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Abstract

This article aims to order and classify a wide number of metrics, proposed to characterize graphs, and

the services using those graphs. The number of proposed metrics over the graph history is overwhelming.

Over the years, scientists constantly introduce new metrics in order to measure specific features of specific

graphs. Aiming for generality, this research will focus on the classification of unweighted, undirected, general

graph metrics.
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1 Introduction

Each complex network (or class of networks) presents specific topological features which characterize its con-

nectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination,

and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most

relevant topological features.

Firstly, the basic structural properties of a graph can be studied by solely considering its topology. The

network topology specifies how items, called nodes, are interconnected or related to other nodes by links. A

graph G is a data structure consisting of a set of N nodes connected by a set of L links. The set of nodes is

denoted by N , and similarly the set of links by L.

Secondly, each link in G can be further specified by a set of link weights (such as delay, packet loss, available

bandwidth, monetary cost, etc.), and each node can be characterized by a set of node properties (such as

processing time, queue length, uptime, etc.). A network is fully defined when, in addition to the topological

structure, multiple protocols, dynamics and constraints are set on top of the graph. This multilayer nature of a

network leads to a natural metric classification split in topological metrics, and service metrics. The first class

groups network properties obtainable by processing topological information, leading to an understanding on the

connectivity of the network elements. Further, service metrics attempt to model the dynamic processes (such

as end-to-end delivery, virus spread, etc.) present in the network. This differentiation between low and high

level metric introduces the concepts of service and decomposability, which are discussed in section 4.1.

The European project ResumeNet1 aims to propose a multilevel, systemic, and systematic approach to

network resilience. The project defines resilience as the ability of a network to provide and maintain an

acceptable level of service in the face of faults to normal operation. A basic understanding of how to quantify

complex networks properties is key in the process of detecting and measuring challenges to normal operation.

∗Email: J.MartinHernandez@tudelft.nl
†Email: P.F.A.VanMieghem@tudelft.nl
1European Union Research Framework Programme 7, FP - 224619 http://www.resumenet.eu/

1



This document presents a first step towards the framework by extensively enumerating and classifying existing

graph metrics.

The document is structured as follows. Section 2 presents a comprehensive list of low-level topological

metrics. For each individual metric a closed definition is given, together with hints at how the metric affects

the network functions. Section 4.1 briefly introduces high-level service metrics together with the concept of

decomposability.

2 Topological metrics

For unweighted, undirected graphs, the adjacency matrix is a square matrix A consisting of elements aij = aji

that are either one or zero depending on whether there is a link between the node i and j or not. A metric is

classified as a topological metric if it can be calculated by using exclusively the adjacency matrix, such as the

one in Figure 1. If any additional node or link property (such as link weight) is assumed in the calculations,

the resultant metric is not a topological metric.

0 1 0 1 0

1 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 0

A=

1 2

3

4 5

Figure 1: Adjacency matrix of a graph with N = 5 nodes and L = 6 links. Row i describes the connectivity

pattern of node i. For example, the first row in the table tells us that node 1 connects to nodes 2 and 4.

Topological metrics are further classified into subclasses. The three proposed classes are: distance, connec-

tion, and spectra class. The distance class groups the metrics that make use of the hopcount random variable,

which provides information about the number of nodes a message has to cross to reach its destination. The

connection class groups metrics related to the nodal degree random variable (i.e. the number of a node’s neigh-

bours), together with metrics that help grouping nodes into clusters or hierarchies, thus providing insights into

the structure of the network. Finally, the spectra class includes the eigenvalues and eigenvectors of a graph.

We expect that most metrics are correlated: a single metric such as the expansion can give us information

on both degree and distance. It is beyond the scope of this document to analyze the correlation map between

all the different metrics.

A detailed list with all the topological metric symbols can be found in Table 1 at the end of this document.

2.1 Distance class

In communication networks, paths are basic entities in connecting two communicating parties or nodes in a

graph G(N,L). A path from a node nA to a node nB with k hops or links is the node list PA→B(k) = nA →
n2 → n3 → ... → nk+1 where nk+1 = nB , nj 6= ni for each index i and j. The value k is called the hopcount

of the path. Let Xj(nA → nB) denote the number of paths with j hops between a source node nA and a

destination node nB . Metrics making use of the hopcount random variable are included in the distance class.

2.1.1 Hopcount

The shortest hopcount HA→B between two nodes nA and nB is the number of hops or links in the shortest path

that connects the two nodes,

2



HA→B = min
k∈[1..N−1]

(PA→B(k)) (1)

hence the hopcount of the path PA→B(k) = nA → n2 → n3 → ...→ nk+1, is HA→B = k.

The hopcount distribution Pr[H = k] is the probability for a random pair of nodes to be at a distance k hops

from each other [1]. The hopcount of a path is often associated in physics to the distance, length, or geodesic

of such path [2] [3]. The distance or length of a path PA→B(k) = nA → n2 → n3 → ... → nk+1 is the sum

of all the link weights included in such path. When all the link weights in the graph have link weight wl = 1,

hopcount and distance become equivalent terms.

