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Abstract

We solve the problem �Given the spectrum (i.e. all eigenvalues and eigenvectors) of the Lapla-

cian matrix of a graph, �nd the spectrum of the e¤ective resistance matrix of that graph�and of

the reversed problem. We �nd partial fraction expansions for the eigenvalues of either matrix in

terms of the spectrum of the other matrix as well as the explicit characteristic polynomials and

some sums of powers of eigenvalues.We also improve the bounds of the Interlacing Theorem for the

eigenvalues of the Laplacian and e¤ective resistance matrix of a same graph.

1 Introduction

We consider an undirected, possibly weighted and connected graph G, whose corresponding graph-

related matrices are symmetric. The graph G contains a set N of N nodes and a set L of L links. As
mentioned in my book [12], I believe that, after the adjacency matrix A and Laplacian matrix Q of a

graph G, the e¤ective resistance matrix 
 with elements !ij is the third important matrix associated

with graph G. The e¤ective resistance matrix 
 is closely related to the Laplacian matrix by


 = �uT + u�T � 2Qy (1)

where u is the all-one vector, the vector � =
�
Qy11; Q

y
22; : : : ; Q

y
NN

�
and Qy is the pseudoinverse of

the Laplacian [13], [12, Secion 4.2]. In a graph G, two di¤erent types [8] of transport are possible

that lead to either �path networks�, such as telecommunication and transportation networks (for e.g.

cars, trains, ships, airplanes), or ��ow networks�, such as power grids and utility (water, gas, etc.)

networks. In a path network, the transport of items follows a single path Pij between a node pair
(i; j), whereas in a �ow network, the transport from node i to node j propagates over all possible

paths from node i to node j. The e¤ective resistance matrix 
 plays a crucial role in ��ow networks�,

such as electrical resistor networks [12, art. 14].

The e¤ective resistance matrix 
 is a distance matrix [12, art. 8]. The spectrum of distance

matrices was overviewed by Aouchiche and Hansen [1]. A fundamental relation in the theory of the
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e¤ective resistance matrix 
 is Fiedler�s block matrix [7],[12, (5.17)] 
0 uT

u 


!�1
=

 
�2�2 pT

p �1
2Q

!
with 
p = 2�2u (2)

where the N � 1 vector p is de�ned as
p =

1

2
Q� +

u

N
(3)

obeys pTu = 1, and where1

�2 =
RG
N2

+
1

4
�TQ� (4)

and RG = NuT � = 1
2u
T
u = N trace

�
Qy
�
is the e¤ective graph resistance, an important graph metric

[12, Section 5.2]. The e¤ective resistance matrix 
 also possesses interesting geometric properties,

recently explored by Devriendt and colleagues [2, 5, 4]. They demonstrate that the vector p = 1
2Q�+

u
N

has several fundamental properties and that �2 = �T eQ�
4 + RG

N2 can be interpreted as a variance of a

distribution on a graph. In particular [3], the vector p can be interpreted as a discrete scalar curvature

on a graph, p is the solution of the optimization problem max
x
xT
x for the vector x subject to xTu = 1

and that maximum equals 2�2 = pT
p, where

�2 =
1

4

X
(i;j)2L

(!ik � !jk)2

for any node k in the graph G. We also add that the vector p is the barycentric coordinate of the

circumcenter of the simplex S of the graph [6] and � is the radius of the circumcenter of the simplex

S. Each component �i of the vector � has the property that 1
�i
= 1

Qyii
equals the altitude of the

vertex i in the simplex S towards the face containing all other vertices2. Following the terminology

of Devriendt, the vector p is called the �resistance curvature� and � is �resistance radius� of the

circumcircle of the simplex S. In comparison with the Laplacian Q = ��A, where � is the diagonal

matrix with element �ii = di equal to the degree of node i and being a component of the degree

vector d = (d1; d2; : : : ; dN ), we observe that the vector �, which we call the �simplex-altitude�vector,

is equally important as the degree vector d, which is perhaps the most prominent characterizing vector

of any graph. The simplex-altitude vector �, whose component �i quanti�es the spreading capacity in

node i, is studied in [13], where the upper bound for the Euclidean norm �T � = k�k22 is deduced

�T � =
NX
m=1

�
Qymm

�2
�
�
1� 1

N

�N�1X
n=1

1

�2n
(5)

which is tight in the sense that equality is achieved if Qymm = RG
N2 for any node m in the graph. Such

a graph, characterized by � = RG
N2 u, is called �resistance regular�[15].

The eigenvalue equation [12, Section 5.5] of the N�N non-negative, symmetric, e¤ective resistance

matrix 
 is


vj = �jvj (6)

1Unfortunately, there is an error in [12, p. 182], where �2 = RG + 1
4
�TQ� is written, whereas (4) correct is.

2Any undirected graph G, with N nodes and L links, possesses a simplex S in the (N � 1)-dimensional Euclidian
space, consisting of N vertices. Each vertex in the simplex S corresponds with a node in the graph G, but a link in the

graph G does not correspond to an edge in the simplex S. To avoid confusion, we have proposed in [12, p. 2] to use

nodes and links in a graph G, while vertices and edges in the simplex S of that graph G.
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where �j is the j-th eigenvalue of 
 belonging to the normalized eigenvector vj , i.e. vTj vj = 1, for

1 � j � N . The real eigenvalues are ordered as in [12]: �1 � �2 � � � � � �N . The e¤ective resistance
matrix 
 in a connected graph has N � 1 negative eigenvalues (see e.g. [12, Theorem 34], but also

Theorem 1 below) and only the spectral radius �1 = �
PN
j=2 �j > 0. The corresponding eigenvalue

equation for the Laplacian matrix is

Qzk = �kzk (7)

where �k is the k-th eigenvalue of Q belonging to the normalized eigenvector zk. Any Laplacian [12,

art. 102] possesses the eigenvector zN = up
N
belonging to the smallest eigenvalue �N = 0.

Here, we explicitly express the eigenvectors v1; v2; : : : ; vN and eigenvalues �1; �2; : : : ; �N of the

e¤ective resistance matrix 
 in terms of the eigenvectors z1; z2; : : : ; zN = up
N
and eigenvalues �1 �

�2 � : : : � �N = 0 of the possibly weighted, but symmetric Laplacian Q, and vice versa.
The article is outlined as follows. Section 2 starts by deriving two �quasi-eigenvalue equations�

that are consequences of Fiedler�s fundamental block-matrix equation (2). Section 3 introduces the

Delft graph metrics as a motivation for the spectral decomposition 
 =
PN
j=1 �jvjv

T
j of the e¤ective

resistance matrix. The remainder of the article concentrates on spectral decomposition and insights

deduced from those two quasi-eigenvalue equations (9) and (10). We express the eigenvectors of 
 as

a linear combination of the eigenvectors of the Laplacian matrix Q and vice versa in Section 4. In

Section 5, we deduce partial fractions of the eigenvalues of 
 in terms of the spectrum (i.e. eigenvalues

and eigenvectors) of the Laplacian Q and vice versa, from which the explicit characteristic polynomials

are derived. The characteristic polynomial of the Laplacian Q and e¤ective resistance matrix 
 are

derived in Section 6 and 7, respectively, and the coe¢ cients of those polynomials are explicitly deduced

together with some sums of powers of eigenvalues. Section 8 focusses on the computation of eigenvalues

of the e¤ective resistance matrix 
, given the spectrum of the Laplacian Q, and vice versa. Section

9 gives a general relation of the sum of quadratic forms and the trace of a matrix, with examples

to graph metrics such as the e¤ective graph resistance RG. Section 10 concludes, while Appendix

A proves double orthogonality of the row and column vectors of the orthogonal matrix C in (25).

Appendix B complements the main Theorem 2 in Section 4 and tries to address � unsuccessfully

though �the problem of determining the sign of the components of resistance curvature vector p.

2 Two quasi-eigenvalue equations

We start by deducing two di¤erent almost eigenvalues equations (9) and (10). First, we left-multiply

the eigenvalue equation (6) by Q,

Q
vj = �jQvj

Fiedler�s block matrix identity (2) leads to

Q
 = 2puT � 2I (8)

Using (8)

�jQvj = 2
�
uT vj

�
p� 2vj

results in, what we call, the �rst quasi-eigenvalue equation

Qvj = �
2

�j
vj +

2
�
uT vj

�
�j

p (9)
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Second, the eigenvalue equation 
�1vj = ��1j vj combines with 

�1 = 1

2�2
p:pT � 1

2Q, another

deduction from Fiedler�s block matrix identity (2) as shown in [12, (5.17)], to a slightly di¤erent

quasi-eigenvalue equation than (9),

Qvj = �
2

�j
vj +

pT vj
�2

p (10)

Equating the quasi-eigenvalue equations (9) and (10) indicates that the eigenvalue �j of the e¤ective

resistance matrix 
 equals

�j = 2�
2u

T vj
pT vj

(11)

while [12, (5.27)] deduces

�j =
RG
N
+N

�T vj
uT vj

(12)

Clearly, if the last term in (9) or (10) vanishes, then an eigenvalue equation arises. If that last term

is not too large, the quasi-eigenvalue equations and the Laplacian eigenvalue equation (7) also suggest

that �j � � 2
�j
plus some correction. At this point, we mention the beautiful Theorem 1, proved by

Fiedler [7, Corollary 6.2.9] and later by Sun et al. [9]:

Theorem 1 In a connected graph, the eigenvalues �1; �2; : : : ; �N of the e¤ective resistance matrix 


interlace with those of the Laplacian matrix as

�1 > 0 > �
2

�1
� �2 � �

2

�2
� � � � � � 2

�N�2
� �N�1 � �

2

�N�1
� �N (13)

If � = uRG
N2 , thus in a �resistance regular�graph, then [12, Theorem 35] states that �j = � 2

�j
for

1 < j � N and the proof indicates that the eigenvector vj = zj for all 1 � j � N . Inspite of the

approximate nature of �j � � 2
�j
in Theorem 1, we show in (41) below the exact product

N�1Y
m=1

�m = ��2N
NY
m=1

�
� 2

�m

�
=
2�2N

�1

NY
m=2

�
� 2

�m

�
We will later improve Theorem 1 and derive an exact governing equation in Corollary 2 for the

eigenvalues �1; �1; : : : ; �N of the e¤ective resistance matrix 
.

