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Abstract. In this paper we study connectivity in wireless ad-hoc networks by modeling the network as an undirected geometric random
graph. The novel aspect in our study is that for finding the link probability between nodes we use a radio model that takes into account
statistical variations of the radio signal power around its mean value. We show that these variations, that are unavoidably caused by the
obstructions and irregularities in the surroundings of the transmitting and the receiving antennas, have two distinct effects on the network.
Firstly, they reduce the amount of correlation between links causing the geometric random graph tend to behave like a random graph with
uncorrelated links. Secondly, these variations increase the probability of long links, which enhances the probability of connectivity for the
network.

Another new result in our paper is an equation found for the calculation of the giant component size in wireless ad-hoc networks, that
takes into account the level of radio signal power variations. With simulations we show that for the planning and design of wireless ad-hoc
networks or sensor networks the giant component size is a good measure for “connectivity”.
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1. Introduction

Wireless multi-hop ad-hoc networks are formed by a group of
nodes that communicate with each other over wireless chan-
nels. In this network, any node may have direct radio links
with some other nodes in its vicinity. The nodes in a wireless
ad-hoc network can be mobile. Each node can, if needed,
function as a relay station for routing traffic to its final des-
tination. Ad-hoc networks are decentralized, self-organizing
networks and are capable of forming a communication net-
work without relying on any fixed infrastructure.

Many aspects of wireless ad-hoc networks have been stud-
ied or are under investigation by the international research
community. For example, extensive work has been done in
the development and optimization of ad-hoc routing proto-
cols [1,2]. Other valuable papers have investigated the ca-
pacity and scalability of wireless ad-hoc networks (see for
example [3,4]). Study of recent literature reveals that reli-
able mathematical modeling of ad-hoc networks is gaining
increased attention [5–7]. Good modeling of ad-hoc networks
is essential to investigate fundamental properties of ad-hoc
networks like connectivity and degree distribution. This pa-
per is a contribution to mathematical modeling and better
understanding of one of these fundamental properties, the
connectivity. From a practical point of view, connectivity is
a prerequisite to providing reliable applications to the users
of a wireless ad-hoc network. To achieve a fully connected
ad-hoc network there must be a path from any node to any
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other node. The path between the source and the destination
may consist of one hop (when source and destination are
neighbors) or several hops. When there is no path between
at least one source-destination pair the network is said to be
disconnected. A disconnected network may consist of sev-
eral disconnected islands or clusters. The largest cluster in
the network is called the giant component [8].

Connectivity in ad-hoc networks has been studied previ-
ously in various papers (see for example [9]). However, in our
paper we have used for the first time the so called log-normal
shadowing radio propagation model to study connectivity.
This radio model takes statistically into account the dynam-
ics of radio signal power variations. These variations are
unavoidably caused by obstructions and irregularities in the
surroundings of the transmitting and the receiving antennas.
Therefore, this radio model is more realistic than the static
and solely on distance dependent models that are commonly
used to model wireless ad-hoc networks. We show here that
these variations strongly affect the behavior of the network.
We realize that radio channel modeling is a very complicated
topic and by no means we claim to have used the most suit-
able model in this paper. As a matter of fact, we believe that
radio modelling for better understanding of ad-hoc network
characteristics is a research area where a lot needs to be done
yet. Our approach here should therefore be seen as an attempt
towards this goal.

Results presented in this paper also demonstrate that full
connectivity is achieved at relatively high values of the mean
nodal degree, while at far lower values of the mean degree a
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very large portion of the network could already be connected.
Therefore we argue that for practical use of ad-hoc networks
1-connectivity (full connectivity) is too stringent a condition,
and suggest to use the giant component size as a measure for
connectivity in wireless ad-hoc networks.