The hopcount distribution is important for many applications, the most prominent being routing. The

performance parameters of routing algorithms strongly depend on the hopcount distribution [4]. The hopcount

also plays a vital role in robustness of the network to worms [5]. Worms can quickly contaminate a network that

has small distances between nodes. Topology models that accurately reproduce observed distance distributions

will help researchers to develop techniques to protect networks from worms.

2.1.2 Closeness

The closeness [6] of a node ni is the average hopcount obtained from this node to all the others. The most

commonly used definition is the reciprocal of the total hopcount,

Ci =
1∑

nj∈N\{ni}Hni→nj

(2)

Closeness is often regarded as a measure to quantify the node’s participation in a network. Nodes with low

closeness scores have short hopcounts from other nodes, and so will tend to receive information sooner and

disseminate information faster. Closeness has been used in biology to identify central metabolites in metabolic

networks. The reciprocal of the node closeness is also known as the Wiener index Wi [7].

2.1.3 Eccentricity, Diameter, Radius

The eccentricity εi of a node i is defined as the longest hopcount between the node ni and any other node in G.

εi = max
nj∈N

(Hni→nj
) (3)

The eccentricity of a graph ε is the average eccentricity over all the nodes in G. It is closely related to the

flooding time [1], which is the minimum time needed to inform the last node in a network. Intuitively nodes

that play an important role in a topology should be easily reachable by the rest of the nodes in a graph.

The diameter D of a graph G is the maximum node eccentricity over all the nodes in G

D = max
ni∈N

(εi) (4)

The diameter [8] can also be regarded as the longest shortest hopcount found in a graph. This measure gives

an indication on how extended a graph is. Although it can be artificially inflated by long chains of nodes.

The radius R of a graph is the minimum node eccentricity over all the nodes in G

R = min
ni∈N

(εi) (5)

2.1.4 Persistence

The persistence of a graph, as introduced by Boesch et al. [9], is the smallest number of links whose removal

increases the diameter or disconnect the graph. The persistence of a graph of diameter D is the minimum over

all pairs of nonadjacent nodes of the maximum number of disjoint paths of length at most D joining them.
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2.1.5 Girth

The girth γ of a graph [10] is the hopcount of the shortest cycle contained in the graph. A cycle is a closed

path PA→A, with no other repeated nodes than the starting and ending nodes This measure has a limited use,

as any graph with clustering coefficient larger than 0 will provide γ = 3. The girth of an acyclic graph, such as

a tree, is defined to be infinite.

The girth can be applied to prevent network the occurrence of loops. Routing algorithms operation may

sometimes induce errors, which can lead to data packets being endlessly routed in a closed loop. For this reason,

graphs with high girth values are less prone to suffer self loops. However the application of the girth is limited:

link-state routing protocols (e.g. OSPF) prevent self loops after a flooding, additionally distance-vector routing

protocols (e.g. BGP) have built-in loop prevention algorithms.

2.1.6 Expansion

The expansion eh of a graph [1] is the average fraction of nodes in the graph that fall within a ball of radius h

(in hops) centered at a random node in the topology

eh =
1

N2
|Ci(h)| (6)

where Ci(h) is the set of nodes that can be reached in h hops from a node i. We can interpret Ci(h) geometrically

as a ball centered at node i with radius h.

The expansion of a node provides information about the global graph reachability from a local point of view.

Minimizing the expansion of a node or a set of nodes S in a network will shorten the number of hops a message

generated by S will have to cross to reach its destination.

2.1.7 Betweenness

Betweenness of a node (or a link) Bk is defined as the number of shortest paths between pairs of nodes that

traverse a node or link k. Let σij be the number of shortest paths between nodes i and j, and k be either a

node or a link. Let σij(k) be the number of shortest paths (1) between i and j going through node (or link) k.

The shortest paths betweenness for the node (or link) k is

Bk =
σij(k)

σij
(7)

Huijuan Wang et al. [11] show that in overlay trees of real world complex networks with exponential link weight

distribution, the probability distribution function of Bk follows a power law Pr[Bk = j] = coj
−c.

Commonly shortest paths are assumed in the calculation of σij(k): all paths follow the shortest paths as

stated by (1). However, in real networks routing protocols may route traffic through non-shortest paths subject

to multiple constraints. Alternative methods have been introduced [3] to calculate the betweenness based in

random walks: consider the number of times a random traveling message passes through k along his journey

averaged over a large number of trials. The full random walk betweenness of a node (or link) k will then be

this value averaged over all possible source/target pairs i,j.

Betweenness has been studied in the past as a measure of the centrality or influence of nodes in social

networks. First, proposed by Freeman [12], Bk can be a measure of the influence of a node (or link) over the

global flow of information. In communication networks, betweenness measures the potential amount of traffic

that crosses a node/link. This potential traffic will be affected when the node/link’s fails.

2.1.8 Central Point of Dominance

The central point of dominance [12] is defined as
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CPD =
1

N − 1

∑
i

(Bmax −Bi) (8)

where Bmax is the largest value of the betweenness centrality in the network. CPD is a measure of the maximum

betweenness of any point in the graph: it equals 0 for complete graphs and 1 for star graphs (in which there is

a central node that all paths include).

