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Abstract The failures of multiple elements in a network can have disastrous con-
sequences on its operation. Therefore, understanding the robustness of networks
that experience multiple failures is utterly important. In this chapter, we review
well-defined metrics related to the topology and resilience of the network, and use
them to analyze the robustness of real-world networks under multiple failures. We
consider 52 real-world networks from three different infrastructure domains, namely
metro networks, power grids and telecommunication networks. We quantify the im-
pact of targeted node removals from a network on the relative size of the largest
connected component of the network. Nodes are attacked according to traditional
centrality metrics, such as degree, betweenness, closeness and the principal adja-
cency matrix eigenvector. In addition, we consider attacks based upon the recently
proposed “zeta-vector”, that is the diagonal elements of the pseudo-inverse of the
Laplacian matrix. Finally, we compare and rank these node-removal strategies, ap-
plied to the selected set of real-world infrastructures.
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5.1 Introduction

Networks support most areas of daily life including fundamental systems and ser-
vices that are indispensable to the security, economy, and social well-being of our
countries and communities [27, 29]. Customers, business, governments and mili-
tary depend on various networks for accessing information, obtaining products and
services, managing finances, commencing transactions, responding to disasters and
executing network central operations etc. [29].

Telecommunication networks are described as one of the critical infrastructures,
along with the water supply systems, power grids, transportation systems, and oil
and gas distribution networks. Therefore, these infrastructures must have the ability
to provide and maintain an acceptable level of service when facing multiple failures
and challenges to normal operation [29]. Network robustness that is the ability of
a network to continue to operate [8] can be evaluated by measuring the impact of
large-scale failures under different scenarios.

Large-scale failures in critical infrastructures rarely occur, but when they do,
their consequences are catastrophic and expensive. Failures in critical infrastructures
imply service disruptions that can affect thousands of people, multiple communities
in certain geographical areas or in the entire country [23]. For instance, in 2014,
a configuration error in Time-Warners Internet routers in the United States resulted
in a failure that prevented more than 10 million clients from accessing the services
for three hours [31].

Research into the robustness analysis of telecommunication networks has been
carried out and different metrics to measure the network robustness have been pro-
posed. In [29], some of the traditional robustness metrics are studied for a set of real
telecommunication networks, and the most robust networks are identified by com-
paring the metrics obtained by the simulations for various failure scenarios. In [8],
the robustness of real networks and generic topologies (with node degrees following
random, scale-free and exponential distribution) in non-failure scenarios are com-
pared. Both works [8, 29] rank the topologies based on their robustness metrics.
In [23], an analytic comparison of well-known robustness metrics in some real and
empirical networks under random and targeted attacks is performed.

The aim of this chapter is to introduce the fundamental graph theory on network
robustness and to investigate the impact of different attack strategies on metro net-
works, power grids and telecommunication networks.

5.1.1 Representing the Network Topology by a Graph

A graph G is a mathematical structure used to describe pairwise relations between
objects. In this context, a graph is made up of N nodes, which are connected by L
links. An example of a graph is given in Fig. 5.1. This graph has N = 4 nodes and
L = 5 links.
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Fig. 5.1 An example of a
graph consisting of four nodes
connected by five links
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The structure or interconnection pattern of a network can be represented by
a graph. In Table 5.1, we give the examples of the graph representations of telecom-
munication, power and metro networks.

Table 5.1 The graph representations of telecommunication, power and metro networks

Type Nodes Links

Telecommunication networks routers, switches, hosts fibre cables, wired or wire-
less links

Power grids substations, generators, loads cables, transmission lines,
transformers

Metro networks transfer stations, terminals rail tracks

5.1.2 Adjacency and Weighted Adjacency Matrices

The N×N adjacency matrix A specifies the interconnection pattern of the graph.
The element of the adjacency matrix aik = 1 only if the pair of nodes i and k are
connected by a direct link; otherwise aik = 0. In Fig. 5.2, we show the adjacency
matrix of an example graph with four nodes and four links. For example, the element
in the first row and second column of the adjacency matrix is a12 = 1, as there is
a direct link between nodes 1 and 2, whereas the element in the first row and fourth
column is a14 = 0 as there is no direct link between nodes 1 and 4.

Fig. 5.2 The adjacency ma-
trix A of an example graph
consisting of 4 nodes con-
nected by 4 links
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Furthermore, an N×N weighted adjacency matrix C extends the information in
A by associating each link between two connected nodes with a weight: cik = 0
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if the pair of nodes i and k are not connected by a direct link; otherwise cik 6= 0
where cik ∈ IR is the weight of the direct link between i and k. This weight can
represent length, resistance, cost, delay, available capacity, etc. depending on the
study. Figure 5.3 depicts both the weighted network and the associated symmetric
weighted adjacency matrix.

Fig. 5.3 The weighted adja-
cency matrix C of an example
graph whose links have costs
associated with the links
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5.1.3 Laplacian Matrix

The N×N Laplacian matrix Q is defined as

Q = ∆ −A, (5.1)

where ∆ = diag(di) is the N×N diagonal degree matrix and the degree of node i
is di = ∑N

k=1 aik. Therefore, the elements of Q satisfy qi j = −ai j if i 6= j, and
qii = ∑N

k=1 aik. The Laplacian matrix has zero row and column sum, i.e., Qu = 0
and uT Q = 0T , where u = (1,1, . . . ,1)T is the all-one vector. In Fig. 5.4, we show
the Laplacian of an example graph with four nodes and four links.

