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Abstract

Reported COVID-19 data from o¢ cial health agencies in several countries suggest that the

prevalence, the average fraction of infected people, decays over time with power-law tails. Moreover,

the prevalence over the entire outbreak in a country seems reasonably well �tted by a lognormal

function. The major consequence of the observation is that Markovian modeling on �xed graphs,

characterized by exponential times such as initial exponential increase and eventual exponential

decrease (in addition to exponential infection and recovery times), fails. As a result, an epidemic will

last much longer than predicted by simple but widely used, mean-�eld Markovian SIR (or variants)

equations on a �xed graph. Surprisingly, extensive simulations of non-Markovian SIR epidemics

on �xed graphs exhibit exponential decays. Thus, also a realistic non-Markovian description fails.

Therefore, we are led to conjecture that power-law decay is caused by interactions between the

viral transmission and the time-varying, human contact graph.

The current Corona pandemic places virus spread in networks as part of Network Science in the

scienti�c spotlights. The network science [3] de�nition of a network rests upon the duality between

the network�s graph, also called the structure or topology, and the network�s process, also called the

function or service that runs over the graph. The graph on N nodes is speci�ed [34] by an N � N
adjacency matrix A, where the element aij 2 f0; 1g expresses link existence, re�ecting a relation or
interaction between node i and j. In general, the graph is not �xed, but changes over time. In

epidemics, besides the viral transmission process, a human mobility process (HMP) generates the

contact graph in two di¤erent ways: (a) in temporal networking, the viral process and HMP are

independent and (b) in adaptive networking, a third interaction process couples the viral process

and HMP. For example, if people sense an infected, they adapt their behavior by avoiding contacts,

otherwise they proceed independently of the viral process, e.g. in case of asymptomatics.

One of the simpler viral processes on networks is SIS epidemic spread [38], which consists of two

competing processes [30]: an infection and curing or recovery process, characterized by an infection

time distribution fT (t) and a recovery time distribution fR (t), respectively. Epidemic spread on
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networks belongs to a class of processes with a simple local rule1, that results via the interactions with

the local rules of its neighbors in a complicated, global emergent behavior.

Figure 1: The prevalence (reported from o¢ cial health authorities) versus time on a log-log (top) and

log-lin (bottom) scale in a set of European countries. Only tail data during a �same regime�, just

after lockdown was released, is considered.

The competition leads to two phases, where either the infection or recovery process is dominant

and the separation between the two phases or phase transition is the so-called epidemic threshold.

The epidemic threshold �c of an epidemic on a network distinguishes, after su¢ ciently long time

in an SIS process, between the overall-healthy network regime and the e¤ective infection regime �

where permanently a non-zero fraction of the nodes is infected. Only in the so-called thermodynamic

limit N ! 1, the phase transition occurs in a single point �c;1, whereas for �nite graphs, the
transition region is smeared out around that point �c;1. The theory of phase transitions [31] is

1For example, the local rule in SIS epidemics is a simply to program statement: �while infected (until cured), then

keep trying to infect your healthy neighbors�. The Bernoulli random variables in (2) describe this non-linear rule just as

an addition of two multiplications. Other examples of the local-rule-global-emergence-property class (explained in more

detail in [41]) are Kuramoto synchronization, swarms of births and �shes, sandpile models, etc.
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rich, but complicated. In public reporting, the basic reproduction number R0 is used in place of the

epidemic threshold �c. The basic reproduction number R0, studied in a general setting by [11] and

applied to graphs in [32], is de�ned as the expected number of secondary infected cases produced, in

a completely susceptible population, by a typical infective individual. Clearly, R0 is easier to explain

and understand, although R0 is physically and computationally inferior to the epidemic threshold �c
(see e.g [22]). Besides the SIS process as basic model for re-infections, the SIR model is the simplest

model for a single disease outbreak. A large number of other compartment models [2, 1, 9, 10, 27, 18]

exists that detail the viral process, not the graph.

Our conjecture in the abstract arose in an attempt to determine the duration of an epidemic.