The structure of this paper is as follows. Section 2 de-
scribes the radio model used in our study. Our mathematical
presentation of wireless ad-hoc networks, which is based on
a general model for geometric random graphs in combina-
tion with the aforementioned radio model, is described in
Section 3. In Section 4 we explain two theoretical theorems
introduced in the literature for connectivity in ad-hoc net-
works and examine them based on simulations using our
radio model. We will see that our mathematical modeling of
wireless ad-hoc networks in combination with our simulation
results allows us to refine the existing theorems. In Section
5 we focus on the giant component and provide an equation
for finding the giant component size in a wireless ad-hoc net-
work as function of the mean degree. Our main conclusions
are summarized in Section 6.

2. The radio model

In radio communications, the received signal levels decrease
as the distance between the transmitter and the receiver in-
creases. This phenomenon is called pathless. Attenuation of
radio signals due to the pathless effect has been modeled by
averaging the measured signal powers over long times and
over various locations with the same distances to the trans-
mitter. The mean value of signal power found in this way is
referred to as the area mean power, Pa (in Watts or milli-
Watts). The pathless model states that Pa is a decreasing
function of distance r between transmitter and the receiver
and can be represented by a power law [10] as Pa(r) =
c · r−n. In this formula c is a constant1 and η is the pathless
exponent. The pathless exponent depends on the environment
and terrain structure and can vary between 2 in free space to
6 in heavily built urban areas [11].

The most commonly used radio model in ad-hoc networks
is based on the pathless phenomenon alone and assumes that
the received power at any distance to the transmitter is equal
to the area mean power (see e.g. [12]). If we assume that
transmitted signals are received correctly when the received
signal power is more than a minimum required threshold
value,2 this model result into a circular coverage area around
the transmitting node. All nodes and only those nodes within
this circle are connected to the center node. We indicate the
radius of the circular coverage area by R. If we normalize

1The value of this constant depends on the transmitted power, the receiver
and the transmitter antenna gains and the wavelength [11].

2From a communication theory point of view, this threshold is chosen such
that the signal-to-noise ratio at the receiver is sufficiently large to support
the desired data communication speed over the channel.

Figure 1. Abstract view showing links between nodes with and without
random power variations. All links are assumed to be bidirectional.

the distance between the transmitter and the receiver to R,
the probability of connectivity as function of the normalized

distance r̂
�= r/R between two nodes, p(r̂), is a simple step

function:p(r̂) = 1 if r̂ < 1 and p(r̂) = 0 otherwise.
The pathless model could be inaccurate because in real-

ity the received power levels may show significant variations
around the area mean power value. Due to these variations,
short links could disappear while long links could merge (see
figure 1). In this paper we use a more realistic radio model for
the study of wireless ad-hoc networks. This model is based
on the log-normal shadowing radio propagation model3 and
allows for random power variations around the area mean
power. In the lognormal radio model the mean received power
taken over all possible locations that are at distance r to the
transmitter is equal to the area mean power, similar to the
pathless model. However it is further assumed that the time
averaged received power varies from location to location in an
apparently random manner [13]. More precisely, the logarith-
mic value of the mean power at different locations is normally
distributed (with standard deviation σ ) around the logarith-
mic value of the area mean power. The standard deviation is
larger than zero and, in the case of severe signal fluctuations
due to irregularities in the surroundings of the receiving and
transmitting antennas, measurements [11] indicate4 that it can
be as high as 12 dB. This model is described in detail in our
previous work [14]. A similar model is also proposed in [15].
The link probability found based on lognormal shadowing

3The term “shadowing” used in the name of this model is somehow confusing
because shadowing may imply that the model considers correlated fading
in the received power at two locations blocked from the transmitter by
means of e.g. a single wall. This however is not the case. Variations in
signal powers at different location with the same distance to the receiver are
assumed to be random and independent. The dependent reduction in radio
signal powers due to obstruction by buildings is better referred to by the
term “blocking” and is not included in the model.