Fig. 5.4 The Laplacian ma-
trix Q of an example graph
consisting of 4 nodes con-
nected by 4 links
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Some graph metrics, such as the algebraic connectivity, are based on the eigen-
values of the Laplacian matrix Q, which are also referred as the Laplacian eigenval-
ues. These eigenvalues are denoted as µi where µN = 0≤ µN−1 ≤ ·· · ≤ µ1. For the
Laplacian matrix of the graph in Fig. 5.4, the eigenvalues are µ4 = 0 ≤ µ3 = 1 ≤
µ2 = 3≤ µ1 = 4.
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5.1.4 Walks, Paths, and Shortest Paths

A walk is an alternating sequence of nodes and connecting links in a graph. A walk
can travel over any link and any node any number of times. A path is a walk which
does not include any node twice. The length of a path is the number of links between
a source and a target node in a graph, and the shortest path is the path between
two nodes in a graph such that its length is minimal. For instance, in Fig. 5.5, two
different paths (in bold) between nodes 2 and 3 are shown. The first path consist of
two links, whereas the second path has one link, which is indeed the shortest path
between nodes 2 and 3.
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Fig. 5.5 Two different paths (in bold) between nodes 2 and 3 in the example graph. The first path
(left) has two hops, whereas the second path (right) has one hop, which is the shortest path between
nodes 2 and 3

5.2 Robustness of Networks

The robustness of a network shows the extent to which a network is capable to with-
stand failures during a given time interval. In other words, robustness quantifies how
the network behaves after the occurrence of one or more failures. The robustness as-
sessments can consider any failure, and any number of failures at any order, as well
as it can consider intentional failures (so-called attacks [3]).

For the network over which a specific service is being delivered, when we want
to assess its robustness, we have to consider two features: the network topology and
the service (or the function) for which the network is designed for [22, 36]. The
network topology specifies how nodes are interconnected to other nodes by links.
The network service is less clearly defined and more abstract. The service mainly
uses the network topology to transport items between a group of nodes. For example,
in power grids, a service transports the item (electrical power) from a source node
(such as a power plant) to a destination node (such as houses) over the network
topology.

Currently, there is not a commonly agreed answer to the basic question “What is
the robustness of the network?” [36]. A first and natural way to define the robustness
of a network is to resort to graph theory [16, 33].

Let us consider the case of an operator studying the network operation after mul-
tiple node failures. We assume that when a node fails in the network, all adjacent
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links of that node also fail. Thus, the node and all its links are removed from the
underlying graph. For instance, Fig. 5.6 shows the failure of node 2 in the example
graph in Fig. 5.2. When node 2 fails, node 2 and all its links (link between nodes 2
and 1, and link between node 2 and 3) are removed from the graph. The remaining
graph after the removal of node 2 is still connected (there is a path between each
node).

Fig. 5.6 Removal of node 2
and all its links from the initial
graph (left). After the removal
of node 2 the remaining graph
(right) is connected
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In some cases, a removal of a node can disconnect the graph, leading to a parti-
tioning of the original graph into several components, which are disconnected from
each other. Each component is a connected subgraph of the original graph. For in-
stance, Fig. 5.7 shows the failure of node 3 in the example graph in Fig. 5.2. When
node 3 fails, node 3 and all its links (link between nodes 1 and 3, link between
nodes 2 and 3, and link between node 3 and 4) are removed from the graph. The
remaining graph after the removal of node 3 is partitioned into two components: the
first component contains nodes 1 and 2, and the second component consists only of
node 4.

Fig. 5.7 Removal of node 3
and its links from the initial
graph (left). After the removal
of node 3 the remaining graph
(right) has two components
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Ideally, a robustness metric should capture both the structural and functional as-
pects of a network [30, 36]. The examples in Figs. 5.6-5.7 illustrate that the removal
of a node can partition the network into multiple components. This is usually un-
desirable for the network: (i) the structure is distorted, as the size (i.e., the number
of nodes) of the connected component of the network is decreased, and (ii) the ser-
vice (function) is adversely affected since parts of network become disconnected
from each other. In this work, we consider the size of the largest connected compo-
nent (giant component) in the graph as the robustness metric to assess the effect of
multiple node failures.

We start with a connected initial network, therefore, the initial size of the largest
connected component of its underlying graph is N. Then, we remove the nodes of
the network one by one and after each node removal, we calculate the relative size of
the largest connected component as the ratio between the size of the current largest
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connected component and the initial network size N. In the example in Fig. 5.6,
the relative size of the largest connected component after the removal of node 2 is
(3/4) = 0.75, whereas in Fig. 5.7, the relative size of the largest connected compo-
nent after removal of node 3 is (2/4) = 0.5, which shows that the removal of node
3 can put the network in a worse condition than the removal of node 2.

It is important to identify the node removals that put the network in an undesir-
able or critical condition. However, in the case of sequential multiple node removals,
the computational complexity of the analyzes is high. For instance, for the example
network with four nodes in Fig. 5.2, there are 4× 3× 2× 1 = 24 different ways to
sequentially remove all nodes. In Table 5.2, we show all possible sequential attacks
and their effect on the size of the giant component of the example graph in Fig. 5.2.
Table 5.2 allows to identify the critical node removals (attacks) by comparing the
effects on the relative size of the largest component. For instance, in Attack 1, after
the removal of three nodes, the relative size of the largest component becomes 0.25;
whereas in Attack 13, it requires the removal of two nodes to decrease the relative
size of the largest component to 0.25.

