
!; 5) in a normalized time interval [t!1; t

!
2] by two constants, cL (k) ( 2k (t

!; 5) ( cU (k), then the
prevalence y (t!) can be bounded in [t!1; t

!
2], for the same initial condition y0, by

T ( t!j y0; 5:N#k; cU (k)) ( y (t!) ( T ( t!j y0; 5:N#k; cL (k))

where our ìtanh-formulaî is

T ( tj y0; s; c) =
1

2

,
1'

1

s

-
+
4

2
tanh

,
s4

2
t+90

-
(8)

with the Laplacian normalized e§ective infection rate s = 5:N#k and

90 = arctanh

 
2y0'

/
1' 1

s

0

4

!

(9)

and

4 =

s,
1'

1

s

-2
'
4c

s
(10)

Fig. 2 draws the tanh-formula (8) as a function of normalized time t! for various c 2 ['1; 0], in
two characteristic regimes above (5:N#k high) and below (5:N#k small) the epidemic threshold.

The isoperimetric inequality can be invoked to bound the cut-set wTQw, inspired by the arguments

explained in depth in [31]. Unfortunately, the application of the general isoperimetric bound leads to

a rather crude approximation.

We argue in Appendix D that, for k = 1, a rough estimate for c - 'y0. Our tanh-formula (8)
approximates the total contribution 2k (t!; 5), containing the less ináuential Bernoulli vector coordi-

nates in the Laplacian eigenspace, by a constant c. Extensive simulations [37] on various graph types

and infection characteristics, compared with the N -Intertwined Mean-Field Approximation (NIMFA,

[38]), demonstrate that the tanh-formula (8) has an overall performance comparable to mean-Öeld

approximations.
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Figure 2: The tanh-formula (8) as a function of normalized time t! for various values of c =

f'1;'0:9;'0:8; : : : ; 0g. Two characteristic regimes are shown: (above) s = 5:N#k below the epi-

demic threshold and initial condition y0 = 1, where all are nodes infected, and (below) s = 5:N#k

above the epidemic threshold and initial condition y0 = 0:1:

4 Non-unimodality of the prevalence

In [29], I have written ìWe believe (but cannot prove) that, in a SIS epidemic process on any connected

graph G with Öxed 5 , there are no multiple extrema (i.e. more than two extremal points) for a positive

prevalence y.î About a half a year after publication of [29], Joel Miller showed me that my claim was

wrong by constructing an ingenious counter example. The Miller graph is drawn in Fig. 3 and the

corresponding Laplacian spectrum is shown in Fig. 4. The probability density function (inset in Fig.

4) of the Laplacian eigenvalues possesses four sharp peaks at relatively small values.

The SIS prevalence y (t) as a function of the normalized time t on the Miller graph in Fig. 5

clearly illustrates non-unimodality: the prevalence is exhibits four extremal values over time. Both

lower and upper bound, computed with the tanh-formula (8), have been added. In the Miller graph,

the remainder 2k (t!; 5) is not well approximated by a constant, although, overall, the tanh-formula

(8) can still be used to Öt the prevalence and to provide upper and lower bounds, speciÖed by cL and

cH . Thus, the complicated remainder 2k (t!; 5) can be bounded.
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Figure 3: The Miller graph consists of N = 1743 nodes and L = 7557 links.

5 Potential of the tanh-formula (8)

We discuss the tanh-formula (8) further. First, (8) contains three parameters: the initial condition y0,

s = 5:N#k and c that all depend upon the underlying graph. Remarkably, the expectation of a com-

plicated dynamic process ñ the prevalence is an expectation ñ is approximately characterized by only

three parameters. Second, the tanh-formula (8) generalizes the classical Kermack and McKendrick ex-

pression of 1927 by incorporating the graph. Assuming ìhomogeneous mixingî, equivalent to regarding

the underlying network as a complete graph KN , Kermack and McKendrick [39] demonstrated that

the SIR prevalence is described by the time-derivative of a simpliÖed variant of our tanh-formula (8).

The correspondence with our tanh-formula (8) is not so surprising: in the complete graph KN with

algebraic connectivity :N#1 = N , the complicated remainder reduces to its simplest possible form:

21 (t
!; 5) = 5NVar[S (t!; 5)]. In KN , the fraction of infected nodes S (t!; 5) is close to a Gaussian

random variable [40] above the epidemic threshold 5c and the variance Var[S (t!; 5)] - 1
N is almost

constant in the metastable regime. Generally, in su¢ciently large networks and above the epidemic

threshold, the average total infection ìforceî is balanced in equilibrium by the average total healing

ìforceî and the individual infection state Xj of node j is only weakly dependent on Xk of node k.

Under these conditions of weakly dependence, the Central Limit Theorem [8] states that the fraction

S of infected nodes tends to a Gaussian with mean y = E [S] and standard deviation B =
p
Var [S].

The tanh-formula (8) does not include the eventual die-out of the SIS epidemic in any Önite network.

Once the epidemic has reached the metastable state in which the two above mentioned forces balance

each other on average, small process áuctuations of a couple of standard deviations B around the

mean y continuously occur, but large áuctuations are rare. In the metastable, a die-out of the SIS

process can only be caused by a cascade of mainly curing events in succession, which is a very rare

event. Consequently, once the process has reached the metastable state, the epidemic remains in the

network for a very long time [41, 42, 43], which practically means for large real-world networks that

the SIS epidemics remains in the metastable state. Hence, for large N and for e§ective infection rates

5 > 5c, the tanh-formula (8) models the ìrealî SIS epidemic very well, although it ignores absorption.