More precisely, the answer2 to express �how long an epidemic will last�is given by the tail probability

Pr [Y (t) � yacceptable] < ", where " is a stringency, the random variable Y (t) (capital Y ) re�ects the

average number y (t) (small y) of infected items in a population at time t and yacceptable is an acceptably

low level of the prevalence. Fig. 1 shows several COVID-19 realizations of Y (t) in several EU countries,

while Fig. 2 presents �tted estimates for the probability density function fY (t) (x) =
d
dx Pr [Y (t) � x]

for the Netherlands, but other EU countries are remarkably similar. The data is explained in the

Appendices. Ideally, if the entire population is measured and tested, then the prevalence y (t) is a real

number, void of uncertainties. From plots like Fig. 2 predictions are made about the initial increase,

the highest amount of infections y(tp) = 10�p (peak at time tp) and the decay after the peak from

which the duration of the epidemic can be obtained from the �rst point ta in time where the prevalence

y(ta) � yacceptable. Fig. 2 (top) illustrates that most distributions approximate the peak y(tp) well,

while the tail decay of y(t) is puzzling. Indeed, the tails in Fig. 1 can both be �tted by a straight line.

Hence, from prevalence data in a limited time interval, both exponential decay y(t) � ae�qt and power
law decay y(t) � bt�u for large t can be concluded. Consequently, the extrapolated duration ta;exp
from exponential and ta;pow from power law can be hugely di¤erent! Accurate prediction is impossible

in absense of a theory that speci�es the decay law of the prevalence. Fig. 2 (bottom) indicates that a

lognormal distribution, possessing power law tails,

flognormal(t) =
exp

h
� (log t��)2

2�2

i
�t
p
2�

(1)

provides the best least-mean square �t. As shown in the Appendix, the observation holds for most other

EU countries as well and the �tting parameters � = 3:85�0:35 (measured in days) and 0:28 � � � 0:46
do not vary much between the countries. A lognormal distribution also occurs in other real spreading

processes such as Twitter message [12], social networks [37] and other human behavior [4]. Recent

work on COVID-19 has also reported heavy, non-exponential tails. Recently, Maier and Brockmann

[23] have reported a non-exponential increase of the COVID-19 prevalence in China and argued that

quarantine measures can explain non-exponential initial growth. Based on virtually all past epidemics

of which data is available and by using rigorous non-parametric statistics, Cirillo and Taleb [7] have

demonstrated that the risk of dying in a past epidemic is power-law distributed.

The precise e¤ects that may cause non-exponential asymptotics of the prevalence are unknown

and we do not speculate about possible drivers. Instead, we ask �Do we have models that may lead

2Tail probabilities often occur in telecomunications to assess the quality of service (explained in detail in [33] and [35,

p. 2-3]).
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to a power-law decay of the prevalence?�

Figure 2: The prevalence y (t) in the Netherlands versus time t (date) for various �tting distributions

on both lin-lin scale (top) and log-lin scale (bottom).

Markovian epidemics The majority of studies (see e.g. [27], [18] and [15]) has concentrated on
Markovian epidemics, which has allowed us to learn much about the spread of items (biological and

digital viruses, emotions, innovations, rumors, etc.) in networks. The Markovian setting, where the

present state only depends on the previous state, is analytically tractable. The governing equations

of a broad class of epidemics (with any number of compartments) over any �xed graph can be math-

ematically derived [29]. Con�ning to SIS, the simplest compartmental model3, the infectious state

Xi (t) of a node i in the network at time t is a Bernoulli random variable, in which Xi (t) = 1 if node

i is infected, otherwise Xi (t) = 0. Both the infection and recovery process are independent Poisson

processes and both the infection time T and recovery time R are exponentially distributed with mean

E [T ] = 1
� and E [R] =

1
� , where � and � are the infection and curing rate, respectively. Their ration

3For simplicity, we limit ourselves to a homogeneous setting where the infection rate �ij = � of each link (i; j) is the

same as well as the recovery rate �i = � of each node. The conclusion about the �exponential times�also holds for a full

heterogeneous Markovian setting.
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� = �
� equals the e¤ective infection rate and measures the infectious strength of the virus. The SIS and

SIR epidemic threshold �c can be lower bounded [40, 39] by �c > 1
�1
= �

(1)
c , the mean-�eld epidemic

threshold, where �1 is the largest eigenvalue4 of the adjacency matrix A. Invoking the Bernoulli prop-

erty that E [Xi] = Pr [Xi = 1], the exact SIS governing equation [6] for node i speci�es the infection

probability of node i as

dE [Xi]

dt
= E

"
��Xi + � (1�Xi)

NX
k=1

akiXk

#
(2)

where �, � and aki can be a function of time. The time-derivative of the infection probability E [Xi] =

Pr [Xi = 1] of a node i consists of the expectation of two competing processes in (2): (a) while node

i is infected, i.e. Xi = 1, the node i is cured at rate � and (b) while node i is healthy Xi = 0,

thus (1�Xi) = 1, all infected neighbors
PN
k=1 akiXk of node i try to infect the node i with rate �.