4It should be noted that the measurements that we refer to have been done on
lower frequencies than frequencies used in WL AN networks. If a wireless
ad-hoc network is making use of WL AN radio modules, the range of
variation in σ could be different.
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Figure 2. Link probability with log-normal shadowing radio model as func-
tion of the normalized distance between two nodes and for different values
of ζ . The connected line for ζ = 0 is the same as the step function based on
the the pathless model.

radio model is [14]:

p(r̂) = 1

2

[
1 − erf

(
α

log(r̂)

ξ

)]
, ξ

�= σ/η. (1)

In this formula α is a constant α = 10/(
√

2 log 10), and r̂

is the normalized distance between the transmitter and the
receiver. The parameter ξ is defined as the ratio between the
standard deviation of shadowing, σ , and the pathless expo-
nent, η. Low values of ξ correspond to small variations of
signal power around the area mean power and high values
of ξ correspond to stronger shadowing effects. In the case
of ζ → 0, there is no shadowing effect and our model is
equivalent to the pathless model (a simple step function).
The best way to determine the most probable value range for
ξ is through extensive measurements. To our knowledge this
type of measurements for typical wireless ad-hoc network
environments are not available yet. However, based on the
aforementioned range of possible values for η and σ , we note
that empirically ξ may vary between 0 and 6.

Figure 2 shows for different values of ξ the link prob-
ability calculated with (1). For ξ > 0 there is a nonzero
probability that nodes at a normalized distance larger than 1
are connected. Also, there is a nonzero probability that nodes
at normalized distances less than 1 are disconnected. In this
figure we see that as shadowing becomes more severe, the
link probability at short distances reduces, while at large dis-
tances the link probability increases. We mention here briefly
that especially the long-distance connectivity probability will
affect the hop count and connectivity in the network; simi-
lar to the small world networks extended with a few “long”
links [16]. This matter will be investigated extensively in
Section 4.

3. The geometric random graph model

We denote a random graph by Gp(n), where n is the number
of nodes in the graph and p is the probability of having a
link (edge) between any two nodes [8]. The fundamental
assumption in random graphs is that the presence of a link
between two nodes is independent of the presence of any
other link. The degree of a node is defined as the number
of nodes connected directly to that node. In other words, the
degree of a node is the number of neighbors of that node. In a
random graph the degree, d, has a binomial distribution [8]:

Pr[d = k] =
(

n − 1
k

)
pk(1 − p)n−1−k � zke−z

k!
,

where z is the mean (average) nodal degree: z = E[d] =
(n − 1)p. The second expression above is the Poisson ap-
proximation for large n.

A wireless ad-hoc network consists of a number of nodes
(radio devices) spread over a certain geographic area. Every
node may be connected to other nodes in its vicinity. We
assume that connections between nodes are two-way, undi-
rected links. Because of node movements and radio signal
fluctuations, the topology of the network can change over
time. At any instant in time an ad-hoc network can be con-
sidered as a graph with a fixed topology, but it cannot be
modeled as a random graph. The reason is that in a wire-
less ad-hoc network the actual set of connections, in contrast
to random graphs, depends on the geometric distance be-
tween nodes. A direct consequence of the dependency of the
links on the distance between nodes is that in wireless ad-hoc
networks there is an increased probability of two nodes to
be connected when they have a common neighbor. In other
words, in a wireless ad-hoc network links are correlated.
This effect is also called clustering [17] and has been ob-
served and studied extensively for other network types like
social networks [5]. In the literature (see e.g. [6]), graphs
with distance-dependent links between randomly distributed
nodes and correlated links are referred to as geometric ran-
dom graphs5. An undirected geometric random graph with n
nodes is denoted as Gp(rij)(n), where p(rij) is the probability
of having a link between two nodes i and j (or j and i) at
distance rij.

Geometric random graph models proposed so far for wire-
less ad-hoc networks (see e.g. [9,12,18]) are based on the
pathless radio model. This means that the necessary and suf-
ficient condition for two nodes to be connected is that the
distance between them is less than a certain threshold value.6

5The use of the term “random” in this case may seem a bit odd, as a node
cannot be connected to any other node randomly. However, nodes are still
randomly distributed. Futhermore, the link possibility between nodes can
be a probabilistic function of the distance between nodes.