Third, the parameter c approximates the complicated remainder 2k (t!; 5). The important bounding

assumption cL (k) ( 2k (t!; 5) ( cU (k) leads to the prevalence envelope, illustrated in Fig. 6 and akin
to [44], which encloses (see also Fig. 7) roughly 68% of all realizations (i.e. all possible real-world

7



Figure 4: The ordered Laplacian eigenvalues of the Miller graph in in Fig. 3. The insert plots the

frequency of the those eigenvalues.

measurements of an SIS epidemic) assuming Gaussian áuctuations around the prevalence ñ which is,

as mentioned above, a good approximation for dense graphs as KN su¢ciently above the epidemic

threshold. In absence of su¢ciently clean data of a real-word SIS prevalence, Fig. 7 plots 50 random

realizations of S (t!) out of 106 with the same infection characteristics and on the same graph as in Fig.

6. Since only the realizations that have reached the metastable state after a start with one initially

infected, randomly chosen node, are observable, the prevalence is rescaled to y = Nmym+Ndyd
N = Nm

N ym,

where the index m refers to those realizations that reach the metastable state, and the index d to

those that die out fast [45] and never reach the metastable state. Usually, the die-out probability,

given an initial number of infected nodes, is unknown, which complicates, as demonstrated in Fig. 7

the proper normalization in reality, where often only one realization of a spreading process (e.g. of a

disease) is measured over time. Fortunately, NIMFA [29] upper bounds the prevalence, ignoring that

realizations die out, while the tanh-formula (8) can Öt, upper or lower bound data to infer from the

parameters (y0; 5:N#k; c) insights in the epidemic.

Fourth, the tanh-formula (8) can be used in temporal networks by gluing the di§erent time-regimes

in which the network is unaltered: at time t, where the topology changes, we impose continuity in the

prevalence, y(t'") = y (t+ ") for "! 0, but allow discontinuity in the derivatives as in (6). The tanh-

formula (8) is the more accurate, the better 2k (t!; 5) can be approximated by a constant. The smaller

the time interval [t!1; t
!
2], the better 2k (t

!; 5) is approximated by its mean c = 1
t!2#t

!
1

R t!2
t!1
2k (t

!; 5) dt!.

By dividing an experiment in small time intervals, in which the data is Ötted by the tanh-formula

(8), and by ìcontinuously gluingî the intervals that determine y0, a set f5:N#k; cg for each interval
is obtained. Theory prescribes that all 5:N#k over the intervals should hardly di§er, which can serve
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Figure 5: The time-depending SIS prevalence on the Miller graph, together with the variance envelope

and the tanh-formula upper and lower bound.

as an accuracy indication or a veriÖcation that the epidemic process is Markovian SIS-like. The set of

c values then approximates the non-constant remainder 2k (t!; 5), that depends on both the epidemic

process and the underlying graph.

Finally, just as higher order mean-Öeld methods can increase the accuracy, our spectral approach

can be improved. Instead of bounding the remainder 2k (t!; 5) by a constant, which is the zero-order

approximation in the Taylor expansion of 2k (t!; 5), a polynomial in the prevalence y seems promising

[37], which suggests that the method may be reÖned further. Thus, we believe that it is worthwhile to

research 2k (t!; 5) in depth to Önd sharper approximations. Another extension towards more realistic

[46], non-Poissonean infection and curing processes stands on the agenda for further research.

In summary, besides the powerful mean-Öeld approximations, we have demonstrated the potential

of a spectral method for the prevalence to unravel properties of SIS (SIR) epidemics on networks.

Acknowledgement. We are grateful to Joel Miller for constructing his Miller graph (in Fig. 3),
featuring non-unimodality of the prevalence (Fig. 5) and to Qiang Liu for the simulations that led to

Figures 5, 6 and 7.
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A The basic di§erential equation of the SIS prevalence

Theorem 1 Let eQ (t) = e+(t) ' eA (t) denote the time-depending, weighted Laplacian, which is an
N #N positive semi-deÖnite symmetric matrix, with the diagonal matrix e+(t) = diag

(
ed1; ed2; : : : ; edN

)

and the infection strength of node k is edk =
PN
i=1 +kiaki. If the link infection rate is the same in both

directions, +ki = +ik, then the corresponding heterogeneous SIS prevalence di§erential equation is

N
dy (t)

dt
= 'E

h
e)Tw (t)

i
+ E

h
(w (t))T eQ (t)w (t)

i

If the link infection rate is not the same in both directions, +ki 6= +ik, a Laplacian representation is

not possible and we end up with

N
dy (t)

dt
= 'E

h
e)Tw (t)

i
+ E

h
(u' w (t))T eAw (t)

i

In a homogeneous SIS epidemic process, where all +ij = + and )j = ), then (4) simpliÖes to the

di§erential equation,

dy (t!; 5)

dt!
= 'y (t!; 5) +

5

N
E
h
w (t!; 5)T Qw (t!; 5)

i

Proof: Summing the Markovian heterogeneous SIS governing equation (3) for the infection prob-
ability of node i over all nodes and omitting the time-dependence in Xi (t) to shorten the equations,

yields

dE
hPN

i=1Xi

i

dt
= E

"