Rewriting (2) and assuming a �xed graph (where the matrix element aki is independent of time) as

dE [Xi]

dt
= ��E [Xi (t)] + �

NX
k=1

akiE [Xk (t)]� �
NX
k=1

akiE [Xi (t)Xk (t)]

illustrates that the last non-linear, non-negative term is complicating, but its removal leads to an

upper bound in the change of the infection probability E [Xi]. When written for all nodes i with

wi = E [Xi (t)] in terms of the N � 1 vector W = (w1; w2; � � � ; wN ), we obtain the matrix inequality

dW (t)

dt
� (�A� �I)W (t)

whose solution is

W (t) � e(�A��I)tW (0)

For a characteristic polynomial det (A� �I) =
Qs
j=1 (�� �j)

mj , where each eigenvalue �j , ordered

as j�j j < j�j�1j for 2 � j � s, is di¤erent with multiplicity mj and
Ps
j=1mj = N , the exponential

matrix function is [16, p. 116]

eAt =
sX
j=1

(mjX
k=1

Zskt
k�1

)
e�st (3)

where the matrices Zsk are linearly independent constant matrices that are polynomials in A. As

reported earlier in [40], [35, p. 457-458], a Markovian epidemic dies out in any graph exponentially fast

in time t as O
�
e(��1��)t

�
for su¢ ciently large t when � < 1

�1
. If initially only a few nodes are infected

and � > 1
�1
, then the epidemics grows for small times t > 0 at most as fast as O

�
tmaxjmj�1e(��1��)t

�
.

As reported in [36] even below the epidemic threshold � < �c, the infection probabilities E [Xi (t)] can

initially (for small t > 0) increase due to the factors tk�1 in (3) when the adjacency matrix A has

eigenvalues5 with multiplicity mj > 1.

In summary, Markovian epidemics on networks are characterized by exponential infection and

curing times as well as exponential initial increase above the epidemic threshold �c and eventual

4The largest eigenvalue �1 of A is simple and non-negative by the Perron-Frobenius theorem of non-negative matrices

[34].
5For example, the star graph K1;N�1 �whose central node is the extreme super spreader �has the zero eigenvalue of

the adjacency matrix A with multiplicity N � 2 and the complete graph KN that has two eigenvalues �1 = N � 1 and
�j = �1 for 2 � j � N .
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exponential decay in time below �c. Both the local rule as the global emergent behavior are exponential

in time and �exponential times�are �ngerprints of underlying Markovian processes.

Power-law decay of the SIS prevalence due to Gri¢ th�s phase theory is reported in [25, 8]. However,

Gri¢ th�s phase theory of networks requires the existence of very-large-degree hubs or cliques in the

network and an e¤ective infection rate � located at the epidemic threshold �c. Since the degree of

human contacts are limited and � is unlikely situated exactly at the epidemic threshold �c, the Gri¢ th�s

phase e¤ect does not explain power-law decay. Moreover, the existence of Gri¢ th�s phase may rely on

a recurrent infection state as in the SIS model, while a single outbreak is closer modeled by an SIR

epidemic (or SIR-like variants).

non-Markovian epidemics Whereas Markovian epidemics are both locally (infection and re-
covery times) and globally (the prevalence) characterized by an exponential function in time, real

epidemics do not possess exponential infection or recovery times (see SI). Consequently, we hypoth-

esize that the global dynamics may decay non-exponentially in time. A fundamental question is

whether the distribution of �local� infection time T and recovery time R in each node gives rise, on

any graph, to the same time-distributions of globally observed quantities as the prevalence, but likely

with di¤erent parameters (e.g. as � and � in the lognormal (1)) due to regional di¤erences. The entire

COVID-19 prevalence, well �tted by a lognormal in Fig. 2, seems to suggest that either the infection

time T or recovery time R or both may possess a heavy-tailed distribution.

