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1. Introduction

The security environment is rapidly changing. Due to increasing dependency on complex critical
communication and information systems, society as a whole, but defence organisations in
particular, have to rethink, redesign and adapt their defences to be able to confront the
challenges of cyber warfare and crime. The literature abounds with examples of recent cyber
attacks. We just mention the cyber attack on Estonia in 2007, the Distributed DoS attacks
following WikiLeaks and the attack of the Stuxnet worm in Iran. These examples clearly
underline the need to adapt our (defensive and offensive) strategy to these changes.

The NATO Strategic Concept highlighted the need to develop the ability to prevent, detect,
defend against and recover from cyber attacks.” Due to the shift from platform-centric
operations towards network-centric operations, the integrity and continuous functioning of its
information systems must be guaranteed. The protection of these communication and
information networks consists of two parts: Prevention of attacks and limiting their
consequences and resilience, the ability to rapidly recover after an attack. To facilitate these
ambitions, NATO will enhance early warning, situational awareness and information sharing
among the allies.

Since the end of the Cold War the character of military operations has changed. Operations
have become expeditionary in nature, combining defence, diplomacy and development.
Coalitions include non-military organizations, host nation police forces, international
organizations, commercial suppliers etc. All these partners, and their characteristic ways of
operating, must find a place within the overall Command and Control (C2) structure. The goal is
to share information by linking the disparate command and control systems. These C2 networks
provide opportunities for increased (shared) situational awareness.® Although this shared
situational awareness is one of the key success factors of Network Enabled Capabilities (NEC), it
comes at a price: the vulnerability of the network to (targeted) attacks and the cascading
consequences. As we move to systems of networked sensors, understanding the robustness and
the vulnerability of these networks, when interconnected with C2 and other critical systems, is
key.
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In this chapter, we will illustrate the vulnerability of networks to targeted attacks. To this end,
we will present ways to assess the robustness and resilience of networks.* Taking an Operations
Research perspective, we examine the quantitative aspect of cyber operations, using network
and graph theory, game theory, and (stochastic actor-based) simulations. Network robustness
research is carried out by scientists with different backgrounds, like mathematics, physics,
computer science, and biology. As a result, different approaches to capturing the robustness
properties of a network have been proposed. The resulting insights into the problem may be
used to develop appropriate (C2) network topologies that are optimal with respect to the
defence against and recovery from cyber attacks.

2. Complex networks and Network Science

In several academic disciplines, like sociology, biology, economics, mathematics, physics,
computer science, and electrical engineering, interactions between individual entities have
been formulated in terms of networks. All these real-world representations of interconnected
systems, relations, biological molecules, etc. are coined "complex networks".’ Examples of
complex networks are the relations between business companies, metabolic networks, food
webs, networks of citations between scientific publications or of actors that have worked
together on films, and distribution networks such as the blood vessels in the body, airline
routes, electricity supply networks, and telecommunications networks. Also the concept of
Network Enabled Capabilities (NEC) involves complex, networked systems, consisting of many
components that are heterogeneous in functionality and capability.® The combined efforts of
studying complex networks has led to a new research area, called "Network Science". The major
difference with early network theory is that the topology of the network itself is considered as a
"variable", rather than as a given, fixed initial input to the problem at hand (such as a shortest
path computation or a network flow optimization). In the past few years, complex networks
were mainly studied topologically: what is the structure and what are the relevant metrics to
classify networks and to understand their properties (see Sec. 3.1 and 3.2). Recently, the
research focus in Network Science shifted towards understanding the interplay between
dynamic processes on the network and its underlying topology. The simplest example of
dynamics or function and topology is the study of epidemics on networks.” Or, taking a more
actor-based point of view, one may also use game-theoretic models for network dynamics to
explain the emergence of specific network structures. In this approach, the behaviour of actors
is viewed as a consequence of the network topology in which they are embedded (see Sec.
3.3).% In addition, one may use a multilayer approach, where nodes (C2 components) are part of
physical, information, and social networks at the same time.’