'
NX

i=1

)iXi +
NX

k=1

NX

i=1

+kiakiXk '
NX

k=1

NX

i=1

+kiakiXiXk

#

After rewriting in matrix notation and in terms of the prevalence (2), we obtain

N
dy (t; 5)

dt
= 'E

h
e)Tw (t)

i
+ E

5(
eAu
)T
w (t)' w (t)T eAw (t)

6

= 'E
h
e)Tw (t)

i
+ E

h
(u' w (t))T eAw (t)

i

We deÖne the weighted Laplacian as eQ = e+' eA, where the diagonal matrix e+ = diag
(
ed1; ed2; : : : ; edN

)

and the strength of node k is dk =
PN
i=1 +kiaki. In order to beneÖt from the basic Laplacian property

eQu = 0 of a constant row and column sum, we conÖne ourselves to a symmetric weighted adjacency

matrix eA =
(
eA
)T
, implying that +ij = +ji. Thus, the infection rate of a link is only link dependent

and the same in both directions: from node i to node j and vice versa. Consequently, the weighted

Laplacian is symmetric, eQ =
(
eQ
)T
. Under this symmetry restriction, we have

(u' w (t))T eAw (t) = (u' w (t))T
(
e+' eQ

)
w (t)

= (u' w (t))T e+w (t)' uT eQw (t) + (w (t))T eQw (t)

= (w (t))T eQw (t)

because

(u' w (t))T e+w (t) =
NX

j=1

(1'Xj (t))Xj (t) edj = 0
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since (1'Xj (t))Xj (t) = 0 as Xj (t) 2 f0; 1g. The homogeneous case (5), as discussed in [29], follows
directly from (4) with normalized time t! = t). !

Perhaps surprising, the exact governing equations (4) and (5) of the SIS prevalence are formally

easier than their mean-Öeld counterpart (see [8, p. 467]).

By using the basic deÖnition Q = BBT of the N #N Laplacian [33, p. 14] in terms of the N # L
incidence matrix B, we directly Önd [33, p. 72] that, for any N # 1 vector z,

zTQz =
/
BT z

0T
BT z =

X

l2L

(zl+ ' zl")
2

where each link l joins two end nodes l+ and l#. In particular, for z = w, we observe that

wTQw =
X

l2L

(Xl+ 'Xl")
2 (11)

If both end of a link l are either infected or healthy, then Xl+ 'Xl" = 0 and such a link l does not
contribute to the sum. Hence, only links with one end infected and the other end healthy, for which

(Xl+ 'Xl")
2 = 1, contribute precisely a unit amount to wTQw. In other words, wTQw equals the

number of links in the cut-set.

B Kernel of the Laplacian Q of a graph with k disconnected com-
ponents

A graph G has k components (or clusters) if there exists a relabeling of the nodes such that the

adjacency matrix has the structure

A =

2

66666
4

A1 O : : : O

O A2
...

...
. . .

O : : : Ak

3

77777
5

where the square submatrix Am is the nm # nm adjacency matrix of the connected component m

containing nm nodes. The total number of nodes in G equals N =
Pk
m=1 nm. The corresponding

Laplacian is

Q =

2

66666
4

Q1 O : : : O

O Q2
...

...
. . .

O : : : Qk

3

77777
5

Since Qmunm = 0 for each connected component m and the (unscaled) nm # 1 all-one eigenvector
unm is the only eigenvector belonging to eigenvalue :nm = 0 (due to the connectivity of the connected

component m), we Önd that the general representation of an eigenvector xN (m) of Q belonging to

the eigenvalue :N = 0 with multiplicity k is

xTN (m) =
/
8m1u

T
n1 ; 8m2u

T
n2 ; : : : ; 8mku

T
nk

0
(12)
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The subspace of the N -dimensional space spanned by the eigenvectors of a matrix belonging to the zero

eigenvalue is called the kernel or null space of that matrix. Each of the k possible N # 1 eigenvectors
xN (m) of Q have the form (12) and can thus be speciÖed by a k # 1 vector 8m = (8m1; 8m2; : : : ; 8mk)
for 1 ( m ( k. Any pair fxN (m) ; xN (s)g of such (normalized) eigenvectors, represented by the
vectors 8m = (8m1; 8m2; : : : ; 8mk) and 8s = (8s1; 8s2; : : : ; 8sk), must be orthogonal [33], which leads to

the set of
/
k
2

0
non-linear equations

xN (m)x
T
N (s) =

kX

j=1

8mj8sjnj = )ms

Let us deÖne the vector ym = (ym1; ym2; : : : ; ymk) with ymj =
p
nj8mj , then the above orthogonality

condition reduces to the ìordinaryî orthogonality condition for the set of k vectors y1; y2; : : : ; yk,

yTmys =

kX

j=1

ymjysj = )ms

This means that any set of k orthogonal vectors y1; y2; : : : ; yk, that spans the k-dimensional space, can

be used to produce k eigenvectors xN (m), with 1 ( m ( k, of the kernel of Q. The corresponding k#k
matrix Yk, with the vectors y1; y2; : : : ; yk in the columns, is an orthogonal matrix, whose properties

with respect to graphs are studied in [47]. Clearly, the simplest set is the set e1; e2; : : : ; ek of the basis

vectors for which Yk = I. Since any other N # 1 eigenvectors of Q belonging to a positive eigenvalue

of Q is orthogonal to each kernel eigenvector xN (m) that belongs to the zero eigenvalue :N = 0, we

observe that there exist a k-fold inÖnity of such eigenvector sets, depending on our choice of the set

of k vectors y1; y2; : : : ; yk.