Table 5.2 The effect of different sequential attacks on the relative size of the largest connected
component (rLCC) of the graph in Fig. 5.2

Removed nodes from the graph rLCC after the removal of
Attack
number

First Second Third Fourth one
node

two
nodes

three
nodes

four
nodes

Average
rLCC

1 1 2 3 4 0.75 0.50 0.25 0 0.3750
2 1 2 4 3 0.75 0.50 0.25 0 0.3750
3 1 3 2 4 0.75 0.25 0.25 0 0.3125
4 1 3 4 2 0.75 0.25 0.25 0 0.3125
5 1 4 2 3 0.75 0.50 0.25 0 0.3750
6 1 4 3 2 0.75 0.50 0.25 0 0.3750
7 2 1 3 4 0.75 0.50 0.25 0 0.3750
8 2 1 4 3 0.75 0.50 0.25 0 0.3750
9 2 3 1 4 0.75 0.25 0.25 0 0.3125
10 2 3 4 1 0.75 0.25 0.25 0 0.3125
11 2 4 1 3 0.75 0.50 0.25 0 0.3750
12 2 4 3 1 0.75 0.50 0.25 0 0.3750
13 3 1 2 4 0.50 0.25 0.25 0 0.2500
14 3 1 4 2 0.50 0.25 0.25 0 0.2500
15 3 2 1 4 0.50 0.25 0.25 0 0.2500
16 3 2 4 1 0.50 0.25 0.25 0 0.2500
17 3 4 1 2 0.50 0.50 0.25 0 0.3125
18 3 4 2 1 0.50 0.50 0.25 0 0.3125
19 4 1 2 3 0.75 0.50 0.25 0 0.3750
20 4 1 3 2 0.75 0.50 0.25 0 0.3750
21 4 2 1 3 0.75 0.50 0.25 0 0.3750
22 4 2 3 1 0.75 0.50 0.25 0 0.3750
23 4 3 1 2 0.75 0.50 0.25 0 0.3750
24 4 3 2 1 0.75 0.50 0.25 0 0.3750
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Table 5.2 shows that the attacks starting with the removal of node 3 decrease
the size of the giant component of the graph faster than the other attacks. If we in-
vestigate the centrality scores of nodes (refer to Sect. 5.3) in Figs. 5.8-5.12, they
all identify node 3 as the most important node. In Table 5.2, we observe that after
removing node 3, the removal of nodes 1 or 2 decrease the size of the giant com-
ponent in the remaining graph faster than the removal of node 4. This observation
also agrees with the centralities in Figs. 5.8-5.12, since nodes 1 and 2 are identified
as the second important after node 3. Thus, if the aim of the attacks is to destroy the
network as soon as possible, then, Attacks 13-16 in Table 5.2 are the most effective
as they lead to the lowest value of the normalized size of the giant component of
0.250 faster than the others.

Table 5.2 helps to identify the most important nodes in the network. In larger
networks, it is not possible to simulate the effects of all combinations of node re-
movals. Instead, the centrality scores of the nodes can give insight in the severity
of attacks and can identify the “worst case” attack scenarios. In the next section,
we introduce both centrality metrics and structural metrics which can be used for
robustness evaluation. In the subsequent section, we use network data from three
types of real-world infrastructures and investigate the effect of sequential node re-
movals on a number of robustness metrics.

5.3 Metrics Used for Robustness Analysis

Metrics used for robustness evaluations include structural, and functional metrics.
Several works on these metrics are available, including [1, 5, 7, 10, 11, 15, 17, 19,
21, 24]. In this chapter, we use centrality metrics to measure the node importance in
a network and then we evaluate the performance of the network to (targeted) attacks
using structural metrics.

5.3.1 Centrality Metrics

– Degree centrality: The degree centrality of a node is the number of neighbour-
ing nodes connected to that node [13, 34]. The degree di can be calculated using
the adjacency matrix A:

di =
N

∑
j=1

ai j. (5.2)

A large degree centrality can indicate a node with high importance for network
operation, since if that node fails, a high number of neighbouring nodes can be
affected. In Fig. 5.8, we present the degree centralities of an example graph with
four nodes and four links. For instance, nodes 1 and 2 have degree centrality of



5 Comparing Destructive Strategies for Attacking Networks 121

2 (they have two direct neighbours), whereas node 3 has degree centrality of 3
(it has three direct neighbours).

Fig. 5.8 Degree centralities
in an example graph
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– Closeness Centrality: The closeness centrality assesses how close a node is to
the other nodes in a graph [12]. The closeness centrality ci of a node i is defined
as

ci =
1

∑ j 6=i H(Pi→ j)
, (5.3)

where the hop count H(Pi→ j) is the number of links in the shortest path Pi→ j
between a pair of nodes i and j.
The higher the closeness centrality of a node, the more central the node is. In
Fig. 5.9, the length of the shortest path from node 1 to node 2 is 1, to node 3 is 1,
to node 4 is 2, making the sum of the lengths of the shortest paths from node 1
to all other nodes 4. Then, the closeness centrality of node 1 is (1/4) = 0.25.
For node 3, the lengths of the shortest paths to all other nodes are 1, making its
closeness centrality (1/3) = 0.33.