The structural network approach has been fruitful due to its analytical tractability: there are
several ways of expressing and measuring the relevant features of networks in terms of

* Robustness (Latin: robur; strength, hardiness, sturdiness) and resilience (Latin: resilientia; (1) action or act of rebounding or
springing back, (2) elasticity: power of resuming an original shape or position after compression, (3) being able to recover
quickly from (or resist) misfortune, shock, iliness, etc. ) are often used as synonyms.
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topological metrics.'° Using these network metrics, we may study the network both at the
global level and at the atomic level of individual actors, using notions of centrality. In addition to
the classical Erd6s-Renyi (ER) random graph model, the Watts-Strogatz small world network has
been introduced to account for high clustering observed in real-world networks.'* Soon
afterwards, the Barabasi-Albert (BA) power law or scale free graph model appeared to explain
the widely-observed power law degree distribution in complex networks. BA networks are
formed by the mechanism of preferential attachment. This means that a new node in the
network will connect to already existing nodes with preference to the high degree nodes. The
resulting network is characterized by the distribution of the number of links per node.*” Fig. 1a
illustrates the presence of large hubs with many connections in scale-free networks. Previous
research showed that Dutch C2 networks, like for example Titaan or Afsis (see Fig. 1b), can be
classified as preferential attachment or scale free networks.**
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Figure 1. (a) Network from the preferential attachment models. (b) A network representation of
the AFSIS C2 network (from Grant et al. 2011).

Because of the existence of large hubs in scale free networks, these networks are vulnerable to
targeted attacks. This will also be illustrated in Fig. 4 in Sect. 3. Moreover, the remaining
network is barely able to function without these hubs. An attacker need not even know the
exact location of such a hub, since most of the nodes are just a few steps away from these hubs.

10 Examples of these metrics are the clustering coefficient, hopcount, degree distribution, betweenness, assortativity,

modularity, etc. See e.g. Bocalletti et al. 2006 , Monsuur and Storcken 2004 or Van Mieghem et al. 2010.
" see e.g. Van Mieghem 2006a, Watts 1999. The small world phenomenon generalizes the experience that two persons that do
not have a friend in common are separated by approximately less than six intermediaries.
2 This degree distribution equals Pr[D = k] = ck™", where D is the degree of a randomly chosen node and the power law
exponent t typically lies in the range between 2 and 3, and c is a normalizing constant.
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These observations raise the question whether there are other network configurations that are
more robust. In order to address this question we need to be able to assess network robustness.

3. Network Robustness

Network failures can be caused by either accidental or intentionally targeted attacks. Examples
of accidental failures include human-made faults, manufacturing defects, worn out mechanical
parts, etc. These kinds of failures appear randomly, caused by internal factors and are usually
characterized as random errors. On the other hand, real-world systems may experience external
attacks, such as terrorist or malicious software attacks, which are called targeted attacks.

When a network is degraded beyond an acceptable level, undesirable events may occur at any
network level, such as software malfunctions, security breaches, packet loss, broken links, etc.
Even assuming that all the elements of a network are equally important, the overall
functionality of networked systems greatly depends on how the local elements interact with
each other. Often, these constitutional parts do not operate independently, but they are
connected in a complex network.** The failure of a single node can affect the performance of
the whole network. We confine ourselves to a single network'®. Cascading effects of random
errors in interdependent networks feature first-order phase transitions (i.e. abrupt breakdown
of the network when a single node is removed), whereas random errors in single networks only
lead to second-order phase transitions, thus more continuous degradations when nodes are
removed. The study of interdependent networks is a hot research topic, in which targeted
attacks have not yet been investigated at the time of writing.

A network is connected if any node i in the network can be reached from any other node j along
a path in the network. In this section, we consider a network as degraded beyond an acceptable
level, if it is not connected (anymore). The aim of the first two subsections is to assess, by
means of various metrics, how difficult it is to destroy the connectivity of a given network,
resulting in a degraded network. This is the network robustness.®

A network G(V,E) consists of a set of N = |V| nodes connected by L=|E| links. In this section,
unless differently stated, we will only consider simple, undirected, connected, unweighted,
finite, and deterministic networks.