Since the Bernoulli vector w has only zero and one components, the scalar product wTxN (m) is

maximized if one the vectors ym is equal to the k # 1 all-one vector uk. This observation suggests us
to construct the set of orthogonal eigenvectors y1; y2; : : : ; yk, with one of them, say y1 = uk, equal to

the all-one vector uk. Basically, this means that all orthogonal vectors y1; y2; : : : ; yk are eigenvectors

of the adjacency matrix of the complete graph Kk, because the unscaled largest adjacency eigenvector

(of any regular graph and thus also of Kk) is x1 (Kk) = uk.

Barik et al. [48] have shown that only regular graphs, such as the complete graph KN , for N = 4k

and k 2 N0, and the regular bipartite graph K2k;2k, are diagonalizable by a symmetric Hadamard
matrix. An n#n Hadamard matrix Hn contains as elements either '1 and 1 and obeys HnHT

n = nIn.

The normalized matrix 1p
n
Hn is an orthogonal matrix, from which it follows that detHn = n

n
2 , which

is maximal among all n # n matrices with elements in absolute value less than or equal to 1, which
includes all orthogonal matrices. Indeed, let Hn =

h
uj eH

i
so that Hne1 = un. Consider the diagonal

matrix D = I ' e1eT1 , then

HnDH
T
n = HnH

T
n 'Hne1 (Hne1)

T = nIn ' un:uTn = nI ' J

Hence, the Laplacian matrix of the complete graph Kn is QKn = nI ' J = HnDHT
n . Since Kn is a

regular graph, the eigenvectors of the Laplacian Q and the adjacency matrix A are the same [33]. In

conclusion, any Hadamard matrix with Örst column Hne1 = un provides the orthogonal eigenvector

matrix for the complete graph Kn.
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In summary, by choosing an k # k normalized Hadamard matrix Yk = 1p
k
Hk with Örst column

Hke1 = uk, all components 8mj =
ymjp
nj
in (12) are determined, leading, with (Ak)mj = 8mj , to the

matrix Ak = diag
(

1p
nj

)
Yk =

1p
k
diag

(
1p
nj

)
Hk. Moreover, the scalar product wT P is maximal among

all normalized vectors P for P = xN (1); in particular, wTxN (1) = wTup
N
= wTwp

N
.

C The quadratic form zTQz in a graph with k disconnected compo-
nents and its spectral decomposition

C.1 The vector z is real

Since the eigenvectors of Q constitute an orthogonal basis, any N # 1 real vector z can be expressed
as a linear combination of eigenvectors x1; x2; : : : ; xN of Q,

z =
NX

j=1

Qjxj

where Qj = zTxj and xj is the eigenvector belonging to the j-th largest Laplacian eigenvalue :j . In

terms of the orthogonal matrix X with eigenvector in its columns [47], which satisÖes the orthogonality

conditions XXT = XTX = I so that X#1 = XT , we have

Q = XT z and z = XQ

illustrating the one-to-one relation between the coordinates of z expressed in a certain basis and its

coordinates Q expressed in the basis of eigenvectors of Q. The quadratic form equals

zTQz =
NX

k=1

NX

m=1

QkQmx
T
kQxm =

NX

k=1

Q2k:k (13)

When the graph G is disconnected into k connected components (Appendix B), there holds [33,

p. 74] that :N#j = 0 for 0 ( j ( k ' 1. In other words, the k smallest eigenvalues of the Laplacian
Q are zero, whereas all the others are positive :1 ) :2 ) : : : ) :N#k > 0. Thus,

zT z =

NX

j=1

Q2j =

N#kX

j=1

Q2j +

NX

j=N#k+1

Q2j

Further, as shown in (12) above for k > N 'm and writing z as a k-block vector,

zT =
/
bzT1 ; bz

T
2 ; : : : ; bz

T
k

0

where bzj is an nj # 1 vector corresponding to the block structure of the connected components in the
adjacency matrix, the projection of the vector z onto the kernel vectors xN (m) for 1 ( m ( k of the
Laplacian Q is

zTxN (m) =

kX

j=1

8mj

(
uTnjbzj

)
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so that
NX

j=N#k+1

Q2j =

kX

m=1

0

@
kX

j=1

8mj

(
uTnjbzj

)
1

A
2

In conclusion, for a graph G with k connected components, the Euclidean norm of the vector z can

be written as

zT z =
1

N

/
uT z

02
+

kX

m=2

0

@
kX

j=1

8mj

(
uTnjbzj

)
1

A
2

+
N#kX

j=1

Q2j (14)

where each element 8mj of the matrixAk = 1p
k
diag

(
1p
nj

)
Hk can be determined, as shown in Appendix

B.