6In [3] the effects of interference are considered and it is assumed that a link
can only be used when the ratio of the wanted signal power to the sum of
the noise and interference power caused by other node’s communications
is more than a certain threshold value. However, here too it is assumed that
signal power loss depends only on the distance between nodes.
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In all these models, due to the identical circular coverage area
around all nodes, the network behavior resembles a highly
clustered regular lattice.

In this paper for the study of connectivity in wireless ad-
hoc networks we also use a geometric random graph model.
However, for the link probability between nodes we use the
lognormal radio model explained in Section 2. We denote our
geometric random graph as Gp (r̂ij )(n), where r̂ij is the nor-
malized distance between nodes i and j, and p(r̂ij ) is specified
by (1). There is a substantial difference between our geomet-
ric random graph model and the forms proposed till now in
the literature. Our model can take into account variations in
the received radio signal power. Due to these variations the
strict distance dependency of the link probability is blurred
and correlation between links is reduced. Correlation between
links decreases with increasing ξ . Therefore we expect our
geometric random graph model to shift between a highly
clustered regular lattice (for ξ → 0) and a random graph (for
highest values of ξ ). In Section 4 we focus deeper into this
point and will verify this statement.

4. Connectivity

In this Section we will first provide an overview of theoret-
ical published results for the connectivity in random graphs
and in geometric random graphs. Subsequently, based on our
simulation results we will show that our geometric random
graph model allows us to refine these connectivity theorems
for wireless ad-hoc networks.

To elaborate our definition of connectivity, we regard con-
nectivity to be independent from traffic load in the network.
On the physical layer connectivity between nodes is predicted
by the radio model explained in Section 2. Whether two con-
nected nodes can communicate with each other at any given
moment in time depends (amongst others) on the interference
condition which is directly linked to simultaneous commu-
nication between other nodes in the network. Due to inter-
ference, communication between two connected nodes may
drop to lower speeds or even become impossible at certain
times. However, in these cases we say that the link capacity is
reduced, instead of saying that the probability of connectivity
between these two nodes is decreased. In other words, we
consider interference as a capacity-affecting factor.

4.1. Analytical derivations

For the study of connectivity we consider a wireless ad-hoc
network at any instant in time as a graph with fixed topology.
Two paths in a graph are said to be independent if any node
common to both paths is an end-node of both paths. A graph
is said to be k-connected if for each pair of nodes there exist
at least k mutually independent paths connecting them [9].
Another equivalent definition [8] is that a graph is k-connected
if and only if there is no set of k – 1 nodes whose removal
would disconnect the graph. The connectivity of a graph is

the maximum k such that the graph is k-connected. In the
literature connectivity has been studied for random graphs as
well as geometric random graphs. Here we give an overview
of two main theorems with relation to connectivity.

Theorem 1. If we start with a graph on n vertices and an
empty edge set and add edges randomly and independently
one by one until having m edges, the graph almost surely7

becomes 1- connected when m ≥ n log n

2 +O(n). Considering
thatp

�= m/(n2), we can say that for a random graph to be
1- connected there must hold:

p ≥ log(n)

n
a.s. (2)

Theorem 1 dates from the pioneering work of Erdos and
Renyi [9] on random graphs where they considered the Gp(n)
model to study the threshold for connectivity in graphs. While
(2) holds for random graphs, in [9,18] it is shown that this
result is also valid for geometric random graphs with the
pathless radio model, in any dimension higher than one (but
not for one-dimensional graphs).

Intuitively one may see that the connectivity in wireless
ad-hoc networks depends on the number of nodes per unit area
and on the transmission range of wireless devices. Increasing
the density of nodes or increasing the transmission power of
a radio node will increase the nodal degree. Based on this
deduction, it is not surprising to see that the second theorem
of connectivity relates connectivity to the nodal degree.

Theorem 2. In a random graph of n nodes if edges are
added one by one to the empty graph in an order chosen uni-
formly at random form the (n2)! possibilities, then almost surly
the resulting graph becomes k-connected when it achieves a
minimum degree of k. In other words, for large n,

Pr[G is k − connected] = Pr[dmin ≥ k] a.s. (3)

where dmin is the minimum degree per node.