It would be desirable to possess a non-Markovian theory of epidemics on networks that could verify

these �from measurements�deduced �ndings and could o¤er some order estimate for the prevalence�s

y (t) decay with time t. When a stochastic process is not Markovian, its mathematical description

and analysis is considerably more complex. At the best of our knowledge, the precise SIR or SIS

governing equations for any �xed graph are not available, not even in a mean-�eld approximation6,

although the steady-state of non-Markovian SIS epidemics on any �xed graph can be approximated

well by a mean-�eld approach [5, 38]. In many non-Markovian processes on networks and also in this

paper, computer simulations and measurements are often the only resort to investigate its behavior

and properties.

Extensive simulations on �xed graphs with di¤erent parameters and distributions for infection

time T and recovery time R contradict our hypothesis. Fig. 3 shows the prevalence as a function of

time in a Barabási-Albert power-law degree graph on N = 1000 nodes. Similar plots of other graphs

(a lattice graph and an Erd½os-Rényi graph) are shown in the Appendix. On each graph type, three

combinations are simulated: (a) an exponential infection and curing time (i.e. Markovian epidemics),

(b) exponential infection and lognormal curing time and (c) lognormal infection and curing time.

Apart from the rather complicated time-dependence of the average fractions of susceptible, infected

and removed, the log-lin scale demonstates for su¢ ciently large time t that the prevalence decay is

exponential ! Other simulations (not shown) with di¤erent non-exponential distribution for infection

time T and recovery time R con�rm that the non-Markovian SIR on a �xed graph decays at least as

fast as an exponential function in time t. Of course, simulations �no matter how many �never prove

a statement, they can only disprove a theory by showing a counterexample.

6The general theory in Kermack and McKendrick [17] for a homogeneous population (thus a complete graph) is

described by a Volterra-type of integral di¤erential equation and is still a mean-�eld approximation. However, the

extension to arbitrary graphs is lacking, because it is challengingly di¢ cult.
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Figure 3: The SIR prevalence versus time on a Barabasi-Albert graph. The dotted curve is the

prevalence of the SIR process with lognormal distributed infection and curing time. The dashed

curve refers to an exponential infection time and a lognormal curing time. The smooth curve is the

prevalence of the Markovian SIR process. All prevalence curves decay exponentially or slightly faster

(because the prevalence is almost straight in a log-lin scaled plot). For the non-Markovian SIR process

with a lognormal infection time, the prevalence oscillates with time. The reason for the oscillation is

that a lognormal distribution infection time introduces a synchronized infection: All initially infected

nodes infect susceptible neighbors at a time, which approximately equal to the mean of the lognormal

distribution of the infection time. The oscillation of the prevalence will be smoothed out with time.

If a general, non-Markovian epidemic process on a �xed graph cannot explain power-law decay

in the prevalence in real epidemics �a conjecture that needs a rigorous proof �, then, as a plausible

explanation, the interaction of the epidemic process with the dynamics of the human contact graph

may cause a heavy-tailed decay. In classical epidemics, the main attention focuses on the viral process,

while the HMP is largely ignored or mainly abstracted by a �xed graph or an averaged topology. Our

study hints to the considerable in�uence of the time-varying contact graph, its governing HMP and

possible interaction with the viral process. At present, neither accurate models for HMP, nor the

coupling process between HMP and viral process can be written down in governing equations. We

conclude that epidemic theory on time-varying (and possibly adaptive) networks is needed as well as

models for human mobility processes that produce time-varying contact graphs. We expect a new

research avenue in the physics of real epidemics that will combine the three essential processes (viral,

HMP and coupling). At last, digital technology to measure the contact network (such as mobile app

algorithms [28]) will help in the quest towards understanding and predicting.

7



References

[1] R. M. Anderson and R. M. May. Infectious Diseases of Humans: Dynamics and Control. Oxford University Press,

Oxford, U.K., 1991.

[2] N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Applications. Charlin Gri¢ n & Company,

London, 2nd edition, 1975.

[3] A. L. Barabási. Network Science. Cambridge University Press, Cambridge, U.K., 2016.