C.2 The Bernoulli random vector w is a binary vector

The Bernoulli vector w is a so-called binary vector, because each component wk = Xk is either zero

or one. For such vectors, we observe with (1) that

wTw =

NX

k=1

X2
k =

NX

k=1

Xk = u
Tw = NS

Let us consider the eigenvector decomposition

w =
NX

j=1

<jxj (15)

where <j = wTxj is the j-the coordinate of the Bernoulli vector w along the j-th eigenvector xj in the

eigenspace of Q. For a graph G with k connected components, (14) leads to

wTw =
1

N

/
uTw

02
+

kX

m=2

0

@
kX

j=1

8mj

(
uTnjwj

)
1

A
2

+
N#kX

j=1

<2j

or, with wTw = uTw = NS,

N#kX

j=1

<2j = N
/
S ' S2

0
'

kX

m=2

0

@
kX

j=1

8mj

(
uTnjwj

)
1

A
2

(16)

Next, since :N#j = 0 for 0 ( j ( k ' 1, the quadratic form (13) becomes

wTQw =

N#kX

j=1

<2j :j (17)

Introducing the square of the coordinate, obtained from (16),

<2N#k = N
/
S ' S2

0
'

kX

m=2

0

@
kX

j=1

8mj

(
uTnjwj

)
1

A
2

'
N#k#1X

j=1

<2j
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into (17) yields

wTQw = <2N#k:N#k +
N#k#1X

j=1

<2j :j

= :N#kN
/
S ' S2

0
' :N#k

kX

m=2

0

@
kX

j=1

8mj

(
uTnjwj

)
1

A
2

'
N#k#1X

j=1

:N#k<
2
j +

N#k#1X

j=1

<2j :j

Rewritten,

wTQw = :N#kN
/
S ' S2

0
+Rk (18)

where the correction Rk is

Rk =

N#k#1X

j=1

<2j (:j ' :N#k)' :N#k
kX

m=2

0

@
kX

j=1

8mj

(
uTnj bwj

)
1

A
2

(19)

where bwj here is the j-th nj # 1 block vector of w according to the component structure of the graph
G. Thus, uTnj bwj equals the number of infected nodes at time t in the j-th connected component of
G with nj nodes and, with N =

Pk
m=1 nm, the fraction S of infected nodes in G (at time t) is a

ìweightedî average over the k components of G

S =

Pk
j=1 u

T
nj bwjPk

m=1 nm

The Örst term in Rk is non-negative, as well as the second term. In a connected graph G where

k = 1, the second term in (19) vanishes so that R1 is non-negative, but only zero for the complete

graph KN . When k = 1, the general expression Rk in (19) reduces to our previous expression in [29]

in terms of the algebraic connectivity :N#1. Clearly, the second term in (19) only appears when a

graph is disconnected into k connected components. When k is large, then Rk is likely negative, and

certainly for k = N ' 1, in which case the Örst in (19) term vanishes.

For a given graph G, all parameters related its Laplacian eigenstructure, such as the eigenvalues

:j and the elements 8mj of the Hadamard related matrix Ak = 1p
k
diag

(
1p
nj

)
Hk, are known. Only

the coordinates <j for 1 ( j ( N 'k and kernel coordinates uTnj bwj for 1 ( j ( k in (19) depend on the
SIS process via the Bernoulli vector w (t), that depends upon its initial value at w (0) at time t = 0.

Indeed, if the initially infected nodes only appear in one component, say m = 1, so that the vector

bw1 (0) 6= 0, then all other vectors bwm = 0 for all components m > 1, because evidently, an infection

can only spread in a connected component.

C.3 A Fourier analysis interpretation of Laplacian eigenvectors

If xk is an eigenvector of Q belonging to eigenvalue :k, then the fundamental Laplacian quadratic

form in (11) becomes

:k = x
T
kQxk =

X

l2L

((xk)l+ ' (xk)l")
2

which implies that the variation of eigenvector components at both ends of a link increases with the

Laplacian eigenvalue. When interpreting the eigenvector xk as a function (xk)i of the nodal components
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i at frequency :k, the above suggests that a high frequency Laplacian eigenvector oscillates more (over

a link) than a low frequency Laplacian eigenvector. The suggestion is correct for a ring graph [33,

p. 116-123], because the orthogonal eigenvector matrix X of the ring graph is the Fourier matrix

(with the usual cosine and sine as eigenfunctions). While a general theorem valid for any graph

that the Laplacian eigenvector xk possesses more sign changes with increasing :k ñ a reáection of

higher oscillatory behavior with increasing frequency ñ seems missing1, the intuition of the Fourier

decomposition of a signal hints that the ìFourier coe¢cientsî <k = wTxk are generally expected to

decrease with higher index k. If correct and if <2k:k decreases generally with :k, then the Örst sum

of Rk in (19) would generally consists of decreasing positive terms. This interpretation may lead to

sharp approximations of Rk.

D Governing equation of the homogeneous SIS prevalence in graph
with k disconnected components

Invoking the deÖnition (2) of the prevalence y = E [S], E
B
S ' S2

C
= y ' E

B
S2
C
and E

B
S2
C
= y2+

Var[S], (18) becomes

1

N
E
B
wTQw

C
= :N#kE [S]' :N#kE

B
S2
C
+
E [Rk]

N

= :N#ky ' :N#ky2 ' :N#k

,
Var [S]'

E [Rk]

N:N#k

-
(20)

Using (5), the spectral representation of the SIS prevalence governing di§erential equation is

dy (t!; 5)

dt!
= (5:N#k ' 1) y (t!; 5)' 5:N#ky2 (t!; 5)'2k (t!; 5)

where the remainder

2k (t
!; 5) = 5:N#k

,
Var [S (t!; 5)]'

E [Rk (t
!; 5)]

N:N#k

-

For a connected graph (i.e. with k = 1 connected component), we again Önd the earlier result in [29,

eq. (12)]. Introducing (19), the explicit form of the remainder is

2k (t
!; 5)

5:N#k
= Var [S (t!; 5)] +

1

N

kX

m=2

E

2

4

0

@
kX

j=1

8mj

(
uTnjwj

)
1

A
23

5'
1

N

N#k#1X

j=1

,
:j
:N#k

' 1
-
E
B
<2j
C
(21)

illustrating that2k (t!; 5) is likely positive for large k, i.e. in a graph with many connected components.