3 Delft graph metrics

Delft graph metrics, �rst introduced in my book [12, Section 8.7.3], are de�ned as the quotient of

quadratic forms for positive integers k,

kD =
uTAk
Aku

uTA2ku
(14)

where the denominator N2k = uTA2ku is the total number of walks in the graph G with 2k hops or

of length 2k. The Delft graph metrics kD generalize a few known graph metrics. If k = 0, then with

uTu = N , the de�nition (14) leads to the e¤ective graph resistance RG = 1
2u
T
u,

0D =
uT
u

uTu
=
2RG
N

4



and if k = 1, the de�nition (14) relates to the Kemeny constant KG = dT
d
4L in [14] as

1D =
dT
d

dTd
=
4L

dTd
KG

Substituting the spectral decomposition 
 =
PN
j=1 �jvjv

T
j into the de�nition (14) of a Delft graph

metric and employing Theorem 1 telling that �1 > 0 > �j for 2 � j � N yields3

kD =

PN
j=1

�
vTj A

ku
�2
�j

uTA2ku
=

�
vT1 A

ku
�2

uTA2ku
�1 �

NX
j=2

�
vTj A

ku
�2

uTA2ku
j�j j �

�
vT1 A

ku
�2PN

j=1

�
vTj A

ku
�2 �1

Hence, an upper bound for the Kemeny constant KG in a graph G is found for k = 1 as

KG �
�
vT1 d

�2
4L

�1

Since all components of v1 are positive (due to the Perron-Frobenius theorem [12, p. 379] for a

non-negative matrix associated with a connected graph) and 0 < (v1)k < 1, it holds that vT1 d =PN
k=1 (v1)k dk <

PN
k=1 dk = 2L. Hence,

KG < L�1

Anticipating the approximation (55) for the largest eigenvalue �1, we have

KG � L
�
RG
N
+
p
N�T �

�
that connects 0D and 1D.

4 Eigenvectors of 
 as linear combination of those of Q

4.1 Explicit expressions

Theorem 2 exactly expresses any eigenvector of the e¤ective resistance matrix 
 in terms of the

eigenvectors and eigenvalues of the Laplacian matrix Q and vice versa:

Theorem 2 In a connected graph G with N nodes, the j-th eigenvector vj of the e¤ective resistance

matrix 
 is written as a linear combination of eigenvectors of the Laplacian matrix Q as

vj = �j

 
u

N
+
2

�j

N�1X
k=1

�k
2

�
�T zk

�
2
�j
+ �k

zk

!
(15)

where
1

�2j
=

1

(uT vj)
2 =

1

N
+

�
2

�j

�2 N�1X
k=1

 
�k
2

�
�T zk

�
2
�j
+ �k

!2
(16)

Reversively, the k-th eigenvector zk of the Laplacian matrix is written, for 1 � k < N , as a linear

combination of eigenvectors of eigenvectors of the e¤ective resistance matrix 
 as

zk = �k

NX
j=1

1
�j

�
uT vj

�
2
�j
+ �k

vj (17)

3Unfortunately, there is an error in the index in the last formula at [12, p. 292].
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where
1

�2k
=

1

(�k�T zk)
2 =

NX
j=1

 1
�j

�
uT vj

�
2
�j
+ �k

!2
(18)

Before giving two proofs, one proof derived from the �rst quasi-eigenvalue equation (9) and the

other from the second (10), we compute the scalar product of the resistance curvature vector p and

the normalized eigenvector zk of the Laplacian Q. From the de�nition (3), it follows that

zTk p =
1

2
zTk Q� + z

T
k

u

N
=
�k
2
zTk � + z

T
k

u

N

Thus, if k = N , then �N = 0 and zN = up
N
resulting in

zTNp =
1p
N

(19)

else, for 1 � k < N ,
zTk p =

�k
2
zTk � (20)

We emphasize that connected graphs [12, Theorem 20, art. 115] are assumed for which the algebraic

connectivity �N�1 > 0.

Proof 1: Left-multiplying (9) by zTk leads to

zTk Qvj = �
2

�j
zTk vj +

2
�
uT vj

�
�j

zTk p

With the eigenvalue equation Qzj = �jzj in (7) of the symmetric, possibly weighted Laplacian Q,�
�k +

2

�j

�
zTk vj =

2
�
uT vj

�
�j

zTk p

leads to the scalar product between eigenvectors of 
 and Q

zTk vj =

2
�j

2
�j
+ �k

�
uT vj

� �
pT zk

�
Invoking the scalar product pT zk in (19) and (20) then leads to

zTk vj =

8><>:
2
�j

�k
2

2
�j
+�k

�
uT vj

� �
�T zk

�
for 1 � k < N

1p
N

�
uT vj

�
for k = N

(21)

We can now compute vj =
PN
k=1

�
zTk vj

�
zk =

PN�1
k=1

�
zTk vj

�
zk +

�
zTNvj

�
zN ,

vj =
�
uT vj

� u
N
+
2

�j

N�1X
k=1

�k
2

2
�j
+ �k

�
�T zk

�
zk

!

Normalization of the eigenvector, vTj vj = 1, leads, with the orthogonality of eigenvectors z
T
k zm = �mk,

to
1

(uT vj)
2 =

1

N
+

�
2

�j

�2 N�1X
k=1

 
�k
2

2
�j
+ �k

�
�T zk

�!2
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from which (15) follows.

The reverse that expresses the Laplacian eigenvector zk =
PN
j=1

�
zTk vj

�
vj as a linear combination

of the eigenvectors v1; v2; : : : ; vN of the e¤ective resistance matrix 
 follows, for 1 � k < N , as

zk =
�
�T zk

�
�k

NX
j=1

1
�j

2
�j
+ �k

�
uT vj

�
vj

After normalization zTk zk = 1, we obtain

1

(�k�T zk)
2 =

NX
j=1

 1
�j

2
�j
+ �k

�
uT vj

�!2

If k = N , then zN = 1p
N

PN
j=1

�
uT vj

�
vj =

up
N
. Hence, (17) and (18) are demonstrated. �

Proof 2: We repeat the same recipe of steps to the second quasi-eigenvalue equation (10). Left-
multiplying (10) by zTk the scalar product

zTk vj =

�
pT vj

� �
pT zk

�
�2
�
�k +

2
�j

�
Again invoking the scalar product pT zk in (19) and (20) gives

zTk vj =

8>><>>:
�k�

�k+
2
�j

� (pT vj)
2�2

�
�T zk

�
for 1 � k < N

1p
N

(pT vj)
2�2

�j for k = N

(22)

In summary, vj =
PN
k=1

�
zTk vj

�
zk equals

vj =

�
pT vj

�
2�2

 
N�1X
k=1

�k
�
�T zk

�
�k +

2
�j

zk +
�j
N
u

!
(23)

Normalization of the eigenvector, vTj vj = 1, indicates that�
2�2

pT vj

�2
=
N�1X
k=1

 
�k
�
�T zk

�
�k +

2
�j

!2
+
�2j
N

which again leads to (15). For 1 � k < N , the reverse (17) follows as

zk =

�
�T zk

�
�k

2�2

NX
j=1

pT vj

�k +
2
�j

vj

Finally, equating the quasi-eigenvalue equations (9) and (10) indicates that pT vj = 2�2

�j
uT vj , again

leading to (17). �
The idea of Theorem 2 to deduce a scalar product between eigenvectors of two di¤erent matrices

does not apply to the eigenvectors of the adjacency A and Laplacian matrix Q = � � A of a graph
G. Indeed, starting from the eigenvalue equation (7) of the Laplacian,

�kzk = Qzk = �zk �Azk

7



left-multiplying with the m-th eigenvector xTm of the adjacency matrix A,

�kx
T
mzk = x

T
m�zk � xTmAzk

invoking the eigenvalue equation Axm = �mxm of the adjacency matrix leads to the scalar product

xTmzk =
xTm�zk
�k + �m

(24)

In contrast to the cases (21) and (22) for the e¤ective resistance matrix 
, the scalar product (24) is of

a di¤erent and not-separable form, because xTm�zk =
PN
j=1 dj (xm)j (zk)j is a single �scalar product�

containing xm as well as zk, whereas both (21) and (22) are products of scalar products, where each

scalar product only involves either an eigenvector vj of 
 or an eigenvector zk of the Laplacian Q.