[4] N. Blenn and P. Van Mieghem. Are human interactivity times lognormal? Delft University of Technology, Re-

port20160711 (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports); arXiv:1607.02952, 2016.

[5] E. Cator, R. van de Bovenkamp, and P. Van Mieghem. Susceptible-Infected-Susceptible epidemics on networks with

general infection and curing times. Physical Review E, 87(6):062816, June 2013.

[6] E. Cator and P. Van Mieghem. Second order mean-�eld SIS epidemic threshold. Physical Review E, 85(5):056111,

May 2012.

[7] P. Cirillo and N. N. Taleb. Tail risk of contagious diseases. Nature Physics, 16:606�613, June 2020.

[8] Wesley Cota, Silvio C. Ferreira, and Géza Ódor. Gri¢ ths e¤ects of the susceptible-infected-susceptible epidemic

model on random power-law networks. Physical Review E, 93:032322, Mar 2016.

[9] D. J. Daley and J. Gani. Epidemic modelling: An Introduction. Cambridge University Press, Cambridge, U.K.,

1999.

[10] O. Diekmann, H. Heesterbeek, and T. Britton. Mathematical Tools for Understanding Infectious Disease Dynamics.

Princeton University Press, Princeton, USA, 2012.

[11] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the de�nition and the computation of the basic

reproduction ratio R0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical

Biology, 28:365�382, 1990.

[12] C. Doerr, N. Blenn, and P. Van Mieghem. Lognormal infection times of online information spread. PLoS ONE,

8(5):e64349, May 2013.

[13] E. Dong, H. Du, and L. Gardner. An interactive web-based dashboard to track COVID-19 in real time. The Lancet

Infectious Diseases, 20:533�534, May 2020.

[14] Z. Du, X. Xu, Y. Wu, L. Wang, B. J. Cowling, and L. Meyers. Serial Interval of COVID-19 among Publicly Reported

Con�rmed Cases. Emerging Infectious Diseases, 26:1341�1343, 2020.

[15] G. Ferraz de Arruda, F. A. Rodrigues, and Y. Moreno. Fundamentals of spreading processes in single and multilayer

complex networks. Physics Reports, 756:1�59, 2018.

[16] F. R. Gantmacher. The Theory of Matrices, volume II. Chelsea Publishing Company, New York, 1959.

[17] W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of

the Royal Society London, A, 115:700�721, August 1927.

[18] I. Z Kiss, J. C. Miller, and P. L Simon. Mathematics of network epidemics: from exact to approximate models.

Springer, 2016.

[19] S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, N. G. Reich, and

J. Lessler. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Con�rmed

Cases: Estimation and Application. Annals of Internal Medicine, 172(9):577�582, 2020. PMID: 32150748.

[20] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S.M. Leung, E. H.Y. Lau, J. Y. Wong, X. Xing,

N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou,

R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T.Y.

Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng. Early Transmission Dynamics in

Wuhan, China, of Novel Coronavirus - Infected Pneumonia. New England Journal of Medicine, 382(13):1199�1207,

2020.

8



[21] N. M. Linton, T. Kobayashi, Y. Yang, K. Hayashi, A. R. Akhmetzhanov, S. Jung, B. Yuan, R. Kinoshita, and

H. Nishiura. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections

with Right Truncation: A Statistical Analysis of Publicly Available Case Data. Journal of Clinical Medicine, 9(2),

2020.

[22] Q.-H. Liu, M. Ajelli, A. Aleta, S. Merler, Y. Moreno, and A. Vespignani. Measurability of the epidemic reproduction

number in data-driven contact networks. Proceedings of National Academy of Science of the United States of America

(PNAS), 115(50):12680�12685, November 2018.

[23] B. F. Maier and D. Brockmann. E¤ective containment explains subexponential growth in recent con�rmed Covid-19

cases in China. Science, 368:742�746, 15 May 2020.

[24] J. C. Miller and T. Ting. Eon (epidemics on networks): a fast, �exible python package for simulation, analytic

approximation, and analysis of epidemics on networks. Journal of Open Source Software, 4(44):1731, 2019.

[25] Paolo Moretti and Miguel A Muñoz. Gri¢ ths phases and the stretching of criticality in brain networks. Nature

communications, 4(1):1�10, 2013.