For small time, the Taylor expansion yields

y ( t!j 5) = y (0j 5) +
dy (t!; 5)

dt!

****
t!=0

t! +O
/
t!2
0

Invoking the di§erential equation (7) and y (0j 5) = y0 leads to

y ( t!j 5) = y0 +
D
y0 (5:N#k'1)' y205:N#k '2k (0; 5)

E
t! +O

/
t!2
0

1Any symmetric matrix can be reduced by orthogonal Householder reáections to a tri-band matrix, whose eigenvector

structure consists of orthogonal polynomials and is computed in [8, p. 565-573],[43].
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where21 (0; 5) is small (because Var[S (0; 5)] = 0 since S (0) is deterministic). The tanh-approximation

(8), on the other hand, replaces 2k (t!; 5) by c (in any time interval) so that

T ( t!j y0; 5:N#k; c) = y0 + y0
F
5:N#k(1' y0)'

,
1 +

c

y0

-G
t! +O

/
t!2
0

The initial slope is non-negative when 5 ) 1
<N"k

,
1+ c

y0
1#y0

-
. For a connected graph (k = 1), the tanh-

prevalence T ( t!j y0; 5:N#1; c) increases for 5 > 5c for all time t! ) 0 and, hence,

1

:N#1

 
1 + c

y0

1' y0

!

> 5c

or

c > y05c:N#1 (1' y0)' y0 ) y0
:N#1
D1

(1' y0)' y0

because the lower bound for the epidemic threshold obeys 5c ) 1
=1
(see e.g. [1, 29]). Since :N#1 < D1

(except for the complete graph and regular multipartite graphs), the positive-slope condition would

suggest that c ' 'y0 for almost all graphs. The value c - 'y0 is also approximately deduced from the
Kermack and McKendrick [39] analysis for SIR. Simulations [37] seem to agree roughly with c - 'y0.

For large time, the tanh-formula (8) reduces to

lim
t!!1

T ( t!j y0; 5:N#k; c) =
1

2

,
1'

1

5:N#k

-
+
1

2

s,
1'

1

5:N#k

-2
'

4c

5:N#k
(22)

which corresponds to the metastable state of the SIS process. For some extremal values of c, (22)

shows that

lim
t!!1

T ( t!j y0; 5:N#k;'1) = 1

lim
t!!1

T ( t!j y0; 5:N#k; 0) =

(
1' 1

7<N"k
5 > 1

<N"k

0 5 < 1
<N"k

For creal =
7<N"k
4

(
1' 1

7<N"k

)2
) 0, that guarantees a real prevalence (4 = 0 in (10)), the prevalence

does not depend on time any more and T ( t!j y0; 5:N#k; creal) = 1
2

(
1' 1

7<N"k

)
. Moreover, for 5 <

1
<N"k

, positive c > 0 are not physical since the prevalence can become negative. For 5 > 1
<N"k

, a

positive c < creal can be possible.

Similarly to [29] for the case k = 1 of a connected graph, T ( t!j y0; s; c) in (8) obeys the Riccati
di§erential equation

dT

dt!
= (s' 1)T ' sT 2 ' c

For the same initial prevalence y (0) = ~yk (0) = y0 and given the constants cL (k) and cH (k), that

satisfy cL (k) ( 2k (t
!; 5) ( cU (k), the prevalence y (t!) at normalized time t! is bounded by the

relatively simple expression (8)
(
y (t!) ) T ( t!j y0; 5:N#k; cU (k)) if 2k (t!; 5) ( cU (k) for t! 2 [t!1; t

!
2]

y (t!) ( T ( t!j y0; 5:N#k; cL (k)) if 2k (t!; 5) ) cL (k) for t! 2 [t!1; t
!
2]
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The upper bound2k (t!; 5) ( cU (k) implies that y (t!) ) T ( t!j y0; 5:N#k; cU (k)) and T ( t!j y0; 5:N#k; cU (k))
is real if the discriminant in (10) is positive,

,
1'

1

5:N#k

-2
)

4c

5:N#k
)
42k (t

!; 5)

5:N#k
= 4

,
Var [S (t!; 5)]'

E [Rk (t
!; 5)]

N:N#k

-

If Var[S (t!; 5)] ) E[Rk(t
!;7)]

N<N"k
(i.e. cL (k) ) 0), then the inequality is equivalent to the lower bound for

the e§ective infection rate

5 )
1

:N#k

(
1' 2

q
Var [S (t!; 5)]' E[Rk(t!;7)]

N<N"k

) )
1

:N#k
(23)

that guarantees to operate in the endemic regime when t! is su¢ciently large. We observe that, the

more connected components a graph on N nodes has, the larger k and :N#k and, consequently, the

lower 1
<N"k

. Physically, the larger k, the fewer nodes a connected component has (on average k=N) and

the larger the epidemic threshold of a connected component should become, because 5c > 5
(1)
c = 1

=1

increases with decreasing D1 and the spectral radius D1 ) E [D], which, in dense graphs, increases with
N on average. Hence, we expect that the epidemic threshold in a graph with k connected components

increases and (23) would imply that Var[S (t!; 5)]' E[Rk(t
!;7)]

N<N"k
! 1

4 for su¢ciently large t
!.