Theorem 2 is proved for random graphs in [8]. In and
[9,12] it is proved that this theorem is also valid for geo-
metric random graphs with the pathless radio model, in any
dimension higher than one when Pr [dmin ≥ k] is almost 1.

These two theorems of connectivity are not conflicting
theorems for random graphs. It can be proved (see ap-
pendix) for random graphs, that for large n, Pr[Gp(n) is 1-
connected] � 1 if p > log(n)/n, and Pr [Gp(n) is 1-connected]
� 0 if p < log(n)/n.

In the remainder of this section we will investigate con-
nectivity in wireless ad-hoc networks by using our geometric
random graph model explained in Section 3. As mentioned
before, this model is more realistic than geometric random

7We say that a graph has some property Q almost surely (a.s.) or with high
probability (whp) if the probability it has Q tends to one as n tends to
infinity.
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graph models with the pathless radio model. We present re-
sults obtained through simulations. As it will be summarized
at the end of this section, we believe that our simulation re-
sults provide new insights into the theory of connectivity in
wireless ad-hoc networks.

4.2. Simulations and discussion

Our focus will be on 1-connectivity. Higher orders of con-
nectivity are not considered at this moment. The simulation
program distributes n nodes uniformly over a square area
and establishes links between node-pairs using the proba-
bility function (1). The service area of the ad-hoc network
is the whole area where nodes are uniformly distributed. In
the resulting graph for each simulation run we check the
1-connectivity and store information regarding the number
of clusters (components) in the graph, the mean component
size, the total number of components and the degree distri-
bution. We have performed simulations with n = 250, 500
and 1000. For each value of n, results are gathered for ξ =
0, 1,. . ., 6 and different values of the area size. Changing the
area size changes the expected values for the nodal degree
and allows us to study connectivity as function of the mean
degree. For each unique combination of the area size, ξ and n
we have repeated simulations with 500 independent network
configurations.

Two different procedures can be used for checking 1-
connectivity [7]. The first procedure chooses a node at ran-
dom and uses a simple flooding algorithm to tag all nodes
belonging to the same cluster. This procedure is repeated for
all untagged nodes until no untagged nodes remain in the
graph. If the largest cluster found in this way contains all
nodes, the network is 1-connected. In the process of check-
ing for 1-connectivity, this procedure provides us the exact
size of all clusters in the graph. By definition we will call the
largest cluster in the graph the giant component. The size of
each cluster is defined as the ratio of the number of nodes
in that cluster to the total number of nodes in the network.
Similarly, the giant component size is the ratio of the number
of nodes in the giant component to the total number of nodes
forming the network. The second procedure for checking
1-connectivity uses the n × n Laplacian of G. The Lapla-
cian [20] is the difference between the diagonal node degree
matrix, in which element (i, i) is degree of the node i; and
the adjacency matrix, in which element (i, j) is one or zero
depending on whether a link does or does not exist between
nodes i and j (diagonal elements of the adjacency matrix are
zeros). The number of zero eigenvalues of the Laplacian is
equal to the number of cluster in G [20]. We have used the
first procedure to gather simulation results, while the second
procedure is applied consistently to verify reliability of the
first procedure.

Figure 3 shows a part of the simulated results for 500
nodes. Each subplot corresponds to a different value of ξ .
In each subplot in this figure we have shown as function of

the node’s mean degree the following data obtained through
simulations:

1 The probability of 1-connectivity.

2 The probability of p exceeding the log(n)/n threshold,
which allows us to check the accuracy of the first the-
orem of connectivity by comparing this data with the first
set of data mentioned above.

3 The probability of the minimum nodal degree being more
than or equal to 1, which allows us to check the accuracy
of the second theorem of connectivity by comparing this
date with the first set of data mentioned above.