2.1.9 Distortion

Consider any spanning tree T on a graph G, and compute the average distance t = E[HT ] on T between any

two nodes that share a link in G. The distortion measures how T distorts links in G, i.e. it measures how many

extra hops are required to go from one side of a link in G to the other, if we are restricted to using T . The

distortion is defined [13] to be the smallest such average over all possible T s.

Intuitively distortion measures how tree-like a graph is.

2.2 Connection class

One of the major concerns of network analysis lies in the identification of cohesive subgroups of actors within

a network. Cohesive subgroups are subsets of nodes among whom there are relatively strong, direct, intense,

frequent, or positive ties. The node degree describes the neighbors of a node and is an key property to evaluate

the graph structure [14]. The degree di of a node ni is the number of other nodes to which ni is connected,

di =

N∑
j=1

aij (9)

Metrics that focus on the node degree analysis are included in the connection class. The metrics presented

in this Section intend to classify nodes into intersecting or non-intersecting sets. Nodes belonging to the same

set are expected to share structural properties.

2.2.1 Degree

Let dk be the number of nodes with degree k. The node degree distribution is the probability that the degree

D of a randomly selected node equals k,

Pr[D = k] =
dk
N

(10)

The average value of this distribution is called the average degree2 E[D], and obeys the basic law [14],

E[D] =
2L

N
=

N−1∑
k=0

kPr[D = k] (11)

The minimum and maximum node degree of a given graph G are denoted as dmin and dmax, respectively. The

degree distribution of a random graph follows a binomial distribution [1]. On the other hand, empirical results

show that in real-world networks, the degree distribution significantly deviates from a binomial distribution.

In particular, for a large number of networks, including the World-Wide Web [8], Internet AS [15] level or

metabolic networks [16] [17] [18], the degree distribution has a skewed distribution with a power-law tail.

Resilience can be measured in several ways, but one of the most common indicators of network resilience is

the variation on the fraction of nodes in the largest connected component upon link removals. In the context

of communication networks the nodes in the giant component can communicate with an extensive fraction of

the entire network, whereas nodes in the small components can only communicate with a few others. Studies

2E[D] it is often represented as k̄ in physics.
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performed on the Internet AS topology [19] [20] show that networks with power law degree distributions are

relatively robust with respect to a random failures. Only a failure of central nodes is likely to cause the network

to fragment. On the other hand, this type of hub-based networks is extremely vulnerable to a targeted attack,

in which the most highly connected nodes are removed first. These results lead to the Internet feature known

as robust yet-fragile.
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Figure 2: Degree distribution (in logarithmic-logarithmic scale) of a topology generated by the Power Law

Random Generator (PLRG) algorithm [21]. The probability distribution follows a straight line, which indicates

a power law behavior.

The topology of a network has a major impact on the performance of network protocols. For this reason,

network researchers often use topology generators to generate realistic graphs for their simulations. These

topology generators attempt to create network topologies that capture the fundamental characteristics of real

networks, being the degree distribution the simplest metric to mimic [13].

2.2.2 Joint degree distribution (JDD)

The joint degree distribution (JDD) Pr[D1 = k1, D1 = k2] is the probability that a random pair of nodes possess

a degree equal to k1 and k2, respectively. The joint distribution of the degree of nodes at the end points of a link

equals Pr[Di = ki, Dj = kj |aij = 1]. When selecting a random link l ∼ (l+, l−), we can rephrase this probability

as Pr[Dl+ = k1, Dl− = k2]. Of course, the link l is shared by both nodes i = l+ and j = l− so that often, we

are interested in the remaining degree at the end points of a link, which is Dl+ − 1 or Dl− − 1. Let m(ki, kj) be

the total number of links connecting nodes of degrees ki and kj , then the joint probability distribution of the

degree at the end points of a randomly selected link connecting k1 and k2-degree nodes [16] [17] is

Pr[Dl+ = k1, Dl− = k2] = µ(ki, kj)
m(ki, kj)

2L
(12)

where µ(k1, k2) is 1 if k1 = k2 and 2 otherwise.

While the node degree distribution tells us how many nodes of a given degree are found in a network, the

JDD provides information on the interconnection between these nodes, by describing correlations of degrees of

nodes located at distance 1.

2.2.3 Assortativity

A straightforward way to determine the correlation among the degrees is by considering the Pearson correlation

coefficient [22, 1] of the degrees at either ends of each link. This normalized value is called the assortativity
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coefficient r of a graph G [23, 14],

r =
Cov[Dl+ , Dl− ]

σXσY
=

1
L

∑
(i,j)∈L didj −

(∑
(i,j)∈L

1
2L (di + dj)

)2
1
L

∑
(i,j)∈L

1
2 (d2i + d2j )−

(∑
(i,j)∈L

1
2L (di + dj)

)2 (13)

where Dl+ and Dl− are the degrees of the nodes at the end of a randomly chosen link l in the graph. The

assortativity coefficient lies in the range [−1, 1]. Assortative mixing (r > 0) is defined as a preference for high-

degree nodes to attach to other high-degree nodes, whereas disassortative mixing (r < 0) as the converse, where

high-degree nodes attach to low-degree ones. Assortative and disassortative mixing patterns indicate a generic

tendency to connect to similar or dissimilar peers respectively.