Fig. 5.9 Closeness centrali-
ties in an example graph
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– Betweenness centrality: The betweenness centrality of a node is related to the
number of all shortest paths that pass through that node. The betweenness bi of
node i is calculated as

bi = ∑
s,t∈N\{i}

|Ps→t(i)|
|Ps→t |

, (5.4)

where |Ps→t | is the number of all possible shortest paths from node s to node t,
and |Ps→t(i)| is the number of those paths that pass through node i.
A node with a high betweenness centrality score can play an important role
in the network such as in transportation or information diffusion [20, 37]. In
Fig. 5.10, none of the shortest paths between nodes 1, 2 and 3 pass through
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node 4, making its betweenness centrality 0. On the other hand, the betweenness
centrality of node 3 is 2 as the shortest paths between nodes 1 and 4, and nodes
2 and 4 have to pass through node 3.

Fig. 5.10 Betweenness cen-
tralities in an example graph
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The betweenness centrality metric can be extended to reflect the importance of
a network region in which several nodes may reside [14]. In this case, the be-
tweenness centrality of a network region is calculated by the number of shortest
paths that pass through the region. The failure of a network region with higher
betweenness centrality is often more crucial.

– Eigenvector centrality: The eigenvector centrality xi of node i is equal to the
ith element of the eigenvector corresponding to the largest eigenvalue λ1 of the
adjacency matrix A. The principal eigenvector centralities are

xi =
1
λ1

N

∑
k=1

aikxk. (5.5)

The eigenvector centrality score of a node depends on the number of its direct
neighbouring nodes, 2-hop neighbouring nodes, 3-hop neighbouring nodes, and
so on. Thus, a high eigenvector centrality can identify a node that is linked to
other important nodes [18, 34]. In Fig. 5.11, the eigenvector corresponding to
the largest eigenvalue of the adjacency matrix is given. Hence, the eigenvector
centrality scores of nodes 1, 2, 3, and 4, are 0.53, 0.53, 0.61 and 0.28, respec-
tively.

Fig. 5.11 Eigenvector cen-
tralities in an example graph
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– Zeta-vector score: Inspired by electrical flows (effective resistance, [9]) in
a resistor network, [35] proposes the zeta-vector, which contains the diagonal
elements of the pseudo-inverse of the Laplacian matrix [4] of a graph, as a vec-
tor that quantifies nodal spread. For flow (e.g., water, gas, current) that is pro-
portional to the potential difference of any pair of nodes i and j, the diagonal
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element of the pseudo-inverse of the Laplacian matrix quantifies the average
potential difference of a node i to all other nodes in the network. The node with
the minimum value for the zeta score (the corresponding diagonal element of
the pseudo-inverse of the Laplacian matrix), therefore, is regarded as the best
spreader node. In Fig. 5.12, the diagonal elements in the pseudo-inverse of the
Laplacian matrix of the graph are depicted. Hence the zeta-vector scores of
nodes 1, 2, 3, and 4, are 0.35, 0.35, 0.18 and 0.69, respectively.

Fig. 5.12 Zeta-vector scores
in an example graph
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5.3.2 Structural Metrics

Structural metrics are a well-know area in the conventional analysis of networks [28].
In this chapter, we use two structural metrics to assess the robustness of a network
which experiences failures or targeted attacks.

– Relative Size of the Largest Connected Component (rLCC) is the ratio of
the size of the largest cluster of connected nodes and the original number of
nodes N.

– Average Two-Terminal Reliability (AT T R) [25, 26] is defined as the number
of connected node pairs divided by the total amount of node pairs.

These metrics are widely used because of their straightforward interpretation: the
rLCC is the expected relative size of the giant component, while the AT T R is the
probability that two randomly chosen nodes are connected.

Van Mieghem et al. [36] suggested the R-value, a normalized linear combination
of structural metrics, as a robustness metric. For instance, the R-value could be de-
fined as a weighted average of rLCC and AT T R, i.e., R = α rLCC+(1−α) AT T R,
with 0≤ α ≤ 1. Typically, R = 0 (or R close to 0) represents a completely degraded
network, whereas a value R = 1 corresponds to an optimally robust network.

The impact of multiple failures or attacks on a network are assessed by com-
puting the impact of the failures (or attacks) on a structural metric. For instance,
Fig. 5.13 depicts that the impact of removing up to 25% of all nodes in a real-
life telecommunication network, the Geant2012 network [28], consisting of N = 40
nodes and L = 61 links.

Once a structural metric is evaluated for multiple failures (or attacks), it is de-
sirable to quantify the robustness as a single scalar to compare different graphs.
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Fig. 5.13 The AT T R metric as a function of node removals based on the degree centrality in the
Geant2012 network

Trajanovski et al. [32] proposed the energy of the structural metric ε which is the
average value of the structural metric over the range of considered perturbations,
i.e., node and / or link removals. For example, from Fig. 5.13, we can obtain the
energy εAT T R = 0.404.

Wang et al. [38] suggest another robustness indicator: the smallest percentage of
elements that need to be removed so that the structural metric decreases to a given
fraction f < 1. For example, from Fig. 5.13 we can deduce that in order to decrease
AT T R below f = 0.9, we need to remove at least 5% of the nodes in Geant2012.

Finally, the value of the structural metric for the maximum number of con-
sidered removals (i.e., at the end of the attacks) can be also used as a robust-
ness indicator. For example, according to Fig. 5.13, this robustness indicator yields
AT T R25% = 0.022.

In this chapter, we use the energy of the structural metric as the robustness indi-
cator. The advantage of this indicator is that the energy assesses for the whole range
of perturbations imposed upon the network. In the next section, we determine the
energy for the Geant2012 network and 51 other real-life networks for a variety of
attacks.