4 The giant component size.

The dotted line without markers in each subplot is added
for comparison reasons and shows, as function of the mean
nodal degree, the probability of 1-connectivity (or the proba-
bility of the minimum degree being more than or equal to 1)
in a random graph with n nodes. Because of binomial degree
distribution in random graphs and the independence of the
links, this probability is computed as:

Pr [min. degree ≥ 1 in Gp(n)]

=
[

n−1∑
k=1

(
n − 1

k

)
pk(1 − p)n−1−k

]n

= [1 − (1 − p)n−1]n.

(4)

The first conclusion we can draw after analyzing simula-
tion data is that our results indeed comply with both theorems
of connectivity for geometric random graphs with the path-
less radio model (in other words, when ξ = 0). However
we can add more important additional details to refine these
theorems:

• In all simulated cases, the first theorem of connectivity
based on log(n)/n threshold predicts an almost surely con-
nected network at those values of the mean degree where
the probability of 1-connectivity is rather low (about 0.2
or less in subplots of figure 3). Is this theorem too opti-
mistic? We can examine this question by looking at the
size of the giant component. For example, in figure 3 for
ξ = 0 the giant component size at the threshold where
p exceeds log(n)/n is 0.987. In another set of simulation
with 1OOO nodes (not shown in this paper), the giant com-
ponent size at this threshold point for ξ = 0 was 0.998.
This means that from the 1OOO nodes, only 2 nodes did
not belong to the giant component. The giant component
size at the threshold point where this theorem predicts “al-
most surely” connectivity increase as n → ∞, and this is
exactly what the theorem stands for.

• In simulated cases with the low values of ξ the actual
probability of connectivity coincides with the probabil-
ity of dmin > 1 only when Pr[dmin > 1] is almost f. This
complies with the second theorem of connectivity for ge-
ometric random graphs. However, when the ξ increases,
these two lines merge at lower values of Pr[dmin > 1]. For
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Figure 3. Simulated results for different values of ξ showing: the probability of 1-connectivity, the probability of p exceeding the log(n)/n threshold, the
probability of the minimum node degree being more than or equal to one, and the giant component size as fraction of the total number of nodes. For
comparison reasons, we have drawn on each graph the probability of minimum degree being more than or equal to one for a binomial degree distribution.

example, for ξ = 3 these two lines are overlapping each
other virtually for the entire range of mean degrees. This
behavior was expected from the second theorem of con-
nectivity only for random graphs, but not for geometric
random graphs. We can conclude that when ξ increases,
the increase in the long-distance connectivity probability
together with the reduction of the short-distance connec-
tivity probability reduces the correlation between links.
As a result, the geometric random graph approaches the
generic random graph behavior, and the probability of
1-connectivity equals the probability dmin > 1 for all values
of Pr[dmin>1].

• As mentioned in Section 2, the increase in long-distance
connectivity probability also affects the hopcount in the
network. The mean hopcount in a random graph Gp(n)
is: E[h] ∼ ln(n)/ ln(E[d]), where E[d] is the average node
degree in the random graph.8 As opposite to random graphs
where links are completely uncorrelated and relative node
positions irrelevant, a rectangular lattice is a very regulated
graph in two dimensions. The mean hopcount is of the
order O (

√
n) in a rectangular lattice with n nodes.9 For

8A more accurate approximation formula for asymptotic hopcount in random
graphs is obtained recently (see [21]). The formula E[h] ∼ ln(n)/ln(E[d])
is from [17] and is used here because of simplicity.

9It can be proved that in a two dimensional rectangular lattice consisting of
n = k × l nodes, the mean hop-count is exactly:E[h] = k+l

3 .

connected graphs, the mean hopcount in a lattice is higher
than the mean hopcount in a random graph of the same size.
Our simulation results indicate that the mean hopcount in
an ad-hoc network can vary between the expected values
for a lattice network and a random graph, depending on the
value of ξ . As ξ increases, the probability of having a link
between two nodes at farther distances increases as well.
Consequently, the mean hopcount reduces. Figure 4 shows
the mean hopcount found for ξ = 0 and ξ = 3. When
the mean degree is high enough for a giant component to
cover almost the entire network, at low values of ξ the mean
hopcount is close to the mean hopcount in a lattice network
with the same length and width as the service area of the ad-
hoc network. When ξ increases, the mean hopcount tends
more towards the mean hopcount in a random graph with
the same number of nodes and the same link probability.