3.1. Robustness related to connectivity

The node connectivity K, of a network is the minimal number of nodes to be removed in order
to disconnect the network. The number of links that needs to be removed to disconnect the
network is called the link connectivity K., which obeys the inequality x, £ K¢ < Dpin, Where Dpn
is the minimum degree of the vertices.'” Both the node and link connectivity are measures for
robustness, although rather coarse ones. Indeed, consider the two networks of Fig. 2: the first

" Boccatelli et al. 2006

1> See Buldyrev et al. 2010 for failures in interdependent networks, such as communication networks that control a power grid.
'8 For an extensive overview of robustness measures, we refer to Grubesic et al. 2008.

Y For a complete graph Ky the node connectivity cannot be determined by the definition above, because Ky cannot be
disconnected by deleting nodes. The inequality K, < K. < D, also holds for a complete graph when its node connectivity is
defined to be k, = N — 1. See Van Mieghem 2011.



network consists of the complete graph Ks on 5 nodes with one extra node connected to only
one node in K5, while the second one is a tree T5 on 5 nodes with one extra node connected to
only one node in Ts. Both networks have link connectivity k. = 1 (remove the link that connects
the extra node), but it is obvious that the first network is much more robust than the second
one with respect to the removal of links.

T

Figure 2. Two networks with same node and link connectivity, illustrating that these metrics do
not capture all aspects of robustness.

Therefore, we consider a different, less intuitive class of connectivity metrics, that is related to
the spectrum of networks'®. The spectrum (eigenvalues and eigenvectors) of matrices that
represent networks can be related to connectivity properties of the network. In particular, this
holds for the spectrum of the so called Laplacian matrix. The Laplacian matrix Q is defined as the
difference between the degree matrix A and the adjacency matrix A, i.e.

d; if i=j
Qij =9-1 if (i,j)€E
0 otherwise

where d; is the degree (number of links) of node i.
Because the Laplacian matrix is symmetric, positive semidefinite, and the rows sum up to zero,
its eigenvalues are real, non-negative and the smallest one is zero. Hence, we can order the
eigenvalues and denote them as y; for i = 1...N such that 0 = uy < pn.; <...< Y. The second
smallest eigenvalue uy.; of the Laplacian, the so-called algebraic connectivity, has the following
properties:

1. it is equal to zero if and only if the network is unconnected,

2. it satisfies the following inequality: 0 < py.; < %,."°

Also this metric does not capture all aspects related to the notion of robustness, as is illustrated
by Fig 3. Adding a link to the first network increases the robustness, which is not reflected in the
value of the algebraic connectivity: in both cases u; = 2.

¥ van Mieghem 2011
' Fiedler 1973



(@) (ta, 3, k2, 11) =(0,2,2,4) (b) (ug, p3, 42, p1) = (0,2,4,4)

Figure 3. Two networks with identical algebraic connectivity us (from Baras and Hovareshti
2009).

In fact, it has been shown that in order to guarantee that a metric strictly increases when adding
edges, the metric must take the complete Laplacian spectrum into account.’® Examples of such
metrics include the number of spanning trees and the so-called effective graph resistance.”* The
effective graph resistance R, also called total effective resistance or Kirchhoff index, is defined as
the sum of the effective resistances over all pairs of vertices.*” It can be written as a function of
the non-zero Laplacian eigenvalues: **

11
R = NH§V=11£.

3.2. Robustness with respect to the removal of network elements

The last years have witnessed much research interest in quantifying the effect on the network
topology, when nodes and/or links are removed from the network, either at random (failures)
or targeted (attacks).**

A basic approach looks at the (relative) size of the largest connected component, as a fraction of
the number of removed nodes, for different type of network models, such as Erdés-Renyi and
scale free networks. Also different type of attack strategies are discussed, for instance based
upon the degree or the betweenness of nodes. The models predict the existence of a threshold
for the number of removed nodes, for which the largest component of the network disappears.
For sufficiently large networks and random node removals, the formula for the critical fraction

of removed nodes satisfies?>

*Ellens et al. 2010

1 The number of spanning trees is & = %H?Iz_f Ui, see Van Mieghem 2011.

2 see Ellens et al. 2010. There one may also find arguments why the effective graph resistance is a suitable measure for
network robustness, including a proof that the effective network resistance strictly decreases when an edge is added. Note that
the smaller R, the more robust the network.