4.2 Resistance regular graphs

We brie�y discuss the special case of �resistance regular�graphs, where � = uRG
N2 and �j = � 2

�j
for

2 � j � N . Moreover, the de�nition (1) indicates, with the all-one matrix J = u:uT , that


res. regular = 2

�
RG
N2
J �Qy

�
Since �T zk = 0 for 1 � k < N , the k-sum in (15) reduces to

lim
�j!� 2

�j

N�1X
k=1

�k
2

�
�T zk

�
2
�j
+ �k

zk =
�j
2
zj lim
�j!� 2

�j

�T zj
2
�j
+ �j

If we denote the limit �j = lim�j!� 2
�j

�T zj
2
�j
+�j

, then the j-th eigenvector (15) belonging to the eigenvalue

�j = � 2
�j
becomes

vj =
u
N � �j

�2j
2 zjs

1
N +

�
�j
�2j
2

�2
which indicates that �j must be so large4 compared to 1

N that the all-one vector disappears, resulting

in vj = zj for all 1 � j � N .
In the sequel, we will further ignore resistance regular graphs. Futhermore, we will con�ne ourselves

to simple eigenvalues. In other words, for the ease of the exposition, we will omit the consideration of

eigenvalues with multiplicity higher than 1.

4 If �j would be �nite, then the eigenvalue equation 
vj = � 2
�j
vj in (6) for the eigenvector vj = u

N
��j

�2j
2
zj (without

normalization) has a right-hand side equal to � 2
�j
vj = � 2

�j

u
N
+�j�jzj , while the left-hand side, invoking 
u = �N+u

RG
N

in [12, eq. (5.30)], gives 
vj = 2RG
N

u
N
� �j

�2j
2

zj . Equating the coe¢ cients of the orthogonal vectors u and zj would

indicate that 1
�j
= �RG

N
(which is impossible because any Laplacian eigenvalue �j � 0) and that ��j

�2j
2

zj = �j�jzj

or 
zj = � 2
�j
zj , implying that vj = zj !

8



4.3 An orthogonal matrix

The N � N matrix V contains in its colums the set of all eigenvector v1; v2; : : : ; vN of the e¤ective

resistance matrix 
,

V =
h
v1 v2 � � � vN

i
Similarly, we de�ne the orthogonal eigenvector matrix of the Laplacian Q as

Z =
h
z1 z2 � � � zN

i
The eigenvector (15) can be expressed [12, art.191] as

vj =
�j

�1
�j

�
�T z1

�
2
�j
+ �1

266664
(z1)1
(z1)2
...

(z1)N

377775+
�j

�2
�j

�
�T z2

�
2
�j
+ �2

266664
(z2)1
(z2)2
...

(z2)N

377775+ � � �+ �jp
N

266664
(zN )1
(zN )2
...

(zN )N

377775

= Z

2666666664

�j
�1
�j
(�T z1)

2
�j
+�1

�j
�2
�j
(�T z2)

2
�j
+�2

...
�jp
N

3777777775
Substitution into the matrix V yields

V = Z

266666664

�1
�1
�1
(�T z1)

2
�1
+�1

�2
�1
�2
(�T z1)

2
�2
+�1

: : :
�N

�1
�N
(�T z1)

2
�N
+�1

�1
�2
�1
(�T z2)

2
�1
+�2

�2
�2
�2
(�T z2)

2
�2
+�2

: : :
�N

�2
�N
(�T z2)

2
�N
+�2

...
...

. . .
...

�1p
N

�2p
N

: : : �Np
N

377777775
Since both V and Z are orthogonal matrices, it holds that the N �N matrix

C =

266666664

�1
�1
�1
(�T z1)

2
�1
+�1

�2
�1
�2
(�T z1)

2
�2
+�1

: : :
�N

�1
�N
(�T z1)

2
�N
+�1

�1
�2
�1
(�T z2)

2
�1
+�2

�2
�2
�2
(�T z2)

2
�2
+�2

: : :
�N

�2
�N
(�T z2)

2
�N
+�2

...
...

. . .
...

�1p
N

�2p
N

: : : �Np
N

377777775
(25)

is also an orthogonal matrix. Hence, the orthogonal eigenvector matrix V equals a product of two

orthogonal matrices, whose entire information can be computed from the orthogonal matrix Z and

the eigenvalues �1; �2; : : : ; �N = 0 of the Laplacian matrix Q,

V = Z:C

9



Since the determinant of orthogonal matrix is detC = 1, we �nd that

1 =
1p
N

NY
j=1

�j

N�1Y
j=1

�j
�
�T zj

�
����������

1
2+�1�1

1
2+�2�1

: : : 1
2+�N�1

1
2+�1�2

1
2+�2�2

: : : 1
2+�N�2

...
...

. . .
...

1 1 : : : 1

����������
Orthogonality of a matrix implies double orthogonality [12, art. 248] in its corresponding column and

row vectors, which is proved for the orthogonal matrix C in Appendix A.

5 Governing eigenvalue equations

Although the two proofs of Theorem 2 are similar, the second proof provides us with valuable collo-

raries:

Corollary 1 In a connected, but not a resistance regular graph G with N nodes, the positive eigen-

values � of the Laplacian matrix Q satisfy the governing eigenvalue partial fractions

�2 =
NX
j=1

�
pT vj

�2
�+ 2

�j

(26)

or
1

4�2
=

NX
j=1

�
uT vj

�2
�j (�j�+ 2)

(27)

or

0 =
NX
j=1

�
uT vj

�2
2 + �j�

(28)

Proof : We exclude the case that uT vj = pT vj = 0 that happens in resistance-regular graphs.

Similarly, left-multiplying zk =
(�T zk)�k
2�2

PN
j=1

pT vj
�k+

2
�j

vj in proof 2 of Theorem 2, for 1 � k < N , with

the transpose of the resistance curvature vector p yields

pT zk =

�
�T zk

�
�k

2�2

NX
j=1

�
pT vj

�2
�k +

2
�j

The scalar product zTk p =
�k
2 z

T
k � in (20) then leads, for 1 � k < N , to (26) or, with pT vj = 2�2

�j
uT vj ,

to (27). Alternatively, from (17) valid for 1 � k < N , we obtain

uT zk = �k

NX
j=1

1
�j

�
uT vj

�2
2
�j
+ �k

which leads with zN = up
N
, due to orthogonality of eigenvectors zTNzk = 0 for 1 � k < N , to (28). �

Even if the graph is not resistance regular, numerical evaluations can return very small values of the

fundamental weight uT vj . However, this weight cannot be zero, unless the Perron eigenvector v1 = up
N
,

which only happens in resistance regular graphs. Moreover, orthogonality of eigenvectors vTmvj = �mj

10



indicates that all fundamentals weights uT vj for 1 < j � N are zero if one of them is zero. Finally,

the solution of all positive and assumed simple eigenvalues � of the Laplacian requires that uT vj 6= 0
in (27) and (28). From the fractional expansions (26),(27) and (28), the interlacing Theorem 1 can be

deduced. The partial fractions can be rephrased as a quadratic form using f (
) =
PN
j=1 f (�j) vjv

T
j

deduced in [12, eq. (A.88)], where f (:) is a function de�ned for the eigenvalues. For example, the

partial fraction (28)

0 =

NX
j=1

�
uT vj

�2
2 + �j�

=

NX
j=1

�
uT vj

� �
vTj u

�
2 + �j�

= uT

0@ NX
j=1

vjv
T
j

2 + �j�

1Au
transforms to the quadratric form

0 = uT
�

1

2 + �


�
u = uT (2 + �
)�1 u (29)

The reverse of Corollary 1 is

Corollary 2 In a connected graph G with N nodes, any eigenvalue � of the e¤ective resistance matrix


 satis�es the governing eigenvalue equation

� =
2�2

1
2

PN�1
k=1

�2k(�
T zk)

2

�k�+2
+ 1

N

(30)

Another rewriting of (30) with y = 2
� is the partial fraction expansion

�2 =
1

4

N�1X
k=1

�2k
�
�T zk

�2
�k + y

+
1

Ny
(31)

while a characteristic polynomial of degree N in y = 2
� is

p
 (y) =

NY
m=1

(y + �m)�
1

4�2

N�1X
k=1

�2k
�
�T zk

�2 NY
m=1;m6=k

(y + �m)�
1

N�2

N�1Y
m=1

(y + �m) (32)

whose zeros, i.e. solutions of p
 (y) = 0, are the inverse eigenvalues 2
�1
; 2�2 ; : : : ;

2
�N
.

Proof : After computing the scalar product of the (unnormalized) eigenvector vj in (23) with the
resistance curvature vector p in (3), taken into account (19) and (20), we deduce that

1 =
1

2�2

 
1

2

N�1X
k=1

�2k
�
�T zk

�2
�k +

2
�j

+
�j
N

!

that can be rewritten as (30), because any eigenvalue �j must satisfy (30), and further as (31) by

letting y = 2
� . Finally, multiplying each term in k-sum in (31) with

N�1Y
m=1;m6=k

(y + �m) leads, after

some manipulation, to (32). �

11



6 Characteristic polynomials of the Laplacian matrix Q

After multiplying the partial fraction expansions in Corollary 1 by
NY
m=1

(2 + �m�), we obtain the

following characteristic polynomials for the eigenvalues of the Laplacian matrix Q:

Lemma 3 A characteristic polynomial of the Laplacian eigenvalues of degree N is

pQ (�) =
NX
j=1

�j
�
pT vj

�2 NY
m=1;m6=j

(2 + �m�)�
NY
m=1

(2 + �m�)�
2 (33)

while a characteristic polynomial of degree N � 1 is

epQ (�) = NX
j=1

�
uT vj

�2 NY
m=1;m6=j

(2 + �m�) (34)

whose zeros, i.e. solutions of pQ (�) = 0, equal the Laplacian eigenvalues �1; �2; : : : �N�1; �N = 0,

while the zeros of epQ (�) are the positive Laplacian eigenvalues �1; �2; : : : �N�1 > 0.
6.1 General properties of the polynomials pQ (�) and epQ (�)
The classical de�nition [12, art. 235] of a characteristic polynomial of a matrix A with eigenvalues

�1; �2; : : : ; �n is the determinant cA(�) = det (A� �I), which can be expanded as a polynomial in �
of degree n,

cA(�) =
nX
k=0

ck�
k =

nY
k=1

(�k � �) (35)

from which cn = (�1)n. We wrote �a�characteristic polynomial in Lemma 3 due to the scaling of the
highest order coe¢ cient cn. Indeed, by the fundamental property of polynomials [12, eq. (B.1) on p.