Highly connected nodes tend to be connected with other high degree nodes in social networks [23]. On the

other hand, technological and biological networks typically show disassortative mixing, as high degree nodes

tend to attach to low degree nodes.

2.2.4 Coreness

The k − core is the subgraph obtained from the original graph by the recursive removal of all nodes of degree

less than or equal than k [24]. Hence, in a k − core subgraph all nodes have at least degree k as illustrated in

Figure 3.

Figure 3: The 0, 1, 2 and 3 cores of a sample graph.

The node coreness ki of a given node ni is the maximum k such that this node is present in the k − core
graph, but removed from the (k + 1)− core. This measure can be regarded as an indicator of node centrality,

since it measures how deep within the network a node is located.

2.2.5 Cliques and n-cliques

A clique [24] of a given graph G(N,L) is a subset of nodes such that all elements in the clique S(NS , LS), where

NS ≤ N,LS ≤ L, are fully connected, hence, forming a full mesh. The clique number of a graph equals the

largest clique S in G. Finding the clique number in a graph is NP-hard. A relaxation of the clique concept

is the n-clique. An n-clique S′ of a graph is the maximal set of nodes in which for all u, v ∈ S′, the shortest

hopcounts Hu→v ≤ n. In other words, an n-clique is a set of nodes in which every node can reach every other

in n or fewer steps. The set S′ is maximal in the sense that no other node in the graph is at distance n or less

from every other node in the subgraph. By definition, 1-clique and clique are equivalent terms.

The knowledge about subgraphs with clique features within a network can decrease the complexity of

algorithms designed for such network. For example, if a network is composed of trees hanging off a densely

connected component, then an algorithm can run in the center component and a second algorithm tailored

specifically for trees can run in the trees.
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2.2.6 Clustering coefficient

The local clustering coefficient of a node ni in a graph G measures the cliquishness of ni neighborhood

ci =
yi(
di

2

) (14)

where yi is the number of links between neighbors of ni, and di is the degree of the node ni.

The clustering coefficient C of the whole graph G is the average of the local clustering coefficients for all the

nodes in G,

C =
1

N

∑
i∈N

ci (15)

This number is precisely the probability that two neighbors of a node are neighbors themselves. It is 1 on

a fully connected graph (everyone knows everyone else) and has typical values in the range of [0.1, 0.5] in many

real-world networks [16] [1]. The clustering coefficient can be interpreted as a measure of how close a node’s

neighbors are to forming a 1-clique.

A characteristic of Erdös-Rényi graphs is that the probability of loops involving a small number of vertices

goes to 0 in the large network size limit [1]. This effect presents a remarkable contrast with the abundance of

short loops observed in many real world networks [25] [13]. The clustering coefficient has been extensively used

in network topology studies, since it is a low complexity cliquishness indicator.

2.2.7 Rich Club coefficient

For a graph G, define Sk as the subset of nodes with degree greater than k, Sk : {n ∈ G|dn > k}. We call

this subset Sk the k−club members. The rich-club coefficient Φk is defined as the ratio of the number of links

connecting the club members over the maximum number of allowable links in Sk, which measures how well the

rich nodes know each other,

Φk =
1

|Sk| (|Sk| − 1)

∑
i,j∈Sk

aij (16)

A monotonic increase of Φk is not enough to infer the presence of the rich club phenomenon [26] since even

random networks generated from the Erdös-Rényi model [27], the Molloy-Reed [28] model and the Barabási-

Albert model [29] have an increasing Φk with respect to k. Note that the definition of the subset Sk can be

altered to regard other graph properties besides the degree distribution.

The rich club phenomenon in complex networks depicts the observation that the nodes with high degrees

(called rich nodes) are inclined to intensely connect with each other. In other words, the rich club connectivity

is a measure of how close induced graphs are to cliques. In a social context, a strong rich-club phenomenon

indicates the dominance of an elite of highly connected and mutually communicating entities, as opposed to a

structure comprised of many loosely connected communities. In the Internet, such a feature would point to an

architecture in which important hubs are much more densely interconnected than peripheral nodes in order to

provide the transit backbone of the network.

2.2.8 Giant component

A strongly connected component is a maximal subgraph GC of a directed graph such that for every pair of nodes

nA, nB ∈ GC , there exists a directed path PA→B(k) and a directed path PB→A(k) , for any hop k. Tarjan [30]

presented an efficient algorithm to find the strongly connected components.

The number of nodes of the giant component of G denoted as

m(G)
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has been applied to the definition of network robustness in many studies. A network is often considered robust

if the size of the giant component

m(G)

remains constant as nodes or links are randomly removed from the network.