[26] H. Nishiura, N. M. Linton, and A. R. Akhmetzhanov. Serial interval of novel coronavirus (COVID-19) infections.

International Journal of Infectious Diseases, 93:284 �286, 2020.

[27] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epidemic processes in complex networks.

Review of Modern Physics, 87(3):925�979, September 2015.

[28] B Prasse and P. Van Mieghem. Mobile smartphone tracing can detect almost all SARS-CoV-2 infections.

arXiv:2006.14285, 2020.

[29] F. D. Sahneh, C. Scoglio, and P. Van Mieghem. Generalized epidemic mean-�eld model for spreading processes over

multi-layer complex networks. IEEE/ACM Transaction on Networking, 21(5):1609�1620, October 2013.

[30] J. Schnakenberg. Network theory of microscopic and macroscopic behavior of master equation systems. Review of

Modern Physics, 48(4):571�585, October 1976.

[31] H. E. Stanley. Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, July 1987.

[32] P. van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compart-

mental models of disease transmission. Mathematical Biosciences, 180:29�48, 2002.

[33] P. Van Mieghem. Data Communications Networking. Piet Van Mieghem, ISBN 978-94-91075-01-8, Delft, 2nd

edition, 2010.

[34] P. Van Mieghem. Graph Spectra for Complex Networks. Cambridge University Press, Cambridge, U.K., 2011.

[35] P. Van Mieghem. Performance Analysis of Complex Networks and Systems. Cambridge University Press, Cambridge,

U.K., 2014.

[36] P. Van Mieghem. Approximate formula and bounds for the time-varying SIS prevalence in networks. Physical

Review E, 93(5):052312, 2016.

[37] P. Van Mieghem, N. Blenn, and C. Doerr. Lognormal distribution in the Digg online social network. European

Physical Journal B, 83(2):251�261, 2011.

[38] P. Van Mieghem and Q. Liu. Explicit non-Markovian SIS mean-�eld epidemic threshold for Weibull and Gamma

infections but Poisson curings. Physical Review E, 100(2):022317, August 2019.

[39] P. Van Mieghem, F. D. Sahneh, and C. Scoglio. Exact Markovian SIR and SIS epidemics on networks and an upper

bound for the epidemic threshold. Proceedings of the 53rd IEEE Conference on Decision and Control (CDC2014),

December 15-17, Los Angeles, CA, USA, 2014.

[40] P. Van Mieghem and R. van de Bovenkamp. Non-Markovian infection spread dramatically alters the SIS epidemic

threshold in networks. Physical Review Letters, 110(10):108701, March 2013.

[41] P. Van Mieghem and R. van de Bovenkamp. Accuracy criterion for the mean-�eld approximation in SIS epidemics

on networks. Physical Review E, 91(3):032812, March 2015.

9



A Data

We select a set of 13 European countries, where the outbreak of COVID-19 has been reduced su¢ ciently

to distinguish a clear epidemic peak. The time series for the number of cases is obtained from the

Dashboard of the Johns Hopkins University [13] that started collecting data from January 22, 2020.

We consider the period from January 22 until June 3. In most European countries the pandemic

started around end February 2020, followed a couple of weeks later by a lockdown, which was released

around the beginning of June. The data thus re�ects one �regime�of rise and decay of the prevalence

y (t) per country under lockdown.

The power-law exponent of the 13 European countries has been �tted by a linear �t log y (t) =

a log t+ b in the tail region and the slope a, shown in Fig. 4, lies around a = �5� 2.

Figure 4: The histogram of slope of log y (t) versus log t for 13 countries.

We �t the daily number of reported cases of the prevalence y(t) to the following functions/distributions:

Weibull:
k

l

�
t

l

�k�1
e�(t=l)

k

Gaussian:
1

�
p
2�
exp

�
�(t� �)

2

2�2

�
Lognormal:

1

�t
p
2�
exp

�
�(log(t)� �)

2

2�2

�
Cauchy:

g

�[g2 + (t� �)2]

Sech:
K

2

1

1 + cosh(�K(t� �))
The Sech function follows as the approximate solution of the SIR model [17]. Each distribution

function is multiplied by a constant c 2 [0; 1] to account for the fact that the area under the curve
does not necessarily equal one.