402], the polynomial (33) can be written as

pQ (�) =
NX
k=0

ak (Q)�
k = aN (Q)

NY
m=1

(�� �m) (36)

while (34) as

epQ (�) = N�1X
k=0

eak (Q)�k = eaN�1 (Q)N�1Y
m=1

(�� �m) (37)

It follows from the spectral decomposition for any complex number z

xT
zx = xT

0@ NX
j=1

�zjvjv
T
j

1Ax = NX
j=1

�zjvj
�
vTj x

�2
that the evaluation for � = 0 in (33) and (36) equals

pQ (0) = 2
N

0@1
2

NX
j=1

�j
�
pT vj

�2 � �2
1A = 2N

�
1

2
pT
p� �2

�
= 0

12



and (36) indicates that

a0 (Q) = 0

while (34) and (37) show

epQ (0) = ea0 (Q) = 2N�1 NX
j=1

�
uT vj

�2
= N2N�1 (38)

Moreover, the highest order coe¢ cient of (33) is

aN (Q) = ��2
NY
m=1

�m (39)

while for (34), we �nd

eaN�1 (Q) = NX
j=1

�
uT vj

�2 NY
m=1;m6=j

�m =
NY
m=1

�m

NX
j=1

1

�j

�
uT vj

�2
= uT
�1u

NY
m=1

�m

With uT
�1u = 1
2�2

(see [12, p. 182]) or from (27) for � = 0, it holds that

eaN�1 (Q) = 1

2�2

NY
m=1

�m (40)

Since ea0 (Q) = eaN�1 (Q)N�1Y
m=1

(��m), we �nd that

N�1Y
m=1

�m = (�1)N�1
ea0 (Q)eaN�1 (Q) = (�1)N�1N2N�1

1
2�2

NY
m=1

�m

Thus, the complexity � (G) = 1
N

N�1Y
m=1

�m of a graph G, the number of all possible spanning trees in that

graph G, equals

� (G) =
1

N

N�1Y
m=1

�m =
2N�2

NY
m=1

j�mj
(41)

and eaN�1 (Q) = (�1)N�1 2N�1
� (G)

In conclusion, the de�nitions (36) and (37) show that both polynomials are related by

pQ (�) = aN (Q)�

N�1Y
m=1

(�� �m) =
aN (Q)eaN�1 (Q)�epQ (�)

13



and (39) and (40) lead to

pQ (�) = �2�4�epQ (�) (42)

Consequently, after introducing the series in (36) and (37) into (42) and after equating corresponding

powers in �, we �nd, for 1 � k � N , that the coe¢ cients of the polynomials of the polynomials pQ (�)
and epQ (�) satisfy

ak (Q) = �2�4eak�1 (Q) (43)

6.2 Computation of the coe¢ cients eak (Q) of the polynomial epQ (�)
We write (34) as a product

epQ (�) = NY
m=1

(2 + �m�)
NX
j=1

�
uT vj

�2
(2 + �j�)

and expand both
NY
m=1

(2 + �m�) and
PN
j=1

(uT vj)
2

(2+�j�)
in a Taylor series around � = 0. First,

NY
m=1

(2 + �m�) = 2
N

NY
m=1

�
1 +

�m
2
�
�
= 2Ne

log

NY
m=1

(1+ �m
2
�)

= 2Ne
PN
m=1 log(1+

�m
2
�)

Taylor expansion of log (1 + x) =
P1
n=1

(�1)n�1
n xn for jxj < 1 shows that

g (�) =
NX
m=1

log
�
1 +

�m
2
�
�
=

NX
m=1

1X
n=1

(�1)n�1

n

��m
2

�n
�n =

1X
n=1

 
(�1)n�1

n2n

NX
m=1

�nm

!
�n

with Taylor coe¢ cient gn = 1
n!

dng(�)
d�n

���
�=0

equal to g0 = 0 and, for n > 0,

gn =
(�1)n�1

n2n

NX
m=1

�nm

Invoking our characteristic coe¢ cients s [k;m] in [10], the Taylor series

eg(�) = 1 +

1X
m=1

"
mX
k=1

1

k!
sg[k;m]

#
�m

where the combinatorial form of the characteristic coe¢ cient

sg[k;m] =
X

Pk
i=1 ji=m;ji>0

kY
i=1

gji (44)

which also satis�es a recursion [11] that allows to compute all characteristic coe¢ cients exactly. Hence,

we arrive at the Taylor series

NY
m=1

(2 + �m�) = 2
N

 
1 +

1X
m=1

"
mX
k=1

1

k!
sg[k;m]

#
�m

!

= 2N
1X
m=0

"
mX
k=0

1

k!
sg[k;m]

#
�m

14



where sg[k; 0] = �k0 = 1fk=0g and sg[0;m] = �0m = 1fm=0g and the indicator 1x = 1 if the condition x

is true, else 1x = 0.

Second,
NX
j=1

�
uT vj

�2
(2 + �j�)

=
1

2

NX
j=1

�
uT vj

�2
1 +

�j
2 �

=
1

2

NX
j=1

�
uT vj

�2 1X
m=0

�
��j
2
�
�m

leads to the Taylor series

NX
j=1

�
uT vj

�2
(2 + �j�)

=
1X
m=0

(�1)m

2m+1

0@ NX
j=1

�mj
�
uT vj

�21A�m
=

1X
m=0

(�1)m

2m+1
�
uT
mu

�
�m

The corresponding Taylor series of the polynomial pQ (�) is

NX
j=1

�j
�
pT vj

�2
(2 + �j�)

� �2 =
1X
m=1

(�1)m

2m+1
�
pT
m+1p

�
�m

The Taylor series of the polynomial epQ (�) is found after computing the Cauchy product,
epQ (�) = 2N  1X

m=0

"
mX
k=0

1

k!
sg[k;m]

#
�m

! 1X
m=0

(�1)m

2m+1
�
uT
mu

�
�m

= 2N
1X
m=0

0@ mX
j=0

jX
k=0

1

k!
sg[k; j]

(�1)m�j

2m�j+1
�
uT
m�ju

�1A�m
Similarly, the Cauchy product leads to

pQ (�) = �2N�2
�
pT
2p

�
�+2N

1X
m=2

0@(�1)m
2m+1

�
pT
m+1p

�
+
m�2X
j=0

(�1)m�j�1

2m�j
�
pT
m�jp

� j+1X
k=1

1

k!
sg[k; j + 1]

1A�m
Finally, after equating corresponding powers in � in the above and the polynomial form

PN�1
m=0 eam (Q)�m

in (37), we arrive, for 0 � m � N � 1, at

eam (Q) = 2N�1 mX
j=0

(�1)m�j

2m�j
�
uT
m�ju

� jX
k=0

1

k!
sg[k; j]

which we rewrite, by splitting-o¤ the j = 0 term and using sg[k; 0] = �k0 and sg[0;m] = �0m, as

eam (Q) = 2N�1 (�1)m
2m

�
uT
mu

�
+ 2N�1

mX
j=1

(�1)m�j

2m�j
�
uT
m�ju

� jX
k=1

1

k!
sg[k; j] (45)

Similarly, beside a0 (Q) = 0 and a1 (Q) = �2N�2
�
pT
2p

�
, we �nd the coe¢ cient am (Q) of the

polynomial pQ (�) in (36) for 2 � m � N as

am (Q) = 2
N (�1)

m

2m+1
�
pT
m+1p

�
+ 2N

m�2X
j=0

(�1)m�j�1

2m�j
�
pT
m�jp

� j+1X
k=1

1

k!
sg[k; j + 1]
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Invoking am (Q) = �2�4eam�1 (Q) in (43) yields that
pT
mp = 4�4uT
m�2u (46)

which holds for any complex number m as follows from the eigenvalue decomposition.

We compute the polynomial coe¢ cient eam (Q) for a few values of m. First, if m = 0, then

ea0 (Q) = N2N�1
If m = 1, then

ea1 (Q) = 2N�1�1
2

�
uT
u

�
+ 2N�1

�
uTu

�
sg[1; 1] = �2N�1RG + 2N�1N

1

2

NX
m=1

�m

and, since
PN
m=1 �m = 0, we �nd ea1 (Q) = �2N�1RG

We can further compute5 any other desired value ofm symbolically by the recursion of the characterstic

coe¢ cients. As an example, we list

ea2 (Q) = 2N�3uT
2u� 2N�4N NX
m=1

�2m

ea3 (Q) = �2N�4uT
3u+ 2N�4RG NX
m=1

�2m +
2N�4

3
N

NX
m=1

�3m

ea4 (Q) = �2N�5uT
4u+ 2N�6uT
2u NX
m=1

�2m + 2
N�8N

 
NX
m=1

�2m

!2
� 2

N�4

3
RG

NX
m=1

�3m � 2N�7N
NX
m=1

�4m

7 Characteristic polynomial of the e¤ective resistance matrix 


By de�nition [12, art. 291] of a polynomial of degree N , the characteristic polynomial in (32) equals

p
 (y) =

NX
k=0

ak (
) y
k = aN (
)

NY
m=1

�
y � 2

�m

�
(47)

The �rst term in p
 (y) in (32) is a polynomial of degree N in y = 2
� , while the other terms contain

polynomials of degree N � 1 implying that aN (
) = 1.