• For the same area size and for the same number of nodes
the average nodal degree increases with increasing value
of ξ (see figure 5). From a radio propagation point of view,
a higher value of ξ means a higher probability of having
links with nodes at farther distances. This translates itself
into a higher value of the mean node degree over the service
area. This phenomenon was addressed previously in [14].
The increase in the mean nodal degree directly enhances
the probability of connectivity.

• In all simulated cases we see that the giant component size
is growing steeply towards 1 for those values of the mean
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Figure 4. Simulated results for different values of ξ showing the mean hopcount as function of the mean degree in the ad-hoc network in comparison to
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degree that the probability of 1-connectivity is very low.
For a relatively large span of the mean degree values the
giant component is already covering most of the network
but 1-connectivity is not achieved yet. This is due to only
a few isolated nodes or small node clusters outside the gi-
ant component. This fact is demonstrated in figure 6 that
shows the mean size of components other than the giant
component for different values of ξ . Starting from small
values of the mean degree, as the mean degree increases,
the mean size of the giant component as well as the mean

size of other components increase. However, soon the gi-
ant component will “swallow” smaller clusters and causes
their mean size to drop rapidly. In [22] it is proved that the
size of the components other than the giant component is
O(log n), to which our simulated results comply. We be-
lieve for practical use of ad-hoc networks 1-connectivity is
a too stringent condition to satisfy. Therefore, we suggest
to use the giant component size as a measure for connec-
tivity in wireless ad-hoc networks. The giant component
size not only provides information about the network being
fully connected or not, but also it provides additional in-
formation about the fraction of the network which is fully
connected. For practical use of ad-hoc networks it may
suffice to provide conditions that, for example, only 99%
of the network is connected.

This last point regarding the use of the giant component as
a more suitable measure of connectivity is discussed in more
details in the following section.

5. Giant component size

In this section we provide first an analytical derivation for the
giant component size in random graphs. Then we will show
how this derivation can be extended to calculate the giant
component size in geometric random graphs.

5.1. Analytical derivations

Let Crg be the giant component size in a random graph (the
fraction of a random graph occupied by the giant component).
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Figure 7. Comparison of the giant component size in a random graph with
the values found for wireless ad-hoc networks.

In [8] as well as [23] it is found that when n is large, Crg is
the non-zero solution to the following equation:

Crg = 1 − exp(−zCrg). (5)

Here, z = E [d] is the mean degree of the graph. Although
fast converging series exist [24] to solve (5), a standard zero
finding algorithm like Newton-Raphson method can also be
used to find Crg as function of z. We have shown these values
in figure 7 (the dotted line).

5.2. Simulations and discussion

In the subplots of figure 3 we already showed the giant com-
ponent size found through simulations for ξ = 0,1, 2 and
3. In figure 7 we have plotted them next to each other (with

an additional line for ξ = 6) and compared them10 with the
giant component size in a random graph, found using (5).

From figure 7 we see that the lines representing the gi-
ant component size for high values of ξ (for example for
ξ = 6) almost exactly match with the values predicted by (5)
for random graphs. However, for low values of ξ the giant
component size appears to be shifted along the mean de-
gree axis. The amount of this shift is higher for lower values
of ξ . We have tried several functions to estimate this shift. A
good approximation found for this shift is: 2.64 exp(− 0.44ξ ).
Taking this into account, the size of the giant component
in wireless ad-hoc networks by approximation, Cah, is the
non-zero solution to the following equation:

Cah = 1 − exp(−ẑCad ), (6)

whereẑ = z − 2.64 exp(−0.44ζ ).
Figure 8 shows the in this way calculated giant component

size in wireless ad-hoc networks for different values of ξ .
For comparison, the giant component size in random graphs
is drawn on each subplot of this figure. As visible in this
figure, there is a good match between the simulated and the
calculated values of the giant component size.