In summary, the analysis generalizes the previous derivations in [29] to graphs with k connected

components, as e.g. in temporal networks. We can thus conclude that, for any graph G with k

connected components with a Öxed topology in some non-zero time interval, the prevalence y (t!) in

that time interval can be bounded by the curve T ( t!j y0; s; c) in (8) with three parameters: (a) the
initial condition y0 or value of the prevalence at the beginning of the time interval, (b) a Laplacian

normalized rate s = 5:N#k and (c) a constant c. Implicitly, the computation of the prevalence also

assumes that the numberN of nodes in the graphG is known. The prevalence is only non-zero when the

e§ective infection rate 5 exceeds the epidemic threshold 5c. Moreover, it is known that 5 > 5c > 5
(1)
c ,

where the NIMFA threshold 5 (1)c = 1
=1
and D1 is the largest eigenvalue of the adjacency matrix of

the graph G. Hence, the adjacency normalized e§ective infection rate x = D15 allows us to compare

epidemics in di§erent graphs for su¢ciently long time: when x ( 1, the epidemic will die out, whereas
x > 1 + " with " a correction due to the mean-Öeld approximation, the epidemic will be persistent.

However, the correction " is unknown. On the other hand, (23) tells us that, when the Laplacian

normalized rate s = 5:N#k ) P, where P = 1

1#2
r
Var[S(t!;7)]#

E[Rk(t!;.)]
N/N"k

> 1, we are surely in the

endemic regime where the prevalence y (t!) > 0 (for a su¢ciently large t!). Unfortunately, computing

P is di¢cult, so that determining which e§ective infection rate 5 leads to persistent infections, is

complicated.

In conclusion, an accurate determination of the SIS epidemics threshold regime will likely stay on

the scientiÖc agenda for future research.

E Governing equation of the heterogeneous SIS prevalence in graph
with k disconnected components

The expression (18) is valid for the weighted Laplacian eQ with eigenvectors ex1; ex2; : : : ; exN = u belong-
ing to eigenvalues e:1 ) e:2 ) : : : ) e:N = 0, respectively and with the scalar product e<k = wT exk, since
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the kernel space of eQ is the same as that of the unweighted Laplacian Q. Invoking the deÖnition of

the prevalence y = E [S], E
B
S ' S2

C
= y ' E

B
S2
C
and E

B
S2
C
= y2+ Var[S], (18) becomes

1

N
E
h
wT eQw

i
= e:N#ky ' e:N#ky2 ' e:N#k

0

@Var [S]'
E
h
eRk
i

Ne:N#k

1

A

Introduced into (4), which we write as,

dy (t; 5)

dt
= '

1

N
E

5(
)avu+ e) ' )avu

)T
w (t)

6
+
1

N
E
h
(w (t))T eQw (t)

i

= ')avy '
1

N
E
h(
e)T ' )avuT

)
w (t)

i
+ e:N#ky ' e:N#ky2 ' e:N#k

0

@Var [S]'
E
h
eRk
i

Ne:N#k

1

A

where
(
e)T ' )avuT

)
w (t) is now an additional correction due to heterogeneous, node-depending curing

rates. Normalizing the time et! = )avt with respect to average curing rate )av =
e*Tu
N and realizing

that the eigenvalues of the weighted Laplacian are function of the heterogeneous infection rates +ij ,

we have

dy
(
et!; 5

)

det!
=

,
e:N#k
)av

' 1
-
y '

e:N#k
)av

y2 '
e:N#k
)av

0

@Var [S]'
E
h
eRk
i
' E

h(
e)T ' )avuT

)
w (t)

i

Ne:N#k

1

A

In summary, the spectral representation of the heterogeneous SIS prevalence governing di§erential

equation in a graph with k connected components is

dy
(
et!; 5

)

det!
=

,
e:N#k
)av

' 1
-
y '

e:N#k
)av

y2 ' e2k (t!; 5)

where the remainder is

e2k (t!; 5) =
e:N#k
)av

0

@Var [S]'
E
h
eRk
i
' E

h(
e)T ' )avuT

)
w (t)

i

Ne:N#k

1

A

Just as in the homogeneous case (Appendix D), we may proceed by a bounding procedure to Önd that

the heterogeneous SIS prevalence also can be bounded by a tanh-expression of the form (8), though

with di§erent coe¢cients and an even more complicated e2k (t!; 5).

F Governing equation of the "'SIS prevalence in graph with k dis-
connected components

The di§erential equation for the average fraction of infected nodes y in the "'SIS process is [8, p. 455]

dy (t!; 5)

dt!
= "! ' (1 + "!) y (t!; 5) +

5

N
E
B
wT (t!; 5)Qw (t!; 5)

C
(24)

where " is the constant self-infection rate for each node [49]. If 5 = 0, the di§erential equation (24)

for the "-SIS prevalence shows that

dy (t!; 0; "!)

dt!
= "! ' (1 + "!) y (t!; 0; "!)