7.1 Basic deductions from (47)

The coe¢ cient aN�1 (
) of yN�1 is thus

aN�1 (
) =
NX
m=1

�m �
1

4�2

N�1X
k=1

�2k
�
�T zk

�2 � 1

N�2

=

NX
m=1

�m �
1

�2

�
1

4
�TQ2� +

1

N

�
5We add that, based on the coe¢ cients eam (Q), that the algebraic connectivity �N�1 can be expressed as a Lagrange

series (which is explicitly listed in [12, (B.68) on p. 459] up to order 5).
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Relation (51) and
PN
m=1 �m = 2L (see e.g. [12, art. 105]) shows that

aN�1 (
) = 2L�
pT p

�2

The Newton identities [12, art. 294] indicates that the coe¢ cient aN�1 (
) = �
PN
m=1 ym = �2

PN
m=1

1
�m
,

leading to
NX
m=1

1

�m
= �

�
L� p

T p

2�2

�
(48)

Furthermore, p
 (0) =
NY
m=1

�
� 2
�m

�
= � 2N

NY
m=1

j�mj

. Recalling that �N = 0, the characteristic polynomial

in (32) shows that

p
 (0) = �
1

N�2

N�1Y
m=1

�m

Equating both expressions for p
 (0) again leads to the complexity � (G) formula in (41). The compu-

tation of the coe¢ cient ak (
) = 1
k!

dkp
(y)
dyk

���
y=0

for k = 1 leads, after equating the two di¤erent ways,

to the de�nition (4) of �2. After tedious manipulations, the computation of the coe¢ cient a2 (
) leads

to
NX
m=1

�2m = 4

N�1X
m=1

1

�2m
+ 2

R2G
N2

+ 2N�T � (49)

7.2 Computation of the coe¢ cients ak (
) of the polynomial p
 (y)

We mimic the method of Section 6.2 to compute only the coe¢ cients am (
) = 1
m!

dmp
(y)
dym

���
y=0

for any

integer 0 � m � N and write (32) as

p
 (y) =
N�1Y
m=1

(y + �m)

 
y � 1

4�2

N�1X
k=1

y�2k
�
�T zk

�2
�k + y

� 1

N�2

!

We expand the product
N�1Y
m=1

(y + �m) =
N�1Y
m=1

�m

N�1Y
m=1

�
1 + y

�m

�
, using our characteristic coe¢ cients

with

h (y) = log
N�1Y
m=1

�
1 +

y

�m

�
=

1X
n=1

 
(�1)n

n

N�1X
m=1

1

�nm

!
yn

into a Taylor series around y = 0 in terms of the complexity � (G) = 1
N

N�1Y
m=1

�m,

N�1Y
m=1

(y + �m) = N� (G)

 
1 +

1X
m=1

"
mX
k=1

1

k!
sh[k;m]

#
ym

!
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The Taylor series of the partial fraction expansion is

F (y) = y � 1

4�2

N�1X
k=1

y�k
�
�T zk

�2�
1 + y

�k

� � 1

N�2
= y � 1

4�2

1X
n=1

(�1)n
 
N�1X
k=1

�
�T zk

�2 1

�n�1k

!
yn+1 � 1

N�2

= � 1

N�2
+ y +

1

4�2

�
�T � �

�
�T zN

�2�
y2 � 1

4�2

1X
n=2

(�1)n
�
�T
�
Qy
�n�1

�

�
yn+1

where the spectral decomposition [12, eq. (4.30)] of the pseudoinverse of the LaplacianQy =
PN�1
k=1

1
�k
zkz

T
k

has been used. Denoted as F (y) =
P1
n=0 Fny

n, the Taylor coe¢ cients are

F0 = � 1
N�2

F1 = 1 F2 =
1
4�2

�
�T � � R2G

N3

�
and for n > 2,

Fn =
(�1)n

4�2

�
�T
�
Qy
�n�2

�

�
Executing the Cauchy product results in

p
 (y) = N� (G)

1X
m=0

"
mX
k=0

1

k!
sh[k;m]

#
ym

1X
n=0

Fny
n

= N� (G)
1X
m=0

mX
j=0

"
Fm�j

jX
k=0

1

k!
sh[k; j]

#
ym

Equating corresponding powers in y in the above and (47) �nally yields, for 0 � m � N , the general
expression of the coe¢ cients

am (
) = N� (G)

0@Fm + mX
j=1

Fm�j

jX
k=1

1

k!
sh[k; j]

1A (50)

Again, as an example, we list

a0 (
)

� (G)
= � 1

�2

a1 (
)

� (G)
= N +

RG
N�2

a2 (
)

� (G)
= �RG �

3R2G
4N2�2

+
N�T �

4�2
� 1

2�2

N�1X
m=1

1

�2m

a3 (
)

� (G)
=
R2G
2N

+
5R3G
12N3�2

�RG
�T �

4�2
�N �

TQy�

4�2
+

�
N

2
+

RG
2N�2

�N�1X
m=1

1

�2m
+

1

3�2

N�1X
m=1

1

�3m

8 Eigenvalues

8.1 The eigenvalues of the e¤ective resistance matrix 


For � > 0 and for a simplex-altitude vector � 6= �u not proportional to the all-one vector u, the

sum S (�) = 1
2

PN�1
k=1

�2k(�
T zk)

2

�k�+2
> 0 in (30) in Corollary 2 and S (�) decreases monotonically in �
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towards zero at � ! 1, implying that S (0) = 1
4

PN�1
k=1 �

2
k

�
�T zk

�2
> S (�) > 0 = lim�!1 S (�)

and the eigenvalue equation (30) shows that there exists only one positive eigenvalue �1 > 0 at the

crossing of the bisectrice, i.e. the straight line at 45 degrees with the �-axis, and S (�). It follows from

Qm =
PN�1
k=1 �

m
k zkz

T
k for a positive real m that S (0) = 1

4�
TQ2� = 1

4 kQ�k
2
2. The de�nition (3) of the

resistance curvature vector p = 1
2Q� +

u
N shows that

pT p = kpk22 =
1

4
�TQ2� +

1

N
(51)

The right-hand side of (30) for � = 0 equals, with �2 in (4),

2�2

1
4

PN�1
k=1 �

2
k (�

T zk)
2 + 1

N

=
2�2

kpk22
=

1
2�
TQ� + 2RG

1
4�
TQ2� + 1

N

Hence, we conclude that the largest eigenvalue satis�es the lower bound

�1 > 2

�
�

kpk2

�2
(52)

while an upper bound follows from lim�!1 S (�) = 0, so that (30) becomes

�1 < 2�
2N (53)

The lower bound (52) also follows from the Rayleigh inequality [12, art. 251], stating that w
T
w
wTw

� �1
for any vector w and that equality only is achieved if w = v1, the eigenvector of 
 belonging to

eigenvalue �1. If w = p and recalling, as mentioned in the Introduction (Section 1), that pT
p = 2�2,

then the Rayleigh inequality indicates that �1 � 2�2

pT p
. Finally, (23) shows that, generally6, p 6= v1, else

all vj would be zero. Hence, the strict inequality in (52) is demonstrated for non-resistance regular

graphs, where � 6= RG
N2 u.

By Taylor expansion of (31) in w = y + �j around w = 0, a tedious computation (neglecting7

O (w) terms) shows that

�j < �
2

�j

0B@1 + �j
�
�T zj

�2
4
�
�2 + 1

N�j

�
�
PN�1
k=1;k 6=j

�2k(�
T zk)

2

�k��j

1CA
�1

which improves upon the estimate of Theorem 1.

For � < 0, it is instructive to rewrite eigenvalue equation (31) as the function

f (�) = 2�2 � �

N
� 1
2

N�1X
k=1

�2k
�
�T zk

�2
�k +

2
�

Since
df (�)

d�
= � 1

N
�
N�1X
k=1

�2k
�
�T zk

�2
(��k + 2)

2 < 0

6Only in resistance regular graphs, where � = RG
N2 u, then p =

u
N
= v1p

N
.

7 If we neglect O
�
w2
�
, then also an analytic result as roots of a quadratic polynomial can be found, which is, however,

unwieldy and omitted.
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the function f (�) is monotonously decreasing for all �. The sum, which equals �S (�), possesses poles

at � = � 2
�k
and the sum S (�) travels from 1 to �1 between two poles (at which f (�) has an

asymptote, i.e. vertical line), illustrating that between those poles, there is a zero of the function

f (�), in agreement with the inter-lacing Theorem 1 and implying that there are N � 1 real, negative
zeros (i.e. eigenvalues) of the function f (�).