A large number of graph metrics cannot be calculated or they lose its meaning when the network under

study contains more than a single strongly connected component. For instance, the hopcount between two

nodes belonging to different disconnected components is not defined. The usual way to deal with disconnected

components is the isolation and exclusive study of a network’s giant component, which in many real cases

includes a high percentage nodes. The metrics computed for the giant component are afterwards generalized to

the totality of the network.

2.2.9 Reliability

A large number of metrics have been proposed under the term realibility. Reliability metrics measure the number

of removed elements that lead to disconnected components in a graph. Because communication between all

pairs of nodes in a graph is intuitively regarded as a vital condition for robustness, reliability has historically

been the classical way to define graph robustness.

• The vertex connectivity κ and edge connectivity λ(G) of a connected graph G are the respective smallest

number of nodes and links whose removal disconnects G. For any connected graph G it holds that

κ(G) ≤ λ(G) ≤ dmin (17)

where dmin is the minimum node degree in the graph G, and it sets a higher bound for the vertex

connectivity. A graph is called k−connected or k−vertex-connected if its vertex connectivity is k or

greater.

In addition, the connectivity function [31] specifies for each i the minimum edge connectivity that can be

achieved after first removing i nodes.

• The cohesion µ(G) of a graph measures the minimum number of links whose removal creates a cut node

in the network [32]. Thus removal of these µ(G) links, together with a single node, will disconnect the

network.

When a network becomes disconnected it is desirable to capture the extend of disruption by measuring the

size and number of the remaining connected components (defined in Section 2.2.8). After all, a system that has

been split into many parts represents a more severe degradation than a system that has been split into a few

large parts. To aid in describing such measures suppose a set of links S ⊆ L are removed from the graph G

yielding the network G− S with c(G− S) connected components and maximum component size m(G− S)

• The ith-order edge connectivity [33] is defined as the minimum |S| such that c(G− S) = i+ 1.

• The ith edge separation value [missing reference] is defined as the minimum |S| such that m(G− S) 6 i

• The edge integrity [34] of G is the minimum value of the sum {|S|+m(G− S)} over all S ⊆ L.

• The edge toughness [35] is the minimum value of the ratio {|S| /c(G − S)} over all disconnecting sets S.

However, edge toughness always equals λ(G), so a more appealing measure is the node toughness: the

minimum ratio of the size of a node disconnecting set to the resulting number of components(notice that

most of the link-based measures presented have appropriate node-based analogues).
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For the case of probabilistic networks, in which nodes and/or links fail randomly and independently with

known probabilities, a number of measures have been presented.

• The two-terminal reliability Rij(G) between the nodes i and j is the probability that i and j are connected

by a path of operating nodes and links.

• The two-to-K-terminal reliability RiK(G) is the probability that there is an operative path from node i

to all nodes in a specified set K ⊆ N .

• The source-to-all-terminal reliability or reliability polynomial R(G) is the probability that there is an

operative path from any node i to all other nodes in the network. Notice that R(G) simply expresses the

probability that the graph remains connected.

• The pair-connectivity or pair connected reliability [36] is the average number of node pairs able to com-

municate, taken over all possible node and link failures. This measure takes into account the fact that

different ways of disconnecting the network are of different severity. For example, a certain number of

link failures could separate G into several connected components G1, ..., Gr. All communication is then

disrupted between nodes in different components, and the resulting communication capacity can be mea-

sured by the number of pairs fo nodes now able to communicate
r∑

i=1

(
ni

2

)
where ni is the number of

nodes in component Gi.

Reliability metrics represent an intuitive measure of robustness. When a graph becomes disconnected, poten-

tially unique information (or services) stored in the disconnected nodes becomes unreachable and unavailable.

For example, a computing circuit may short circuit due to a failure leading to a disconnected component.

Historically [37], reliability has been the classical way to quantify network robustness.

Numerous algorithms have been developed for calculating the various network performance measures dis-

cussed previously. The effective computation of virtually all probabilistic measures exhibit a worst-case behavior

that is exponential in the size of the network [38]. For this reason, the exact computation of reliability metrics

has been confined to networks of small sizes.

2.2.10 Chromatic number

The coloring [39] of a graph G is a map c : N → S such that cn 6= cm whenever nodes n and m are adjacent.

The elements of the set S are called the available colors. All that interests us about S is its size: typically, we

shall be asking for the smallest integer k such that G has a k-coloring, a node coloring c : N → {1, ..., k}. This

k is the chromatic number of G, denoted by X . A graph G with X =k is called k-chromatic.

Note that a k-coloring of a graph is a node partition into k independent sets, called color classes. The

non-trivial 2-colorable graphs, for example, are the bipartite graphs. The non-trivial four color theorem [40],

and five color theorem [39] imply that every planar graph is 4-colorable and 5-colorable respectively.

To avoid signal interference in frequency-division multiplexing communications the channels used by the

antennas are chosen so that the same channel is never concurrently used by two neighboring antennas. This

problem is named channel allocation and is usually modeled as a generalized list coloring problem.