% Klein and Randi¢ 1993

* see e.g. Van Mieghem et al. 2011b.

% See Cohen et al. 2000. An implicit formula for the critical fraction in case of attacks is given in Magnien et al. 2011.



Figs. 4 and 5 depict the relative size of the largest connected component for a BA scale free and
ER graph with N = 100 nodes and L = 500 links, for different node removal strategies.
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Figure 4. The R-value (in this case the fractions of nodes in the giant component) in a Barabasi-
Albert graph (N = 100, L = 500) versus the removal of k nodes for different realizations of the
perturbation. The set of perturbations form contour plots around the average sequence of R-
values (from Trajanovski et al. 2012).

The comparison between the BA and ER graph in Fig. 4 and 5 clearly shows that the scale free
networks are robust with respect to failures (shaded small area) but very vulnerable with
respect to targeted attacks (large area between upper and lower R-value corresponding to the
same removal strategy). Consider, for example, the situation where 40 nodes are deleted at
random from the network. Then, as shown by the shaded small interval above k = 40, almost all
of the remaining 60 nodes form a large connected component. But if 40 nodes with (for
example) high degree are deleted, this largest connected component is much smaller
(approximately 32). This difference between random attacks and targeted attacks is much less
for the ER graphs, see Fig 5.

Recently it has been suggested not to use the critical fraction as robustness metric, but an
integral measure that takes all possible numbers of removed nodes into account:



N
R= > s)
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k=1

where s(k) denotes the size of the largest connected component, after k nodes have been
26
removed.
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Figure 5. The R-value (in this case the fractions of nodes in the giant component) in a random
Erdos-Renyi graph (N = 100, L = 500) versus the removal of k nodes for different realizations of
the perturbation. The set of perturbations form contour plots around the average sequence of
R-values (from Trajanovski et al. 2012).

3.3. The R-model

Quantifying the level of robustness of networks has been a research theme for several years.
Unfortunately, there are many complications, such as a multi-layer protocol suite, different
aggregation levels, missing service metrics that adequately capture and define robustness
properties, and a dynamically changing and uncertain topology.”’ Most probabilistic studies
assume that link failures are independent from each other and that the occurrence of each
failure has a fixed, same probability p, which, although leading to nice mathematical
conclusions, constitutes a major approximation of reality. These conceptual difficulties have led
to the proposal of a computational framework for the topological robustness of a network.?®

%6 See Schneider et al. 2011, followed by Trajanovski et al. 2012.
*’ see the discussion in Van Mieghem et al. 2010a.
% Van Mieghem 2010



Fig. 6 illustrates the focal question: ‘Given a network at a certain time, is that network
appropriate or good for its purposes?’” The meaning of ‘good’ and ‘purpose or service’ need to
be defined.
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Figure 6. The flow chart of the high level goal to achieve network robustness

A given network at a certain time, defined by a service and a topology as in Fig. 6 is translated
into a mathematical object, on which computations can be performed such as the computation
of a ‘goodness’ value or robustness value, called the R-value. The R-value is a performance
measure, relevant for the service and normalized to the interval [0,1], so that R=0 corresponds
to absence of network ‘goodness’ and R=1 reflects perfect ‘goodness’. The R-value of the
network robustness is defined by a weighted, linear expression

m

R = Zsttk

k=1
where s and t are the mx1 weight and the topology vector, respectively. The components of the
topology vector t are m network metrics that characterize the topology/network. For example,
t; may represent the average hopcount, t; the minimum degree, t; the maximum degree, t, the
algebraic connectivity uy.;, and so on. The components of the weight vector s reflect the
importance of the corresponding topological metrics for the service. For example, real-time
communication requires certain end-to-end delay bounds. The amount to which metrics
influence the end-to-end delay, such as e.g. the average hopcount, the betweenness, the
effective graph resistance, is reflected by the value of the corresponding component of s. Fig. 6
illustrates that the current R-value is compared with the minimal desirable value, R_thresh.
Either the R -value is sufficient, in which case we refrain from taking any corrective action, or
the R-value is too low, in which case a modification to improve the network is required.