5.4 Case Studies

In this section, we analyze the effect of removals of nodes and links on the robust-
ness metric of real-world networks. First, we introduce the set of real-world net-
works, from the domains of public transportation, energy and telecommunication.
Then, we evaluate the energy of the relative size of the largest connected compo-
nent (rLCC) of these real-world networks, for targeted node removals according
to traditional centrality metrics (such as degree, betweenness, closeness, principal
adjacency matrix eigenvector) and the recently proposed “zeta-vector”, containing
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the diagonal elements of the pseudo-inverse of the Laplacian matrix. Subsequently,
we compare and rank these node-removal strategies, applied to the selected set
of real-world infrastructures. Finally, we determine the rLCC and the AT T R for
the Geant2012 telecommunication network, both for random and targeted link re-
movals.

5.4.1 Data of Three Types of Real-world Infrastructures

In this section, we focus on three subsets of real-world infrastructures that are vital
for society: metro networks, power grids and telecommunication networks. The se-
lected networks have different numbers of nodes and links. In Table 5.3, we present
the details of the networks. Additionally, below, we give an example graph and the
references used for each infrastructure.

– Metro networks: 33 metro networks from different countries and in different
sizes varying from N = 5 to N = 83 are used in the analyzes. More details on
the networks can be found in [38] and [6]. As an example, Fig. 5.14 shows the
graph of the Mexico City metro network.

Fig. 5.14 The graph of the
Mexico City metro network

– Power grids: Both the real-world-like five test data topologies from IEEE1 and
the topologies of four European countries2 are used. The sizes of the underlying
graphs vary from N = 24 to N = 3120. In Fig. 5.15, we show the graph of the
Netherlands High-Voltage (HV) network.

– Telecommunication networks: We use ten different networks, presented in
[28]. These networks are also implemented in the Network Robustness Sim-

1 IEEE Power Systems Test Case Archive, available at:
https://www2.ee.washington.edu/research/pstca/.
2 European power grids data set, available at: https://wiki.openmodinitiative.org/wiki/Transmission
network datasets
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Table 5.3 Details of the networks in the analyses

Network ID Type Name of the network N L
1 metro Athens metro 9 18
2 metro Barcelona metro 29 84
3 metro Berlin metro 32 86
4 metro Boston metro 21 44
5 metro Brussels metro 9 18
6 metro Bucharest metro 11 24
7 metro Buenos.Aires metro 12 26
8 metro Cairo metro 6 10
9 metro Chicago metro 25 58
10 metro Delhi metro 8 14
11 metro Hong.Kong metro 17 36
12 metro Lisbon metro 11 22
13 metro London metro 83 242
14 metro Lyon metro 10 20
15 metro Madrid metro 48 158
16 metro Marseille metro 6 10
17 metro Mexico.City metro 35 104
18 metro Milan metro 14 30
19 metro Montreal metro 10 20
20 metro Moscow metro 41 124
21 metro New.York metro 77 218
22 metro Osaka metro 36 102
23 metro Paris metro 78 250
24 metro Prague metro 9 18
25 metro Rome metro 5 8
26 metro Seoul metro 71 222
27 metro Shanghai metro 22 56
28 metro Singapore metro 12 26
29 metro St.Peterburg metro 14 32
30 metro Stockholm metro 20 38
31 metro Tokyo metro 62 214
32 metro Toronto metro 10 18
33 metro Washington.DC metro 17 36
34 power Belgium HV 56 67
35 power IEEE 24 24 34
36 power Germany HV 231 302
37 power IEEE 118 118 179
38 power Poland HV 3120 3684
39 power IEEE 300 300 409
40 power IEEE 30 30 41
41 power IEEE 57 57 78
42 power Netherlands HV 35 43
43 telecommunication Abilene 11 14
44 telecommunication Cesnet201006 52 63
45 telecommunication Cogentco 197 245
46 telecommunication Deltacom 113 183
47 telecommunication Garr201201 61 89
48 telecommunication Geant2012 40 61
49 telecommunication GpENI L2 51 61
50 telecommunication Kdl 754 899
51 telecommunication Renater2010 43 56
52 telecommunication UsCarrier 158 189
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Fig. 5.15 The graph of the
Netherlands HV network

ulator3. The sizes of the underlying graphs vary from N = 11 to N = 754. As
an example, Fig. 5.16 shows the graph of the Renater2010 network.

Fig. 5.16 The graph of the
Renater2010 network

Although the networks in Figs. 5.14-5.16 have similar number of nodes, their
graphs look different. Each infrastructure can have different characteristics which
can affect both its underlying graph and its robustness with respect to node and / or
link removals.

5.4.2 The Effect of Node Attacks on the Relative Size of the Largest
Connected Component

In this section, we investigate the effect of multiple node removals on the relative
size of the largest connected component (rLCC) and its energy. At the beginning of
the attacks, each network attains a rLCC of value 1. Next, for each centrality metric,
we start the attacks by removing the node (and all its links) with the highest ranking
according to the chosen centrality metric (when two nodes have the same highest
ranking at the step of the attack, the removed node is chosen randomly out of those
two nodes). After each node removal, we recalculate the values of the centrality

3 University of Girona, Network Robustness simulator, available at: http://nrs.udg.edu/
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metric, and continue by removing the node with highest ranking of the centrality
metric in the current giant component of the graph (sequential attacks). In addition
to the targeted attacks based on the centrality metrics presented in Sect. 5.3.1, we
also investigate the random attack strategy. In this random node-attack strategy, the
node to be attacked is selected randomly out of the remaining network nodes.