2.3 Spectra class

The algebraic eigenproblem consists in the determination of the scalars λ and the corresponding vectors xNx1 6= 0

of any matrix A that satisfy the equation

Ax = λx (18)
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The scalars and vectors are called eigenvalues and eigenvectors of A, respectively. The set of distinct

eigenvalues λ is called the spectrum of A. Many network properties such as the vertex connectivity are related

to the spectrum of a graph [41] [1].

Along this section we will work with the spectrum of the adjacency matrix and the admittance matrix. The

admittance matrix or Laplacian Q is defined as

Q = ∆−A (19)

where ∆ = diag(d1, d2, ..., dN ) is the degree matrix. The eigenvalues of the Laplacian matrix are represented

with the symbol µ. The Laplacian matrix appears in many contexts in the theory of networks, such as the

analysis of diffusion and random walks on networks, Kirchoff’s theorem for the number of spanning trees, etc.

2.3.1 Algebraic connectivity

Let µ1 ≥ µ2 ≥ ... ≥ µN be the ordered set of eigenvalues of the Laplacian matrix Q. The algebraic connectivity

[42] is the second smallest eigenvalue of the Laplacian matrix, µN−1 . For large N , the distribution of the

algebraic connectivity grows linearly with the minimum node degree.

The algebraic connectivity is related to the speed of solving consensus problems in networks (solve distributed

decision-making problems with interacting groups of agents), and it is a lower bound for the vertex connectivity

[41] [43],

µN−1 ≤ κ(G) (20)

Graphs with certain high connectivity properties (such as concentrators) have been used in the construction

of switching networks that exhibit high connectivity. Tanner [44] proved that connectivity properties can be

analyzed by its eigenvalues. He observed that a small ratio of the algebraic connectivity to the dominant

eigenvalue implies good expansion properties.

2.3.2 Spectral radius

Let λ1 ≥ λ2 ≥ ... ≥ λN be the ordered set of eigenvalues of the matrix A. The spectral radius ρ of A is

ρ = max
1≤i≤N

|λi| (21)

The epidemic threshold [45] is defined as follows: for effective virus spreading rates below τ the contamination

in the network dies out, while for effective spreading rates above τ , the virus is prevalent, i.e. a persisting

fraction of nodes remains infected as displayed in Figure 4. Piet et al. [46] found the relation τ = 1/ρ. It

follows from this result that the smaller the spectral radius, the higher the robustness of any network against

the spread of viruses.

2.3.3 Fiedler vector

The eigenvector corresponding to the second smallest eigenvalue (i.e., the algebraic connectivity µN−1) of the

Laplacian matrix is also called the Fiedler vector. Spectral partitioning methods have been developed to split

the nodes of a graph into two groups, such that the number of links between the groups is minimized [47] [48].

For the specific case where the network is split into two non-intersecting groups, we can define an index vector

s with N elements:

si =

{
+1 if the node ni belongs to group 1

−1 if the node ni belongs to group 2
(22)

The group selection [47] that minimizes the number of links between such groups follows
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Figure 4: Fraction of infected nodes as a function of the effective infection rate τ . The epidemic threshold is

denoted by τc.

si =

{
+1 if xN−1(i) ≥ 0

−1 if xN−1(i) < 0
(23)

where xN−1 is the Fiedler vector.

Community detection in large networks might prove a very useful tool. Nodes belonging to a tight-knit

community are more than likely to have other properties in common. For instance, in the world wide web,

community analysis has uncovered thematic clusters, in neural networks communities may be functional groups,

etc.

2.3.4 Principal eigenvector

The Principal eigenvector of an adjacency matrix A is the eigenvector corresponding to the largest eigenvalue

λmax (i.e., the spectral radius ρ). The principal eigenvector is the vector that maximizes the eigen equation

(18) such that

Ax1 = ρx1 (24)

which attributes useful properties related to graph theory [49] [50] and data processing [20] [51] to x1.

First, the components of the principal eigenvector are directly related to node centrality or relative impor-

tance of nodes in a graph. Let us illustrate this idea with an example: the hyperlink structure of the World Wide

Web can be modeled as a directed graph with N nodes where each node in the graph represents a webpage and

the directed links represent hyperlinks. The corresponding adjacency matrix A is called transition matrix. Let

us now imagine a web surfer who at each time step visits a random webpage in Figure 5. The user randomly

picks a hyperlink on the current page i and jumps to a random page j it links to with a given Markovian

probability p = aij/
∑N

j=1 aij . The stationary vector Π (i.e. Πi equals the chance that the user is viewing the

webpage i) is then defined to be the stationary distribution of the Markov chain, or equivalently the principal

eigenvector x1 of the transition matrix. Google’s PageRank algorithm [49] uses a variation of the principal

eigenvector to assign authority weights to webpages as illustrated in Figure 5. While originally designed in the

context of link analysis on the web, it can be readily applied to citation patterns in academic papers and other

citation graphs.