22



with solution

y (t!; 0; "!) =
"!

1 + "!
+

,
y0 '

"!

1 + "!

-
e#(1+"

!)t

As in previous Section D, after using y = E [S], E
B
S ' S2

C
= y'E

B
S2
C
and E

B
S2
C
= y2+ Var[S]

and (18), the di§erential equation (24) of the "-SIS prevalence becomes

dy (t!; 5; "!)

dt!
= (5:N#k ' (1 + "!)) y (t!; 5; "!)' 5:N#ky2 (t!; 5; "!)'2k (t!; 5; "!)

where

2k (t
!; 5; "!) = 5:N#k

,
Var [S (t!; 5)]'

E [Rk (t
!; 5)]

N:N#k

-
' "! (25)

Again, by bounding cL (k; "!) ( 2k (t!; 5; "!) ( cU (k; "!), a variant of the tanh-formula (8) applies

eT ( t!j y0; s; c; "!) =
1

2

,
1'

1 + "!

s

-
+
A

2
tanh

 
sA

2
t! + arctanh

 
2y0 '

/
1' 1+"!

s

0

A

!!

(26)

where s = 5:N#k and

A =

s,
1'

1 + "!

s

-2
'
4c

s

which clearly reduces to (26) for "! = 0.

F.1 Extremal values of the "-SIS prevalence

When the prevalence attains an extremum y (p; 5; "!) at time t! = p, obeying dy(t!;7;"!)
dt!

***
t!=p

= 0, then

5:N#ky
2 (p; 5; "!)' (5:N#k ' (1 + "!)) y (p; 5; "!) + 2k (p; 5; "!) = 0

There are only real solutions for the ìtime-extremalî prevalence,

y( (p; 5; "
!) =

(5:N#k ' (1 + "!))0
q
(5:N#k ' (1 + "!))2 ' 45:N#k2k (p; 5; "!)

25:N#k

and

y( (p; 5; "
!) =

,
1'

1 + "!

5:N#k

-
1

2

8
><

>:
10

vuut1'
2k(p;7;"!)
7<N"k

1' 1+"!

7<N"k

9
>=

>;
(27)

provided the discriminant (5:N#k ' (1 + "!))2 ' 45:N#k2k (p; 5; "!) ) 0, which is equivalent to

1

4

,
1'

1 + "!

5:N#k

-2
)
2k (p; 5; "

!)

5:N#k
= Var [S (p; 5)]'

E [Rk (p; 5)]

N:N#k
'

"!

5:N#k

This inequality leads to a lower bound for the e§ective infection rate,

5 ("!) )
1

:N#k

1 + "!

1' 2
q
Var [S (p; 5)]' E[Rk(p;7)]

N<N"k
' "!

7<N"k

> 5 (0)

For small self-infection rates "!, we can demonstrate the last inequality, which implies that the e§ective

infection rate to guarantee an endemic regime lies higher for the "-SIS model than for the classical
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(" = 0) SIS-model, which is consistent with the analysis in [8, p. 457-458]. Although surprising at Örst

glance, we need to realize that the steady state in the " = 0 SIS-model is the overall healthy state, to

which the "-SIS must converge if "! 0, irrespective of the e§ective infection rate 5 . The existence of

an absorbing state implies in a Önite graph that the epidemics eventually dies out (i.e. the dynamic

process will surely hit the absorbing state in the 2N large Markov state graph). This peculiar limit

"! 0 is further illustrated in [49, Fig. 5 and 6].

F.2 The absorbing state

The ìtime-extremalî prevalence y( (p; 5; "!) at time t! = p in (27) can only be zero if (a) the negative

sign applies and (b) 2k (p; 5; "!) = 0, in which case y# (p; 5; "!) = 0 for all e§ective infection rates

5 . However, if y( (p; 5; "!) = 0, then S (p) = 0, which implies that Bernoulli vector w (p) = 0.

The deÖnition (25) of the remainder 2k (p; 5; "!) and the speciÖc expression (19) for the spectral

correction Rk illustrate that 2k (p; 5; "!) = '"! if S (p) = 0. Consequently, y# (p; 5; "!) = 0 and

2k (p; 5; "
!) = 0 can only be satisÖed if "! = 0, thus only in the classical SIS process. This singular

condition, y# (p; 5; "!) = 0 and 2k (p; 5; "!) = 0, which holds irrespective of the e§ective infection rate

5 , corresponds to the absorbing state which is attained at time p. If "! > 0, there cannot be an

absorbing state and the negative sign solution y# (p; 5; "!) in (27), which is decreasing in 5 , does not

exist. Moreover, Markov theory [8] states the "-SIS Markovian chain possesses a unique steady-state,

which corresponds to y+ (p; 5; "!) in (27). When bounding 2k (t!; 5; "!) ) cL so as to prevent that

2k (p; 5; "
!) ! 0, then the limit "! ! 0 in (27) will correspond to the metastable state of the SIS

process,

y( (p; 5; 0) =
1

2

,
1'

1

5:N#k

-
8
<

:
1 +

vuut1'
cL

7<N"k

1' 1
7<N"k

9
=

;

which is precisely equal to the tanh-formulaís steady-state (22).
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