6. Conclusions

In this paper we have proposed to use the log-normal shad-
owing radio model for finding the link probability between
nodes in wireless ad- hoc networks. This radio model takes
into account the dynamics of radio signal power variations
around the area mean power, and could therefore be more
realistic than the commonly used static pathless models. In
Section 2 we have explained how fluctuations of radio sig-
nals can be indicated with a single parameter ξ . Low values
of ξ correspond to small variations of the radio signal power
around the area mean power and high values of ξ corre-
spond to stronger fluctuations. We have studied connectivity
in wireless ad-hoc networks by modeling the network as a
geometric random graph with tunable link correlation. We
call our model tunable because the correlation coefficient in
the network is dependent on the value of ξ of the radio model.

Through extensive simulation, we have examined two gen-
eral theorems of connectivity that so far have been formulated
in the literature for random graphs and for geometric random
graphs based on the pathless radio model (see Section 4.A).
Our main conclusions are:

1. Variations in ξ affect the behavior of the geometric ran-
dom graphs. When ξ→ 0, the network behavior resem-
bles a regular lattice network. However, as ξ increases
the geometric random graph behaves more and more like
a random graph. Apparently increased variations in the
received signal powers reduces the correlation between
links.

10The giant component sizes found through simulations in figure 7 are found
for n = 500. Other simulation results for n = 250 and n = 1000 indicated
no noticeable difference with these values.
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Figure 8. Simulated and calculated values for the giant component size in wireless ad- hoc networks for different values of ξ .

2. A higher value of ξ means a higher probability of having
links with nodes at farther distances. This translates itself
into a higher value of the mean nodal degree, increased
probability for connectivity and reduced mean hopcount.

3. The giant component size can be used as a practical mea-
sure for “connectivity” in wireless ad-hoc networks. In
this paper we have derived an equation for the calculation
of the giant component size as function of the mean degree
and ξ in wireless ad-hoc networks (see (6)). Our formula
can be used to provide directives for the average required
number of neighbors per node (average degree per node)
to obtain connectivity over any desired percentage of the
network. Average degree can be changed by adjusting the
transmission power of nodes or by changing the density
of nodes.

Appendix

Denote by f(p) = Pr[Gp(n) is 1-connected]. According to (4),
f(p) = 1 − (1 − p)n−1]n, which shows that f(p) is always
one for fixed 0 < p < 1 and large n. Therefore, the asymptotic
behavior of Pr[Gp(n) is 1-connected] requires to investigate
the influence of p as function of n. The order of f (pn) for
large n is:

f (pn) = exp(n log (1 − (1 − pn)n−1))

= exp


−n

∞∑
j=1

(1 − pn)jn−j

j




= exp


−n(1 − pn)n−1 − n

∞∑
j=2

(1 − pn)jn−j

j




= e−n(1−pn)n−1


1 + O


n

∞∑
j=2

(1 − pn)(n−1)j

j





 .

If we define cn
�= n · (1 − pn)n−1, then the order term

O(n
∑∞

j=2
(1−pn)(n−1)j

j
) = O(n

∑∞
j=2

c
j
n

jnj ) vanishes for large n

provided we choose cn = O (nβ) withβ < 1
2 . For large n,

we thus have thatf (pn) = e−cn ∼ e−Anβ which tends to 0 for
0 < β < 1

2 and to 1 for β < 0. Hence, the critical exponent
where a sharp transition occurs is β = 0. In that case, cn =
c (a real positive constant) and

pn = 1 − exp

(
log c

n − 1
− log n

n − 1

)
= log n

n
+ O

(
log c

n

)
.

In summary,

f (p) → 0 ifp < log(n)/n

1 ifp > log(n)/c
,

with a transition region around log n

n
of width of O

(
1
n

)
.
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