Largest eigenvalue �1 For large �, the Taylor expansion of the function f (�) is, using 1
�k+

2
�

=

1
�k

P1
m=0

�
� 2
�k

�m
1
�m valid for

��� 2
�k�

��� < 1 for any 1 � k � N � 1,

f (�) = 2�2 � �

N
� 1
2

N�1X
k=1

�k
�
�T zk

�2 1X
m=0

�
� 2

�k

�m 1

�m

= 2�2 � �

N
� 1
2

N�1X
k=1

�k
�
�T zk

�2
+
N�1X
k=1

�
�T zk

�2 1
�

+

1X
m=2

(�1)m�1 2m�1
N�1X
k=1

�
�T zk

�2
�m�1k

1

�m

Using spectral decomposition, i.e. 1
2

PN�1
k=1 �k

�
�T zk

�2
= 1

2�
TQ�,

PN�1
k=1

�
�T zk

�2
= �T � � (�Tu)

2

N =

�T � � 1
N

�
RG
N

�2
and, for m > 1,

PN�1
k=1

(�T zk)
2

�m�1k

= �T
�
Qy
�m�1

� > 0, we �nd, for large � > 2
�N�1

, that

f (�) = � �
N
+ 2

�
�2 � 1

4
�TQ�

�
+

 
�T � �

�
RG
N

�2! 1
�
+

1X
m=2

(�1)m�1 2m�1�T
�
Qy
�m�1

�

�m

Invoking the de�nition (4) of �2 leads to the Taylor series of f (�), valid for � > 2
�N�1

,

f (�) = � �
N
+
2RG
N2

+

 
�T � �

�
RG
N

�2! 1
�
+

1X
m=2

(�1)m�1 2m�1�T
�
Qy
�m�1

�

�m
(54)

Since 0 = f (�1) and �1 > 2
�N�1

, the �rst order in (54), ignoring the O
�
1
�

�
contribution, is f (�) �

1
N

�
��+ 2RG

N

�
and leads to the estimate �1 � 2RG

N , which is rather weak, because the bound �1 � 2RG
N

holds [12, (5.33)]. After ignoring �2�TQy�
�2

+ O
�
1
�3

�
terms, which are negative for su¢ ciently large �,

the Taylor expansion (54) becomes

f (�) ' � �
N
+
2RG
N2

+

 
�T � � 1

N

�
RG
N

�2! 1
�

which translates to a quadratic equation in �,

�2 � 2RG
N

��
 
N�T � �

�
RG
N

�2!
= 0

with roots �� =
RG
N �

p
N�T �. The smaller root �� � RG

N �
p
N�T � violates the condition � > 2

�N�1
,

but the largest root

�1 /
RG
N
+
p
N�T � (55)

20



seems an accurate upper bound, sharper than (53). After ignoring
4�T (Qy)

2
�

�3
+ O

�
1
�4

�
> 0, we have

a lower bound

f (�) < � �
N
+
2RG
N2

+

 
�T � � 1

N

�
RG
N

�2! 1
�
� 2�

TQy�

�2

which translates to a cubic polynomial in �,

�3 � 2RG
N

�2 �
 
N�T � �

�
RG
N

�2!
�+ 2N�TQy� = 0

Cardano�s solution, that is involved and here omitted, can be symbolically computed. Increasing one

order,

f (�) > � �
N
+
2RG
N2

+

 
�T � � 1

N

�
RG
N

�2! 1
�
� 2�

TQy�

�2
+
4�T

�
Qy
�2
�

�3

is again an upper bound, that results in a quartic polynomial in �,

�4 � 2RG
N

�3 �
 
N�T � �

�
RG
N

�2!
�2 +

�
2N�TQy�

�
�� 4N�T

�
Qy
�2
� = 0

the last polynomial whose exact zeros are still generally possible to express in closed form (e.g. by

Mathematica).

Smallest eigenvalue �N We aim to �nd the smallest eigenvalue �N < 0 and we consider f (� j�j),
which is strict increasing in j�j,

f (� j�j) = 2�2 + j�j
N
� 1
2

N�2X
k=1

�2k
�
�T zk

�2
�k � 2

j�j
� 1
2

�2N�1
�
�T zN�1

�2
�N�1 � 2

j�j

For large j�j, (54) illustrates that

f (� j�j) = j�j
N
+
2RG
N2

+O

�
1

j�j

�
which leads, for j�j > 2

�N�1
, to the estimate

f (� j�j) ' j�j
N
+
2RG
N2

� 1
2

�2N�1
�
�T zN�1

�2
�N�1 � 2

j�j

The solution f (� j�j) = 0 then approximates � j�N j. Thus the positive zero of

j�j
N
+
2RG
N2

� 1
2

�2N�1
�
�T zN�1

�2
�N�1 j�j � 2

j�j = 0

is

j�jN =
2

�N�1
� 2RG

N + 1
2N�N�1

�
�T zN�1

�2
+

r�
2

�N�1
� 2RG

N + 1
2N�N�1 (�

T zN�1)
2
�2
+ 16RG

N�N�1

2
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Hence, our estimate for the smallest eigenvalue �N of the e¤ective resistance matrix 
 is

�N ' �
�

1

�N�1
� RG
N
+
1

4
N�N�1

�
�T zN�1

�2��
s�

1

�N�1
� RG
N
+
1

4
N�N�1 (�T zN�1)

2
�2
+

4RG
N�N�1

(56)

which is a sharp estimate, slightly upper bounding the exact eigenvalue �N (i.e. lower bounding j�N j).
Since �1 = �

PN
j=2 �j , the upper bound (53) implies that all eigenvalues of 
 lie in the interval�

�2�2N; 2�2N
�
, but a more precise determination of the interval [�N ; �1] is obtained with the upper

bound (55) for �1 and the accurate (56), although (56) is an upper bound, while a lower bound would

have been �safer�.

8.2 The eigenvalues of the Laplacian matrix Q

Similarly as in Section 8.1, we de�ne from �2 =
PN
j=1

(pT vj)
2

�+ 2
�j

in (26) the monotonously increasing

function in �,

h (�) = �2 �
NX
j=1

�
pT vj

�2
�+ 2

�j

satis�es

h0 (�) =
NX
j=1

�
pT vj

�2�
�+ 2

�j

�2 > 0
Similarly as the transformation of the partial fraction (28) into the quadratic form (29), we �nd

h (�) = �2 � pT
�
�I + 2
�1

��1
p (57)

For example, if � = 0, then (57) simpli�es to

h (0) = �2 � 1
2
pT
p

Since 2�2 = pT
p, we �nd h (0) = 0 and, indeed, � = 0 is an eigenvalue of the Laplacian Q. Thus,

we can reform (57) as

h (�) =
�

4
pT
�


2

�
2
+ I

�
p

For large �, it holds that lim�!1 h (�) = �2. Without poles on the positive real axis, the function

h (�) increases continuously from 0 to �2. However, at � = � 2
�k
for an integer k satisfying 2 � k � N ,

the function h (�) has a simple8 pole at which h (�) switches from +1 for � = � 2
�k
� " to �1 for

� = � 2
�k
+" for arbitrary small " > 0. The increasing nature of h (�) indicates that h (�) can only have

one zero in the interval
�
� 2
�k
;� 2

�k+1

�
. For example, the function h (�) increases from h (�) = 0 at

� = 0 until h (�) > 0 for � < � 2
�2
. At � = � 2

�2
, the function h (�) switches from +1 for � = � 2

�2
� "

to �1 for � = � 2
�2
+ " and " > 0 is arbitrary small. Hence, h (�) can only have a zero for � > � 2

�2
,

implying that the algebraic connectivity �N�1 > � 2
�2
, which is in agreement with the Interlacing

Theorem 1.
8Recall that we assume simple eigenvalues.
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8.2.1 Estimate of a Laplacian eigenvalue

We write

h (�) = rk (�)�
�
pT vk

�2
�+ 2

�k

�
�
pT vk+1

�2
�+ 2

�k+1

where

rk (�) = �
2 �

k�1X
j=1

�
pT vj

�2
�+ 2

�j

�
NX

j=k+2

�
pT vj

�2
�+ 2

�j

=
�

4
pT
�


2

�
2
+ I

�
p+

�
pT vk

�2
�+ 2

�k

+

�
pT vk+1

�2
�+ 2

�k+1

is regular at any point � in the interval
h
� 2
�k
;� 2

�k+1

i
. Moreover, rk (�) is a positive, strict increasing

function in �, so that 0 < rk
�
� 2
�k

�
< rk (�) < rk

�
� 2
�k+1

�
. The zero �� 2

�
� 2
�k
;� 2

�k+1

�
satis�es

rk (�
�)�

�
pT vk

�2
�� + 2

�k

�
�
pT vk+1

�2
�� + 2

�k+1

= 0

where �(p
T vk)

2

��+ 2
�k

< 0 and rk (��)�
(pT vk+1)

2

��+ 2
�k+1

> 0 and which is equivalent to

rk (�
�)

�
�� +

2

�k

��
�� +

2

�k+1

�
�
�
pT vk

�2�
�� +

2

�k+1

�
�
�
�� +

2

�k

��
pT vk+1

�2
= 0 (58)

Let y = �� + 2
�k
, then

rk

�
y � 2

�k

�
y

�
y +

2

�k+1
� 2

�k

�
�
�
pT vk

�2�
y +

2

�k+1
� 2

�k

�
� y

�
pT vk+1

�2
= 0

After simpli�cation, we �nd the quadratic equation in y,

rk

�
y � 2

�k

�
y2+

�
rk

�
y � 2

�k

��
2

�k+1
� 2

�k

�
�
�
pT vk

�2 � �pT vk+1�2� y��pT vk�2� 2

�k+1
� 2

�k

�
= 0

Since rk
�
y � 2

�k

�
does not contain a zero for y 2

h
0;� 2

�k+1
+ 2

�k

i
, we arrive, with �k = � 2

�k+1
+ 2
�k
> 0

at the quadratic equation in y

y2 �

8<:�k +
�
pT vk

�2
+
�
pT vk+1

�2
rk

�
y � 2

�k

�
9=; y + �pT vk�2 �k

rk

�
y � 2

�k

� = 0 (59)

with roots

y� =

 
�k +

(pT vk)
2
+(pT vk+1)

2

rk

�
y� 2

�k

�
!
�

vuut �k + (pT vk)
2+(pT vk+1)

2

rk

�
y� 2

�k

�
!2
� 4(pT vk)