In Fig. 5.17, we present the rLCC as a function of node removals in the underly-
ing graph of the IEEE-118 network. We observe that when we sequentially remove
25% of the nodes according to their zeta-vector rankings, we can nearly destroy the
underlying graph.
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Fig. 5.17 Structural metric rLCC as a function of node removals based on the zeta-vector scores
in the IEEE-118 network

Next, we investigate the effects of the attack strategies based on the centrality
metrics presented in Sect. 5.3.1 and the random strategy. We sequentially remove up
to 25% of the initial number of nodes in each real-world infrastructure, and observe
the effect on the rLCC. When presenting our results in Tables 5.4, 5.5, and 5.6,
we show the energy ε of the rLCC. This metric assesses the degree of a network’s
capability to withstand the perturbations during the node attacks. The energy εσ of
a metric σ of the network over K successive targeted-node attacks is calculated as

εσ =
∑K

k=1 σ(k)
K

(5.6)

where σ(k) is the value of the metric σ after k successive attacks. As an example, in
Fig. 5.17, the energy for the IEEE-118 network against the node attacks is the sum
of the rLCC after each attack divided by the total number of attacks.

Tables 5.4, 5.5, and 5.6 present the robustness value against the node attacks
in the metro networks, power grids and telecommunication networks, respectively.
The robustness value of 1 corresponds to a fully-robust network, while the lower
the robustness values, the more vulnerable the network is against the targeted node
attacks. For instance, among the metro networks in Table 5.4, we observe that the
Rome metro network is vulnerable to targeted attacks. The removal of 25% of the
initial network nodes according to betweenness centrality or zeta-vector scores sig-
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nificantly decreases the size of the giant component in the network. On the other
hand, for the same networks, the random removal of nodes is slow in destroying the
network.

Similar results are also valid for the attacks in power grids and telecommuni-
cation networks. As an example, according to Table 5.5, the removal of 25% of
network nodes according to betweenness centrality, significantly decreases the size
of the giant component in the network. In all networks, we observe that the tar-
geted attacks based on centrality metrics are powerful ways to destroy real-world
infrastructures.

Table 5.4 Robustness values for random and targeted attacks in metro networks: energy of the
rLCC
Network name Between- Nodal Close- Eigen- Zeta Random

ness degree ness vector vector
Athens metro 0,447 0,508 0,616 0,528 0,459 0,656
Barcelona metro 0,471 0,629 0,710 0,654 0,482 0,759
Berlin metro 0,535 0,649 0,743 0,673 0,547 0,782
Boston metro 0,369 0,432 0,551 0,450 0,347 0,682
Brussels metro 0,428 0,540 0,592 0,511 0,409 0,699
Bucharest metro 0,558 0,607 0,651 0,631 0,532 0,737
Buenos.Aires metro 0,426 0,524 0,573 0,517 0,446 0,717
Cairo metro 0,380 0,451 0,539 0,547 0,409 0,616
Chicago metro 0,465 0,544 0,674 0,549 0,458 0,758
Delhi metro 0,305 0,406 0,574 0,504 0,359 0,731
Hong.Kong metro 0,359 0,458 0,528 0,488 0,374 0,620
Lisbon metro 0,453 0,532 0,593 0,516 0,465 0,723
London metro 0,445 0,621 0,712 0,608 0,469 0,780
Lyon metro 0,483 0,515 0,625 0,557 0,469 0,724
Madrid metro 0,568 0,713 0,774 0,759 0,619 0,823
Marseille metro 0,380 0,451 0,539 0,547 0,409 0,616
Mexico.City metro 0,628 0,704 0,775 0,755 0,666 0,801
Milan metro 0,448 0,508 0,630 0,500 0,458 0,680
Montreal metro 0,483 0,556 0,626 0,557 0,469 0,716
Moscow metro 0,591 0,674 0,755 0,677 0,602 0,805
New.York metro 0,462 0,618 0,710 0,635 0,495 0,781
Osaka metro 0,562 0,688 0,731 0,693 0,608 0,779
Paris metro 0,547 0,656 0,774 0,727 0,591 0,807
Prague metro 0,453 0,535 0,596 0,554 0,471 0,713
Rome metro 0,200 0,408 0,624 0,408 0,224 0,652
Seoul metro 0,556 0,730 0,759 0,754 0,596 0,797
Shanghai metro 0,552 0,613 0,708 0,590 0,527 0,761
Singapore metro 0,514 0,577 0,649 0,596 0,491 0,710
St.Peterburg metro 0,522 0,559 0,663 0,605 0,508 0.740
Stockholm metro 0,312 0,416 0,444 0,379 0,315 0,670
Tokyo metro 0,633 0,759 0,776 0,786 0,650 0,812
Toronto metro 0,428 0,517 0,545 0,490 0,391 0,670
Washing.DC metro 0,407 0,494 0,559 0.461 0,367 0,697
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Table 5.5 Robustness values for random and targeted node attacks in power grids: energy of the
rLCC
Network name Between- Nodal Close- Eigen- Zeta Random

ness degree ness vector vector
Belgium HV 0,251 0,337 0,552 0,382 0,249 0,703
IEEE 24 0,603 0,741 0,754 0,724 0,602 0,812
German HV 0,280 0,437 0,629 0,492 0,309 0,732
IEEE 118 0,286 0,505 0,647 0,537 0,301 0,812
IEEE 300 0,225 0,399 0,549 0,379 0,262 0,720
IEEE 30 0,451 0,603 0,690 0,592 0,463 0,789
IEEE 57 0,490 0,643 0,692 0,677 0,498 0,772
Netherlands HV 0,368 0,506 0,554 0,490 0,376 0,722
Poland HV 0,222 0,364 0,568 0,563 0,258 0,726