The robustness of a network is assessed as the degree of the network’s capability to withstand
perturbations during a given time interval. An elementary change is defined as one of the five
network modifications: (1) adding a node; (2) removing a node; (3) adding a link; (4) removing a
link; and (5) in weighted networks, changing the link (or/and node) weight. A perturbation (e.g.
either random or targeted attacks) is a series of n elementary network changes to which the
sequence of R-values {R[k]}o<k<n Can be associated. In case of (for example) the size of the giant
component, (i.e. m=1 in the definition of R), almost the entire space of possible perturbations
on a single network, thus both random and targeted attacks, has been evaluated for several

9



classical network models and a few real-world networks.” For example, Fig. 4 and 5 illustrate a
typical R-perturbation plot (where the R-value is the fraction of nodes in the giant component)
in a single network challenged by node removals in a large number of possible ways. The
contour landscape formed by that large number of perturbations shows that the R-value of the
particular network is reasonably insensitive to the specific nature of the perturbation since the
contour plots lie in a narrow region around the average perturbation. Hence, the network,
measured by this R-value, is robust under random as well as targeted attacks. If the contour
area is large, the influence of different types of perturbations (attacks) is large and the network
may be modified to withstand specific types of attacks.

3.4 Stochastic actor-based approach and resilience

Social networks and inter-alliance networks, take shape as a result of autonomous actors (the
nodes in the network) seeking to achieve their individual objectives. C2 component are part of
physical, information, as well as social networks. Therefore, also C2 networks are affected by
the actions of individual actors.*

In stochastic actor-based models, actors are assumed to evaluate their network structure and
try to obtain a positively evaluated network configuration of relations.** Possible networks that
are the result of the actor’s relational changes (adding or deleting a link) are evaluated by
means of an objective function, which is a linear combination of several topological
characteristics (effects) of the network:

falBA) = ) Bisan(A).

As in the R-model, the agent-based approach uses several topological properties, like average
number of connections, distances, etc. But now, the evaluation may differ between the actors
(the nodes). In the expression for f, (5, A), a is the focal actor, B = {8} is a set of statistical
parameters while A represents the possible network. Examples of topological characteristics
Sqx (A) are the number of neighbours of an actor or the number of triads the actor is involved
in, indicating some kind of local robustness. Of course, an actor will try to improve its objective
function value. At each iteration, adding or removing a link is determined probabilistically using
the objective function. The transition probability of changing to some new state is given by
exp (fa(B.4))
T arexp (fa(BA)Y
all possible adjacency networks that can be reached from A by adding or deleting links. This
shows that the transition process of changing from one network to another is a Markov process.
It also indicates unexplained influences and limited predictability of behaviour.

where A’ is taken from the set of networks consisting of A itself, together with

Given a predefined objective function, using extensive simulations, several characteristics of the
emergent network structures can be examined. Using the metrics of Sec. 3.1 and 3.2 one may
investigate the robustness of the emerging networks.

¥ see Trajanovski et al. 2012.

30 Regarding the physical network: there exist doctrines for military C2 network design, based on parameters like bandwidth,
latency, etc. See Grant et. al. 2011.

*1 Snijders et al. 2010
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The reverse problem, that of estimating parameters {f;} from observed emergent network
structures, may be of interest to the study of resilience: Consider a (C2) network that has certain
desirable characteristics with respect to cyber warfare. After a hostile attack, the objective
function, based on the estimated parameters {f)}, may be used to assure that the final
emergent network has similar properties as the original undamaged network structure.*?