2�k

rk

�
y� 2

�k

�
2
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Since rk
�
y � 2

�k

�
> 0 in

h
0;� 2

�k+1
+ 2

�k

i
, the discriminant

� =

0@�k + �pT vk�2 + �pT vk+1�2
rk

�
y � 2

�k

�
1A2 � 4 �pT vk�2 �k

rk

�
y � 2

�k

�
=

0@�k + �pT vk+1�2 � �pT vk�2
rk

�
y � 2

�k

�
1A2 + 4 �pT vk�2 �pT vk+1�2

r2k

�
y � 2

�k

� > 0

is positive and the quadratic equation has two positive zeros,

y� =

 
�k +

(pT vk)
2
+(pT vk+1)

2

rk

�
y� 2

�k

�
!
�

vuut �k + (pT vk+1)
2�(pT vk)2

rk

�
y� 2

�k

�
!2
+

4(pT vk)
2(pT vk+1)

2

r2k

�
y� 2

�k

�
2

It remains to determine the zero lying in the interval
h
0; �k = � 2

�k+1
+ 2

�k

i
. It holds that �k +

(pT vk)
2
+(pT vk+1)

2

rk

�
y� 2

�k

� > �k, but �k +
(pT vk+1)

2�(pT vk)
2

rk

�
y� 2

�k

� can be smaller than �k, in which case there are

two zeros in the interval, which is not possible. We are certain that the minus sign always lies in

[0; �k]. Hence, we translate back with y = �� + 2
�k
to

�� = � 2

�k
+

�
�k +

(pT vk)
2
+(pT vk+1)

2

rk(��)

�
�
r�

�k +
(pT vk+1)

2�(pT vk)2
rk(��)

�2
+

4(pT vk)
2(pT vk+1)

2

r2k(�
�)

2

which is a kind of self-consistent equation in ��. We now invoke the bounds r
�
� 2
�k

�
< r (�) <

r
�
� 2
�k+1

�
and arrive at

�� < � 2

�k
+

 
�k +

(pT vk)
2
+(pT vk+1)

2

rk

�
� 2
�k

�
!
�

vuut �k + (pT vk+1)
2�(pT vk)2

rk

�
� 2
�k

�
!2
+

4(pT vk)
2(pT vk+1)

2

r2k

�
� 2
�k

�
2

(60)

and

�� > � 2

�k
+

0@�k + (pT vk)2+(pT vk+1)2
rk

�
� 2
�k+1

�
1A�

vuuut
0@�k + (pT vk+1)

2�(pT vk)2

rk

�
� 2
�k+1

�
1A2 + 4(pT vk)

2(pT vk+1)
2

r2k

�
� 2
�k+1

�
2

(61)

Numerical results indicate that the upper (60) and lower bound (61) are quite tight and improve

the bounds of the Interlacing Theorem 1 A slightly easier, but less accurate estimate of a Laplacian

eigenvalue �� is obtained, for y is small by ignoring y2 in the quadratic equation (59) leading to the

inequality,

�

8<:�k +
�
pT vk

�2
+
�
pT vk+1

�2
rk

�
y � 2

�k

�
9=; y + �pT vk�2 �k

rk

�
y � 2

�k

� = �y2 < 0

24



from which

y < �k

(pT vk)
2

rk

�
y� 2

�k

�
�k +

(pT vk)
2+(pT vk+1)

2

rk

�
y� 2

�k

� < �k

8.2.2 Lagrange series for a Laplacian eigenvalue �

We can proceed further to compute any Laplacian eigenvalue � in the interval
h
� 2
�k
;� 2

�k+1

i
to any

desired accuracy via Lagrange series. First, the exact Taylor expansion of rk (�) around �0, di¤erent

from a simple pole, is

rk (�) = rk (�0) +

1X
m=1

(�1)m+1

0B@ NX
j=1;j 6=fk;k+1g

�
pT vj

�2�
2
�j
+ �0

�m+1
1CA (�� �0)m (62)

that converges for j�� �0j < min1�j�N
���� 2
�j
+ �0

����. Second, we introduce the Taylor series (62) into
the quadratic equation (58), which results in a new Taylor series erk (��) =P1

m=0 (erk (�0))m (�� � �0)m
with Taylor coe¢ cients (erk (�0))m of the function erk (��) = w. The Lagrange series for the inverse

function �� = (erk)�1 (w) around �0 can be computed symbolically to any �nite desired order via our
characteristic coe¢ cients [11], [12, p. 459]. The Laplacian eigenvalue � is a zero of erk (�) = 0 = w

and the Lagrange series for inverse function � = (erk)�1 (0) around �0 converges around �0, provided
that �0 lies su¢ ciently close to �k. The art lies in �nding an expansion point �0 that lies su¢ ciently

close to a Laplacian eigenvalue �k, so that the Lagrange series converges fast enough. Since the lower

(61) and upper (60) bound are numerically close the zero �, by choosing expansion point �0 equal to

the lower bound for (61), we expected a fast converge of the Lagrange series. We have not further

explored this route because the method is numerical.

9 Sum of quadratric forms and the trace of matrix

We insert here an intermezzo. It follows from p =
PN
k=1

�
pT vk

�
vk that pT p =

PN
j=1

�
pT vj

�2
. Using

(72) in Appendix B leads to

pT p

2�2
=
1

2

NX
j=1

vTj Qvj +

NX
j=1

1

�j
(63)

Comparison with (48) indicates that the number of links in the graph G equals

L =
1

2

NX
j=1

vTj Qvj (64)

Since L = 1
2

PN
j=1 dj , where dj is the degree of node j, it might be suggestive to propose that

dj = vTj Qvj , which is unfortunately not true. However, if [x] denotes �rounding up to the nearest

integer�, we found numerically that
�
vT1 Qv1

�
= 0, while

h
vTj Qvj

i
for 2 � j � N is close to a degree in

the graph G within an error of �1.
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We now show that formula (64) is an instance of a more general property of the trace of a matrix.

Indeed, we rewrite
NX
j=1

vTj Qvj = trace
�
V TQV

�
and we apply the cyclic permutation property of the trace-operator [12, eq, (4,15)],

trace
�
V TQV

�
= trace

�
QV V T

�
Since V is an orthogonal matrix that satis�es V V T = I, we obtain trace

�
V TQV

�
= trace(Q). The

general relation between a sum of quadratric forms and the trace is

Theorem 4 Let X =
h
x1 x2 � � � xN

i
be an n � n orthogonal matrix, which satis�es XTX =

XXT = I and let the n� 1 vector xj contain as components the column j elements of the matrix X.
Then, for any n� n square matrix M it holds that

nX
j=1

xTj Mxj = trace
�
XTMX

�
= trace (M) (65)

where the quadratic form is xTj Mxj =
Pn
k=1

Pn
l=1mkl (xj)k (xj)l.

Another direct proof of (65) follows from the second orthogonality relation
Pn
j=1 (xj)k (xj)l = �kl

in [12, eq. (A.126)].

Example If the orthogonal matrix X is the eigenvector matrix of an n � n symmetric matrix A
and xj is the normalized eigenvector belonging to eigenvalue �j , then (65) reduces to the well-known

eigenvalue formula [12, eq. (A.99)]
nX
j=1

�j = trace (A) (66)

Example Another example of Theorem 4 than (64) applies to RG
N = N trace

�
Qy
�
as

RG = N
N�1X
j=1

xTj Q
yxj

If we choose xj = zj , for which zTj Q
yzj =

1
�j
, we �nd the known instance of (66), RG = N

PN�1
j=1

1
�j
.

If xj = vj , then we �nd RG = N
PN�1
j=1 v

T
j Q

yvj .

Example For any set fzjg1�j�n of eigenvectors of a symmetric Laplacian matrix, and not only
for the Laplacian Q associated to the graph G, (65) becomes

Pn
j=1 z

T
j Mzj =trace(M). Since the

eigenvector zn = up
n
belonging to eigenvalue �n = 0 for any n � n symmetric Laplacian matrix, we

�nd that

trace (M)� u
TMu

n
=

n�1X
j=1

zTj Mzj (67)

where uTMu =
PN
i=1

PN
j=1mij equals the sum of all elements in the matrix M . For example, if M

is the e¤ective resistance matrix 
, whose trace(
) = 0, then (67) reduces, with the e¤ective graph

resistance RG = 1
2u
T
u, to

2RG
N

= �
N�1X
j=1

zTj 
zj (68)
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If we choose for fzjg1�j�n the Laplacian set of eigenvectors of the cycle graph, whose orthogonal
matrix is the Fourier matrix [12, p. 196], then (68) provides a discrete Fourier type of expansion of the

e¤ective graph resistance, where zk belongs to the k-th largest eigenvalue �k, which can be associated

to a frequency9 of a signal. We refer further to the graph signal processing community for these kind

of expansions of signals. Similar for the adjacency matrix Ak, whose trace
�
Ak
�
= Wk is the number

of closed walks with k hops and uTAku = Nk is the number of walks with k hops, (67) simpli�es to a

spectral decomposition in the basis of Laplacian eigenvalues of any other graph on N nodes

Wk �
Nk
N
=
N�1X
j=1

zTj A
kzj

which simpli�es for k = 1 to the average degree

E [D] =
2L

N
= �

N�1X
j=1

zTj Azj

For the Laplacian Q of the graph G, for which trace(Q) = 2L and Qu = 0, (67) gives us

2L =
N�1X
j=1

ezTj Qezj
where fezjg1�j�n are the Laplacian eigenvectors of a graph eG. Only if G = eG, then ezTj Qezj = �j , which
reduces to an instant of (66), see e.g. [12, Eq. (4.7)].