Table 5.6 Robustness values for random and targeted node attacks in telecommunication net-
works: energy of the rLCC

Network Between- Nodal Close- Eigen- Zeta Random
name ness degree ness vector vector
Abilene 0,659 0,723 0,701 0,741 0,670 0,752
Cesnet201006 0,208 0,242 0,590 0,310 0,232 0,769
Cogentco 0,239 0,409 0,520 0,378 0,242 0,686
Deltacom 0,347 0,526 0,693 0,519 0,305 0,738
Garr201201 0,206 0,301 0,614 0,333 0,221 0,745
Geant2012 0,491 0,605 0,741 0,643 0,503 0,812
GpENI L2 0,196 0,271 0,525 0,296 0,166 0,689
Kdl 0,209 0,322 0,441 0,380 0,268 0,607
Renater2010 0,331 0,484 0,687 0,478 0,316 0,785
UsCarrier 0,228 0,355 0,426 0,340 0,223 0,606

5.4.3 Comparing the Attack Strategies in Real-world Networks

After observing the effect of the attacks on the robustness value of each network,
the next step is to compare the attack strategies based on different centrality met-
rics. In this work, we focus on the attacks strategies according to the commonly
used traditional centrality metrics (degree, betweenness, closeness, principal ad-
jacency matrix eigenvector) and the recently proposed “zeta-vector”, and random
failures. To present our results, we group the networks according to their infras-
tructure and in Figs. 5.18-5.20, we present the comparison of the attack strategies
for metro networks, power grids and telecommunication networks, respectively. In
Figs. 5.18-5.20, the horizontal axis represents the ranking of the attack strategy to
destroy the network, from left (1: best ranked) to right (6: worst ranked). The ver-
tical axis represents the normalized total number of times that each attack strategy
attained that rank number.

Among the different strategies, the attacks based on the betweenness centrality
and zeta-vector score (in Sect. 5.3.1) are the most powerful ones to destroy the net-
work. For instance, in the telecommunications networks in Fig. 5.20, the between-
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Fig. 5.18 Normalized histogram for different attack strategies in metro networks
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Fig. 5.19 Normalized histogram for different attack strategies in power grids
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Fig. 5.20 Normalized histogram for different attack strategies in telecommunication networks

ness centrality strategy has been ranked as the most destructive strategy in six net-
works out of ten telecommunication networks, whereas the second most destructive
strategy in the telecommunication networks is based on the zeta-vector. The worst
attack strategy (i.e., the least powerful strategy to destroy the network) is a random
attack strategy. This is also in-line with the common knowledge that real-world net-
works are usually robust against random attacks [2]. Among the attack strategies
based on the tested 5 centrality metrics (i.e., among the attack strategies based on
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degree, closeness, betweenness, eigenvector and zeta-vector score), the closeness
centrality strategy was observed as the worst attack strategy.4

Similar results are also valid for metro networks and power grids in Figs. 5.18-5.19.
In both networks, the attack strategy based on the betweenness centrality and the
zeta-vector score are observed to be the most powerful strategies to destroy the net-
work, followed by the attacks based on the degree centrality.

5.4.4 The Impact of Attacking Links: an Example

In the previous section, we have assessed the impact of multiple node removals
on the rLCC for several real-world networks. Similarly, we can quantify the im-
pact of multiple link removals. As an example, in this section, we study the impact
of multiple link removals on the rLCC and the AT T R metrics, for the Geant2012
telecommunication network, which consists of N = 40 nodes and L = 61 links.
The link ranking and selection of links to be removed follow the same procedure
as introduced in Sect. 5.4.2. However, for demonstration purposes, we perform the
analysis using only the random selection of links and removal based upon between-
ness centrality of the links. Link-betweenness is defined in a similar way as the
nodal-betweenness, reflecting the relative importance of links.

Prior to the attack, the network attains both robustness metrics of value 1. As the
links are removed, the metrics are expected to drop, and a lower value represents
a less robust network.

Figure 5.21 presents the rLCC of the Geant2012 network when the links are re-
moved at random or according to the ranking of their link-betweenness scores. The
results confirm that random attacks (or failures) are less disruptive than targeted at-
tacks. Moreover, after removing approximately 50% of the links, the network attains
a very low rLCC value, which shows the attacks using link-betweenness centrality
is effective in disconnecting the network.

For the link removal scenario presented in this subsection, we also investigate
the AT T R metric. Figure 5.22 shows the AT T R metric as a function of the per-
centage of removed links. Regardless of the attack strategy, the network maintains
an AT T R equal to 1 until 10-15% of its links are removed. When the percentage
of removed links is between 15% and 75%, the AT T R under the random attack is
much higher than the AT T R the attack based upon the link-betweenness. Finally, for
the attack based upon the link-betweenness, the network get severely disconnected
when around 50% of its links are removed.