Secondly, the Principal eigenvector is tightly related to Principal Component Analysis (PCA) [51] which

aims to find patterns in high dimensional data. Where the luxury of graphical representation is not available,

PCA is a way of identifying patterns in data and expressing the data in such a way as to highlight intrinsic

similarities. Given a dataset of limited elements, where each element is described with P scalar measurements,
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Figure 5: Numeric example of PageRank values in a small graph with 11 related pages. The principal eigenvector

ranks page B the highest, therefore B is the first page displayed in a search. Note that page C has a higher

PageRank than page E, even though it has fewer links to it.

the eigenvectors of the respective covariance matrix lie in the axis that maximizes the variance of the dataset.

In other words, the Principal eigenvector x1 is a projection that accounts for as much of the variability in the

data as possible. Although there are many ways to apply the PCA (e.g. image compression techniques [20]),

the original usage as a descriptive, dimension reducing technique is probably still the most prevalent single

application.

3 Metric correlations

Given any undirected graph G with N nodes, we can build a space S(N) containing |S(N)| ' 2N
2

different

graphs. Additionally constraining the number of links to L reduces the space to |S(N,L)| ' N2L graphs. In

order to split the graph space into classes of graphs with similar features, first we must be able to uniquely

define graph features with a set of metrics. We believe that a small set of topological measures will provide

enough information to characterize any given graph. The next question to answer is, what metrics are needed?

Consider the geometrical space spanned by m orthogonal vectors e1, e2, . . . , em, where ej represents the axis

of the j-th metrics, and each vector has unit norm, ‖ej‖q = 1. Every topological metric t has a projection onto

ej , t.ej = tj . For each graph G, we can compute the topology vector, denoted by tG to explicitly refer to the

graph G, and each point or vector tG with coordinates (t1, t2, . . . , tk) uniquely represents a single graph. We are

interested to find what is the minimum number of topological metrics k such that tGi
6= tGj

for all G ∈ S(N),

and i 6= j, or what is the minimum number of metrics that allows for a unique graph classification.

In reality, topological metrics are not orthogonal. For example, the minimum degree dmin and the algebraic

connectivity µN−1 are correlated because 0 ≤ µN−1 ≤ dmin.The higher the correlation between metrics i and

j, the more the vectors ei and ej are aligned, and the less information is reflected. Defining a minimum set of

non correlated metrics is a complex task, which requires a full understanding about the metric space.

The identified correlations are listed but not limited to the following.

3.1 Hopcount set

The hopcount and the betweenness introduced in Section 2.1.1 are tightly correlated. If Hi→j denotes the

number of hops in the shortest path from node i to node j, then the total number of hops HG in all shortest

paths in G is
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HG =

N∑
i=1

N∑
j=i+1

Hi→j

which also equals to HG =
∑L

l=1Bl, where Bl is the betweenness the link l in G. Taking the expectations

of both relations gives the average hopcount in terms of the average link betweenness

E[Bl] =

(
N
2

)
L
E[H] (25)

The same reasoning can be followed for the average node betweenness, resulting in

E[Bn] =
N − 1

2
(E[H]− 1) (26)

Formulas (25) and (26) prove the linear relation between the average betweenness and the average hopcount

for any graph in S(N,L). Even though the first moments are linearly correlated, the distribution of the random

variables Hi→j and Bl can be different at a node level.

3.2 Connection set

The existing correlations between sets of metrics in the connection metric class were studied by Almerima

et al. [52]. Using a large sample of real world networks, a set of topological metrics is calculated for each

network, and a correlation coefficient is computed for each metric combination. The simulation results yield a

correlation coefficient of 0.81 or higher between average node degree, average coreness, and clustering coefficient.

A correlation of 0.72 is shown between the algebraic connectivity and the rich club coefficient for the sample.

The study concludes that topological metrics tend to be correlated, which implies the existence redundancies.

3.3 Discussion

The correlations between topological metrics strongly depend on the graph under study [52]. For some extreme

cases, metrics are correlated 1 to 1. For example in a full-mesh KN ∈ S(N) the clustering coefficient equals the

diameter. This example demonstrates that the whole graph space S(N,L) should be explored before stating

that two metrics are correlated or uncorrelated. However such an exploration proves to be an NP-complete

problem due to the vast size of the graph space S(N). Instead, we rely on finding a suitable metric classification

with our deep understanding of the metrics at hand.

Several metric classifications can be proposed based on different criteria, for example

• The random variable used to compute the metric. Examples of random variables could be the shortest

path between two nodes PA→B(k), node degree di, or matrix spectra {λ,X} (this document). This has

been the criteria chosen for this document, which leads to an intuitive metric classification.

• The correlation between metrics. This criteria groups strongly correlated metrics into the same class (e.g.

average hopcount and average betweenness). Given that correlations depend on the graph under study,

this classification may prove to be difficult.

• Local vs. global nature of the metric. This classiffication splits metrics in two subclasses: local metrics

which are those computed for a single node or link (e.g. clustering coefficient), and global metrics which

are the ones that only make sense when computed for the whole graph (e.g. chromatic number).