10 Conclusion

Given the spectrum (i.e. eigenvalues and eigenvectors) of either the e¤ective resistance matrix 
 or the

Laplacian matrix Q of a graph G allows the computation of the spectrum of the other matrix. Hence,

there is a nice one-to-one relation, which is, unfortunately, not existent for the adjacency matrix and

the Laplacian. Several new formulae, e.g. those in Theorem 2 and 4, Corollary 2 and 1 and several

bounds on eigenvalues in Section 8, are derived from the one-to-one correspondence between 
 and

Q. Finally, we improve the Interlacing Theorem 1.
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A Double orthogonality of the row and column vectors of the or-
thogonal matrix C in (25)

Orthogonality of a matrix implies double orthogonality [12, art. 248] in its corresponding column

vectors, which applied to the matrix C in (25) implies that

vTk vm = �k�m

0@N�1X
j=1

�
�j
�
�T zj

��2
(2 + �k�j) (2 + �m�j)

+
1

N

1A = �km

and for the row vectors

�k
�
�T zk

�
�m
�
�T zm

� NX
j=1

�2j
(2 + �j�k) (2 + �j�m)

= �km for m 6= N

�k
�
�T zk

�
p
N

NX
j=1

�2j
2 + �j�k

= 0 for k 6= N

In the sequel, we prove both orthogonality relations. First, for the columns of the orthogonal matrix

C, partial fraction expansion yields

1

(2 + �kx) (2 + �mx)
=

�k
2

(�k � �m) (2 + �kx)
+

�m
2

(�m � �k) (2 + �mx)
(69)
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so, for k 6= m,

vTk vm = �k�m

0@ �k
2

(�k � �m)

N�1X
j=1

�
�j
�
�T zj

��2
(2 + �k�j)

�
�m
2

(�k � �m)

N�1X
j=1

�
�j
�
�T zj

��2
(2 + �m�j)

+
1

N

1A
Each eigenvalue �m obeys the eigenvalue partial fraction (31)

�m
2

N�1X
j=1

�2j
�
�T zj

�2
�m�j + 2

= 2�2 � �m
N

showing that vTk vm = 0.

Similarly, for the rows of the orthogonal matrix C, partial fraction expansion

1

(2 + x�k) (2 + x�m)
=

�k
2

(�k � �m) (2 + �kx)
+

�m
2

(�m � �k) (2 + �mx)

yields

NX
j=1

�2j
(2 + �j�k) (2 + �j�m)

=
�k
2

(�k � �m)

NX
j=1

�2j
(2 + �k�j)

�
�m
2

(�k � �m)

NX
j=1

�2j
(2 + �m�j)

and the eigenvalue partial fraction (28) shows that the right-hand side equals zero.

B The resistance curvature vector p

It seems interesting10 to determine the sign of the components of the resistance curvature vector

p = (p1; p2; : : : ; pN ). We derive several decompositions of the vector p, apart from

p =
1

2

N�1X
k=1

�
�k�

T zk
�
zk +

u

N

which directly follows from the de�nition p = 1
2Q� +

u
N in (3) and spectral decomposition Q =PN�1

k=1 �kzkz
T
k .

B.1 Signs of scalar products

(a) We use pT vj = 2�2
uT vj
�j

in (11) into p =
PN
j=1

�
pT vj

�
vj , then

p = 2�2
NX
j=1

uT vj
�j

vj

= 2�2
uT v1
�1

v1 � 2�2
NX
j=2

uT vj
j�j j

vj

Thus, only if j = 1, the sign
�
pT v1

�
= sign

�
uT v1

�
> 0 else sign

�
pT vj

�
= � sign

�
uT vj

�
. Introducing

the de�nition p = 1
2Q� +

u
N in (3) shows that

pT vj =
1

2
�TQvj +

uT vj
N

10Private communication with Karel Devriendt.

29



and (11) then indicates that

�TQvj = 2

�
2�2

�j
� 1

N

�
uT vj

The upper bound 2�2

�1
> 1

N in (53) illustrates that sign
�
�TQv1

�
> 0, while sign

�
�TQvj

�
= � sign

�
uT vj

�
for 2 � j � N .

(b) Combining �j
2�2
pT vj = u

T vj in (11) and
�
�j � RG

N

�
uT vj = N�

T vj in (12) shows that�
�j �

RG
N

�
�j = 2�

2N
�T vj
pT vj

We deduce for any 1 � j � N that sign
�
�T vj

�
= sign

�
pT vj

�
and �T vj

pT vj
> 0. Moreover, the equation

also equals

�2j �
RG
N
�j � 2�2N

�T vj
pT vj

= 0

The solution of the quadratic equation is

�j =
RG
2N

�

s�
RG
2N

�2
+ 2�2N

�T vj
pT vj

Since �T vj
pT vj

> 0, only for j = 1 we must choose the positive sign, while for j > 2, the negative sign.

Hence,

�1 =
RG
2N

+

s�
RG
2N

�2
+ 2�2N

�T v1
pT v1

and, for 2 � j � N ,

�j = �

s�
RG
2N

�2
+ 2�2N

�T vj
pT vj

+
RG
2N

B.2 Decomposition of p in the basis of eigenvectors of 


We further derive expressions for the scalar product vTk p. Left-multiplying the �rst quasi-eigenvalue

equation (9) by vTk

vTkQvj = �
2

�j
vTk vj +

2
�
uT vj

�
�j

vTk p

leads, after invoking orthogonality of eigenvectors vTk vj = �kj = 1fk=jg, to

vTk p =
�jv

T
kQvj

2 (uT vj)
+
1fk=jg
uT vj

Thus, if k = j, then the scalar product is

vTj p =
1
2�jv

T
j Qvj + 1

uT vj
(70)

else

vTk p =
�jv

T
kQvj

2 (uT vj)
(71)
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Either after using (11) in (71) and (71) or after left-multiplying the second quasi-eigenvalue equa-

tion (10) by vTk , that leads to

vTkQvj = �
2

�j
vTk vj +

1

�2
�
pT vj

� �
vTk p

�
we obtain, for k = j, �

vTj p
�2
= �2

�
vTj Qvj +

2

�j

�
(72)

else

vTkQvj =
1

�2
�
pT vj

� �
vTk p

�
(73)

Equation (73) determines the sign of pT vj and pT vk in relation to that of vTkQvj .

The positive semi-de�niteness [12, art. 102] of the LaplacianQ states that zTQz =
P
l2L (zl+ � zl�)

2 �
0 for any vector z. Thus, the quadratic form vTj Qvj � 0 is non-negative for any eigenvector vj of the
e¤ective resistance matrix 
. We know [12, p. 181-182] that the resistance curvature vector p is the

eigenvector of the matrix Q
 belonging to the zero eigenvalue.

Lemma 5 The resistance curvature vector p is not an eigenvector of the e¤ective resistance matrix

 of a non-resistance regular graph.

Proof : The condition vTk p = 0 for a certain integer k implies, by orthogonality of the eigenvectors
vTk vj = �kj , that the vector p must be an eigenvector of the e¤ective resistance matrix 
 belonging

to an eigenvalue j 6= k. It su¢ ces to show that vTj p = 0 is not possible in a non-resistance regular

graph. For a non-resistance regular graph, the condition that vTj p = 0 in (70) or (72) implies that

�j = � 2
vTj Qvj

< 0, which is only positive if j > 1, because then the eigenvalues �j < 0. It also means

that vTj Qvj = � 2
�j
= vTj 
vj , which is only possible in �resistance regular graphs�. Alternatively,

vTk p = 0 in (71) is only possible if vTkQvj = 0, which means that either vk = up
N
or vj = up

N
. The

latter is, again, only possible in �resistance regular graphs�. �

Since the vector p can be written as a linear combination of the eigenvectors of the e¤ective

resistance matrix 
,

p =
NX
k=1

�
pT vk

�
vk =

�
vTj p

�
vj +

NX
k=1;k 6=j

�
pT vk

�
vk

we obtain, for any integer 1 � j � N , the decomposition of the resistance curvature vector p in the
basis of eigenvectors v1; v2; : : : ; vN ,

p =

 
1
2�jv

T
j Qvj + 1

uT vj

!
vj +

�j
2 (uT vj)

NX
k=1;k 6=j

�
vTkQvj

�
vk (74)

Since �1 > 0 > �2, it is convenient to choose j = 1 and (74) becomes

p =

 
1
2�1v

T
1 Qv1 + 1

uT v1

!
v1 +

�1
2 (uT v1)

NX
k=2

�
vTkQv1

�
vk (75)

where the prefactors
1
2
�1vT1 Qv1+1

uT v1
and �1

2(uT v1)
are positive, because the Perron-Frobenius Theorem [12,

art. 269] of non-negative matrices states the components of the principal eigenvector v1 are all positive

in a connected graph G.
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We end with the computation of we vTmQ
lvj for any positive real l with (15),

Qlvj = �j

N�1X
k=1

�1+lk

�
�T zk

�
2 + �j�k

zk

Then, with vTmzk =
2
�m

�k
2

2
�m

+�k

�
uT vm

� �
�T zk

�
from (21), we �nd that11

vTmQ
lvj =

�
uT vm

�
�j

N�1X
k=1

�2+lk

�
�T zk

�2
(2 + �j�k) (2 + �m�k)

11For m = j, it follows that vTj Qvj =
�
uT vj

�2PN�1
k=1

�3k(�
T zk)

2

(2+�j�k)
2 > 0, because

�
uT vj

�
�j = �

2
j � 0 and that with (64)

2L =

NX
j=1

vTj Qvj =

NX
j=1

N�1X
k=1

�3k
�
uT vj

�2 �
�T zk

�2
(2 + �j�k)

2
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