From Figs. 5.21-5.22, we observe that the rLCC and AT T R seem to behave qual-
itatively the same under the same attack strategies. This is confirmed computing
the Pearson correlation ρ between the two metrics. For the random link removals

4 In fact, given a network destroyed by the targeted attacks, the following question arises: “What
is the best strategy to reconnect the attacked nodes to return to the initial topology?”, or, in other
words: “In which order should the isolated nodes be reconnected?” In this reconstruction scenario,
the robustness value of the network should increase as fast as possible.
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Fig. 5.21 rLCC metric as a function of percentage of removed links in Geant2012 network
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Fig. 5.22 AT T R metric as a function of percentage of removed links in Geant2012 network

we obtain ρ(rLCC,AT T R) = 0.975 while for the removals based upon the link-
betweenness we find ρ(rLCC,AT T R) = 0.993.

5.5 Conclusions

In conclusion, in this chapter, we investigated the impact of node and links removals
on real-world networks. We represented the topology of a network by a graph and
identified the importance of the network nodes by using five different centrality
metrics, commonly used in network science. Subsequently, we assessed the effect
of targeted-node removals on the relative size of the largest connected component
(rLCC) of the graphs and considered the energy of the rLCC as the robustness met-
ric.

In most of the tested networks from three different infrastructure domains, a tar-
geted node-attack strategy according to the betweenness centrality was the most
effective in decreasing the robustness metric of the network. The strategy based
upon the betweenness centrality is followed by the one based upon the zeta-vector,
which is also a powerful way to decrease the overall robustness value of the network.
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The worst method to destroy the tested networks is observed always as the random
attack, which is expected in real-world network infrastructures. Finally, we also
considered the impact of link removals on both the rLCC metric and the Average
Two-Terminal Reliability (AT T R) for the Geant2012 telecommunication network.
The presented methodology in this chapter can be used to evaluate the network ro-
bustness under targeted malicious attacks, natural disasters, misconfigurations, and
other random events.

Acknowledgements This chapter is based on work from COST Action CA15127 (“Resilient com-
munication services protecting end-user applications from disaster-based failures – RECODIS”)
supported by COST (European Cooperation in Science and Technology). The authors thank Dr.
Carlos Natalino da Silva for his valuable comments and contributions.

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev.
Mod. Phys. 74, 47–97 (2002). DOI 10.1103/RevModPhys.74.47. URL
https://link.aps.org/doi/10.1103/RevModPhys.74.47

2. Barabasi, A.: Network Science. Cambridge University Press (2016)
3. Cetinay, H., Devriendt, K., Van Mieghem, P.: Nodal vulnerability to targeted attacks in power

grids. Applied Network Science 3(1), 34 (2018)
4. Cetinay, H., Kuipers, F.A., Van Mieghem, P.: A topological investigation of power flow. IEEE

Systems Journal 12(3), 2524–2532 (2018). DOI 10.1109/JSYST.2016.2573851
5. Cetinay, H., Soltan, S., Kuipers, F.A., Zussman, G., Van Mieghem, P.: Analyzing cascading

failures in power grids under the AC and DC power flow models. In: SIGMETRICS Perfor-
mance Evaluation Review, 45(3), 198-203, (2018)

6. Derrible, S., Kennedy, C.: The complexity and robustness of metro net-
works. Physica A: Statistical Mechanics and its Applications 389(17),
3678–3691 (2010). DOI https://doi.org/10.1016/j.physa.2010.04.008. URL
http://www.sciencedirect.com/science/article/pii/S0378437110003262

7. Dorogovtsev, S.N., Mendes, J.F.: Evolution of Networks: From Biological to the Internet and
WWW. Oxford (2013)

8. Ellens, W.: Effective resistance and other graph measures for network robustness. Master
thesis, Leiden University (2011)

9. Ellens, W., Spieksma, F., Van Mieghem, P., Jamakovic, A., Kooij, R.: Effective graph
resistance. Linear Algebra and its Applications 435(10), 2491–2506 (2011). DOI
10.1016/j.laa.2011.02.024

10. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford (2016)
11. da F. Costa, L., Rodrigues, F.A., Travieso, G., Boas, P.R.V.: Characterization of complex

networks: A survey of measurements. Advances in Physics 56(1), 167–242 (2007). DOI
10.1080/00018730601170527. URL https://doi.org/10.1080/00018730601170527

12. Freeman, L.C.: Centrality in social networks conceptual clarification. Social Net-
works 1(3), 215–239 (1978). DOI https://doi.org/10.1016/0378-8733(78)90021-7. URL
http://www.sciencedirect.com/science/article/pii/0378873378900217

13. Hernandez, J.M., Van Mieghem, P.: Classification of graph metrics. In: TU Delft Reports
report20111111 (2011)

14. Iqbal, F., Kuipers, F.: On centrality-related disaster vulnerability of network regions. In: 2017
9th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 1–6
(2017). DOI 10.1109/RNDM.2017.8093023



5 Comparing Destructive Strategies for Attacking Networks 135

15. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality of com-
plex networks. PLoS ONE 8(4), 1–17 (2013). DOI 10.1371/journal.pone.0059613. URL
https://doi.org/10.1371/journal.pone.0059613

16. Jamakovic, A., Van Mieghem, P.: On the robustness of complex networks by using the alge-
braic connectivity. In: A. Das, H.K. Pung, F.B.S. Lee, L.W.C. Wong (eds.) NETWORKING
2008 Ad Hoc and Sensor Networks, Wireless Networks, Next Generation Internet, pp. 183–
194. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)
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