• Computatinal complexity. Metrics may be classified based on the rate of the number of operations required

to compute its value for a defined set of graphs. The complexity is usually a polynomial function of the

number of nodes N and links L present in the network.
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Category Class Metric Symbol

Topological Distance Hopcount HA→B

Closeness Ci

Eccentricity εi

Diameter D

Radius R

Girth γ

Expansion eh

Betweenness Bi

Ce. Pt. of Domimance CPD

Distortion t

Connection Degree di

Entropy H

Joint Degree Pr[di, dj ]

Assortativity r

Coreness ki

Clique n− clique
Clustering C. C

Rich Club coefficient Φk

Giant component GC

Reliability κ(G), λ(G), ...

Chromatic number X
Spectra Algebraic connectivity µN−1

Spectral radius ρ

Spectral partitioning si

Principal eigenvector x1

Table 1: Classification of the topological metrics, together with the proposed symbols.

Depending on what criteria we choose, we have to strike a balance between a human friendly classification

and a clear yet not so intuitive classification. For example, the fact that a metric m can be computed in

O(N2logN) seconds gives us little information (4th presented criteria) about m. On the other hand if we know

that m was computed by using shortest paths we can better identify its meaning (this document’s criteria) and

associations. The authors of this document opted for a human friendly classification, however all the presented

criteria are equally valid and should be taken into consideration for future taxonomies.

Regardless of the metric classification at hand, one should expect strong metric correlations to always

be present. This is because the existing metrics are not targeted to build an orthogonal metric space, or

a space where each metric independently captures a dimension of the graph. But instead metrics appeared

from a subjective need to measure observed graph qualities. A long list of graph metrics emerged during

the last decades [23] [16] [41] from different scientific fields, each capturing partial features of a graph. This

uncentralized generation process leads to the observed correlations, or even term overloading (e.g. clustering

coefficient ≡transitivity).

All the presented metrics are intertwined in a web of correlations, being our goal to choose a minimum

set that uniquely classifies each graph in S(N). Spectral analysis shines in this regard: all the eigenvectors of

a matrix are orthogonal, hence forming the perfect metric space m. However, the practical implications of a

matrix’s eigenvectors has yet to be studied.
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4 Service metrics

4.1 Introduction

We classify as a service metric any metric that requires additional information to be calculated besides the

adjacency matrix A, introduced in Section 2. This additional information can be a map of information flows

running through the network, the behavior of agents inside of a network, the probability of certain nodes to

crash, a distribution of link weights, etc. The complexity of both the metric definitions and the correlations

among them grow with the number of input variables. Nowadays some correlations between relatively simple

topological metrics remain unanswered, hence we can only expect complexity to increase when dealing with

service metrics. This unstudied map of correlations leads to the decomposability problem.

Decomposability of graph metrics relates to the ability to express a graph metric in terms of two or more

different graph metrics, regardless of the metric nature. If we can express a metric t1 as a function of s1 and

s2, then we can say that metric t1 is decomposable. Finding the decomposability map between topological and

service metrics is as hard and extensive problem graph theory is far from completing. Our final goal is not

only being able to characterize a graph space S(N), but the whole multilevel space of topology and service

combinations, which requires an interdisciplinary effort.

4.2 Classification

Up to date the taxonomies proposed in the literature (ReSIST, Amber, DESEREC, HIDENETS, etc.) are mainly

limited to the domain dimension of the respective classification. The domains included and the detail levels

differ from proposal to proposal. In a unifying effort the European Network and Information Secutiry Agency

(ENISA) proposed in 2010 a model that includes all the identified domains in a two dimensional classification:

an incident dimension, and a domain-based dimension.

4.2.1 Incident Dimension

ENISA’s approach of identifying resilience metrics is event-based. A service level can be compromised when a

time based event such as a security incident, a system failure or a human error occurs, the incident dimension

then classifies metrics around the time an incident occurred. By dividing time into phases according to the state

of the graph when an incident occurs, service metrics can be classiffied as preparation phase, service Delivery

phase, or Recovery phase.

4.2.2 Domain Dimension

Independently of the time at which an event occured, we can classify a service metric in resilience domains,

as defined by the ResiliNets research initiative. Resilience subsumes a number of disciplines, many of which

are tightly interrelated but have developed separately. The considered disciplines are: survivability, disruption

tolerance, traffic tolerance, dependability, security and performability.

ResiliNets gathers the six identified disciplines into two major groups: those that are related to the tolerance

of challenges and faults, and trustworthiness that considers aspects that can be measured. The two categories

are related by the notion of robustness as displayed in Figure 7.

When using the proposed two dimensional taxonomy, service metrics can be categorized according to Figure

6. It is out of the scope of this document to define the displayed service metrics. More information regarding

the taxonomy and the metrics can be found in ENISA’s resilience reports.

The core of this classification as well as class definitions have been extracted from ENISA3, ResiliNets4

3http://www.enisa.europa.eu/act/res/other-areas/metrics/reports
4https://wiki.ittc.ku.edu/resilinets wiki
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Figure 6: Service metrics categorized in the ENISA taxonomy.

project and ATIS-T1 PRQC5 (Network Performance Reliability and Quality of Service Committee) technical

reports.
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