The parameters in each of the above functions are estimated using the nonlinear curve �tting

procedure GlobalSearch in Matlab. The Lognormal distribution shows the best performance for 10
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countries and the Cauchy distribution for 3 countries, as indicated in Table 1. The �tting performance

is commonly measured in terms of the R-squared R2, which is also reported [19, 26, 14, 21, 20] for the

Lognormal distribution in Table 1.

Table 1: The countries considered in this work.
country Log-Log slope best �t Lognormal � Lognormal � Lognormal R2

Austria -6.21 Cauchy 3.51 0.28 0.8156

Belgium -5.11 Lognormal 3.78 0.40 0.8162

Denmark -3.49 Lognormal 3.89 0.45 0.6779

France -5.93 Cauchy 3.82 0.30 0.3126

Germany -4.64 Lognormal 3.69 0.36 0.8808

Ireland -5.64 Cauchy 3.90 0.28 0.7386

Italy -4.08 Lognormal 3.78 0.46 0.9402

Netherlands -4.92 Lognormal 3.81 0.40 0.9035

Serbia -5.01 Lognormal 3.80 0.33 0.7914

Spain -4.87 Lognormal 3.68 0.34 0.6940

Switzerland -6.35 Lognormal 3.55 0.34 0.8768

Turkey -4.14 Lognormal 3.71 0.44 0.9252

United Kingdom -3.34 Lognormal 4.17 0.40 0.8677

Many studies investigate the infection time of COVID-19, which is also called the generation time

or serial interval. The infection time is de�ned as �the time from illness onset in a primary case

(infector) to illness onset in a secondary case (infectee)". Nishiura et al. (2020) suggest that the

infection time is lognormally distributed with median 4:0 days [26] whereas Du et al. (2020) �nd

that the infection time is normally distributed with mean 3:96 days [14]. The incubation time is �the

time delay from infection to illness onset". Lauer et al. (2020) observe a lognormally distributed

incubation time with mean 5:2 days [19] which is also found by Li et al. (2020) [20], where Linton et

al. (2020) �nd a lognormal distribution with median 5:0 days [21]. [The values for � in the lognormal

are generally not reported.]

Fig. 5 shows the example for the Netherlands and Italy, but more countries are �tted reasonably

well by a lognormal function.

B Simulation

We use the Epidemic on Networks (EoN) module [24], a Python package for simulating exact stochastic

processes and solving ordinary di¤erential equations of epidemics, to simulate the SIR processes. Both

Markovian and non-Markovian SIR processes are simulated on three di¤erent networks: a 32 by 31

lattice (N = 992 nodes), a Barabási-Albert (BA) network with N = 1000 and an Erd½os-Rényi (ER)

network with N = 1000. For Markovian SIR, we set both the infection and curing time exponentially

distributed. For the non-Markovian process, two cases are simulated: SIR with exponential infection

time and lognormal curing time; SIR with both lognormal infection and curing time. Each prevalence
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curve in the �gures is obtained by averaging over 100 realizations and in each realization, 10 percent

nodes are initially infected. We vary the parameters in each case of simulation and �nd only exponential

decay of the prevalence.

Fig. 6 and Fig. 7 indicates that the prevalence in non-Markovian SIR epidemics has an exponential

tail for su¢ ciently large time.

12



Figure 5: Two examples of the prevalence in the Netherlands and Italy versus time, �tted with a

lognormal function.
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Figure 6: The prevalence of SIR on a 31 by 32 lattice. The dotted curve is the prevalence of the

SIR process with lognormal distributed infection and curing time. The dashed curve refers to an

exponential infection time and a lognormal curing time. The smooth curve is the prevalence of the

Markovian SIR process. All prevalence curves decay exponentially or slightly faster (because the

prevalence is almost straight in a log-lin scaled plot). For the non-Markovian SIR process with a

lognormal infection time, the prevalence oscillates with time. The reason for the oscillation is that a

lognormal distribution infection time introduces a synchronized infection: All initially infected nodes

infect susceptible neighbors at a time, which approximately equal to the mean of the lognormal

distribution of the infection time. The oscillation of the prevalence will be smoothed out with time.

The other plot in Fig. 7 is similar to this �gure and di¤ers only in the underlying graph.
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Figure 7: The SIR prevalence versus time on a Erdos-Renyi graph (similar to Fig. 6)
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