An interesting topological characteristic that an actor may use to evaluate the current network
structure is the covering effect.®> A node a covers node b if all nodes linked to b are also linked
to a and, in addition, node a has at least one extra link. Consider, for example, a node ¢ that
receives and transmits information from/to nodes b and d, as in Fig. 7.

b c
a g
f e d

Figure 7. Example network illustrating that node c is covered by g.

The nodes b and d also are linked to node g which, in addition, is able to exchange information
with node e. So, every information link of ¢ can be covered by one of g and g has at least one
extra information link. With respect to information sharing, distribution and processing, and
robust communication possibilities, node g outperforms node c, because g has an additional link
(to node e)

A special kind of network structure is a network in which each node is uncovered. We call such a
network stable: no node in the (C2) network is outperformed by other nodes with respect to
communication possibilities. We let g(n,p) be the probability that an ER graph is a stable
network. Fig. 8 draws g(n,p) for several small values of n. It can be shown that

lim, ., g(n,p) = 1.3

32

See Janssen et al. 2012.
3 et @ and b be two nodes in V. Then a covers b in G(V,E) if (1) for all x € V\{a}, (x,b) € E implies (x,a) € E, and (2) there
exists at least one node c different from a and b such that (c,a) € E while (c,b) € E. See Monsuur and Storcken 2004 for axiomatic
characterizations, and Janssen and Monsuur 2012 for application to terrorist networks.
34

Janssen and Monsuur 2012
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4. Offensive Cyber warfare: Interdiction on Communication Networks

In this section, we briefly discuss interdiction policies to damage communication or C2
capabilities of adversaries. A technique that can be used to model interdiction policies is game-
theoretic risk analysis.35 Much research has been devoted to game-theoretic risk analysis
applied to homeland security and defence. Attacker-defender models are used to assess
infrastructure vulnerability to intentional attacks. An interdiction model describes an
infrastructure system and its value, including how the actions of two adversaries influence this
value. The two adversaries, the attacker and the operator of the C2 network, have opposite
goals: while the operator’s goal is to maximize the total (possible) flow of communication
through the network, the attacker attempts to minimize this value. To this end, the attacker can
perform interdiction actions on the network components, which change the components’
communication capacity, often effectively removing the total capacity of the communication
link from the network. We assume that the reduction in capacity is a linear function of the
interdiction resources allocated by our interdiction forces.

Interdiction incurs a cost and we may assume that the attacker’s actions are limited by a
budget. Consider the simple network shown in Fig. 9. The operator of the C2 network tries to
maximize the possible communication from the base O to the target destination T using
intermediate communication links. The numbers ¢, on the arcs indicate the maximal possible
dataflow on that link k.

Figure 9. A (directed) C2 network.

* See e.g. Bier and Naceur Azaiez 2008.
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If the attacker is able to interdict the equivalent of two communication links, its problem may
be formulated as:

mxin m;;lx Yoa T Yos T Yoc
s.t.

Yoa = Yap T Yap

Yge t Yce = Yep t YET

Vi < (1 — xp) for all links k

Zxk=2
k

where, for example, y,, is the dataflow along the link OA, and xj, is a binary variable, which is
equal to 1 if the link k is interdicted, 0 otherwise. In the literature one may find several
strategies to solve this kind of min-max problems.>®

5. Conclusions

Modern society increasingly depends on a complex infrastructure of information and
communication systems. While these complex networks create new opportunities for offensive
cyber warfare, they also pose new challenges to protect our networked systems against cyber
attacks. In this chapter, we showed that understanding the robustness and the vulnerability of
the networks, that facilitate our intertwined society or our interconnected C2 systems, is of vital
importance. We illustrated various approaches to assess the robustness of networks. Several of
these metrics can be implemented in doctrines for robust network design. We also focussed on
the recent shift in Network Science towards understanding the interplay between the dynamic
processes on the network and its underlying topology. The resulting insights may serve as a first
step towards a methodological framework to defend networks against and recover from cyber
attacks.

* Brown et al. 2006
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