A LOWER BOUND FOR THE END-TO-END DELAY IN
NETWORKS: APPLICATION TO VOICE OVER IP

Piet Van Mieghem
AReNA

Alcatel Corporate Research Center
Francis Wellesplein 1, B-2018 Antwerp, Belgium*

Abstract

A closed-form lower bound on the end-to-end de-
lay in a network with N nodes and link density
p is presented which can be useful for the di-
mensioning of connectionless ’homogenous’ net-
works. In particular, several initial considera-
tions on networks specifically designed for carry-
ing voice over IP only, may be estimated.

1 Introduction.

The explosive growth of the Internet has at-
tracted many industries to focus on opportu-
nities to enlarge their markets or to enter into
the highly promising telecommunication busi-
ness. As a recent example, the Internet Protocol
(IP) has opened doors for new entrants to the
traditional, monopoly market of ordinary voice
telephony. Due to the stringent delay bounds im-
posed on the transport of voice, a natural mode
of operation is to employ connection oriented
networking principles which have resulted in the
well-known circuit switched telephony network.

Originally, the Internet was designed to trans-
port data generated by computers. The timeli-
ness of data communications is generally delay
tolerant. Delay constraints were not viewed as
important as routing flexibility and connectivity.
To provide the latter, a connectionless mode of
operations, where each data packet of a same
flow is treated independently of the others, is

*Currently at the Technical University of Delft, Fac-
ulty of Information Technology and Systems, Department
TVS, Room 19.270, Mekelweg 4, 2628 CD Delft, The
Netherlands. Email: P.VanMieghem@its.tudelft.nl

preferable. From this underlying connectionless
philosophy, the Internet has grown to a world-
wide network excelling in an unreliable, connec-
tionless, best effort delivery of variable length
packets.

Hence, using IP to transport voice over a
connectionless network seems contradictory to
the basic requirement of the voice service: a
timely delivery of voice samples. However, if
an IP-based network is only used for voice com-
munication (so avoiding detrimental interference
with other, delay non-sensitive services), tolera-
ble end-to-end delay bounds (ranging from 200
ms to maximum 300 ms) may be achieved. The
purpose of this article is to focus on a method
to provide analytic expressions to assess feasibil-
ity issues of what is now coined ’voice over 1P’.
In particular, questions as "how large is the net-
work allowed to be to fulfil tolerable end-to-end
delays" or "what is the maximum loading of the
network" can be estimated with the present ap-
proach.

2 The idea of the method.

Performance analyses of communication net-
works basically rely on two different approaches.
In only a few cases, the problem is simple enough
to allow for an analytic solution. Usually, the
analytic intractability forces us to simulate the
network behaviour. However, for dimensioning
purposes or to decide on the break-even point
in operating cost, simulations are awkward, con-
sume much time and still remain approximate.
Indeed, most often simulation results are com-
puted based on some reference network and al-



though different loading scenario’s (e.g. several
traffic profiles) are considered, in many cases the
influence of the chosen reference topology is not
questioned. At last, when the behaviour of sev-
eral parameters is desired, simulations may be-
come unfeasible as the whole parameter space
cannot be skimmed in sufficient detail. In short,
closed-form analytic estimates are highly valu-
able to deal with dimensioning problems.

Since a queueing network approach [11] rarely
leads to manageable, closed-form expressions
and also assumes a certain network topology, we
propose a different stochastic method relying on
properties of random graphs, derived elsewhere
and briefly summarized here and in the appendix

1.

The two most frequently occurring models
for random graphs (r.g.) [1] are G,(N) and
G(N,E). The class of r.g. denoted by Gp(N)
consists of all graphs with N nodes in which
the edges (or links) are chosen independently
and with probability p. A natural refinement of
Gp(NV) is the model Gy, 1 (N) where the edges
are still chosen independently but where the
probability of i« — j being an edge is exactly p;;.
The class G(N, E) constitutes the set of graphs
with N nodes and E edges. Only connected r.g.
have been taken into account. This confinement
limits the value of the ’link density’ p (or equiv-
alent F) from below by some critical threshold
Pe- The computation of this threshold is rather
complicated and has been investigated for many
years as a challenging topic in the theory of r.g.
|7, 5, 6] and in percolation theory in solid state
physics [9].

In a r.g., the number of paths from a source
node, say A, to a destination node, say B, can
be categorised according to the number of hops
from A to B over different intermediate nodes.
An exact analysis for the probability distribution
function (pdf) of the hopcount is possible for r.g.
of the class Gp(IN), but, unfortunately, not for
the class G(N, E).
results is,

An interesting and simple

Theorem 1 The pdf of the hopcount in con-
nected r.g. of Gp(N) is bounded from below by a
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Figure 1: A comparison of the pdf of the hop-
count for G(N, E) and Gp(N) computed respec-
tively via the simulations and approximated by
(1) for a fixed number of nodes N = 10 and var-
ious links £ = pEnaz-

Poisson distribution,

(1>N—i—1 1
P[path = ihops] > m er (p>pe)

(1)

Moreover, (1) is a very good approximation.

This theorem is proved in the appendix 1.

In addition, the Poisson probability distribu-
tion also seems a reasonable approximation for
the class Gy, (V) (with as frequently used mem-
ber the Waxman random graph [3, 12]) and for
the class G(NV, E) as shown in Fig. 1. For in-
creasing link density p — 1 all r.g. (and corre-
sponding pdf’s) converge rapidly towards a full
mesh configuration with £ = E,,,, = (1;7 ) links
as illustrated in Fig. 1.

In section 4 our combination of queueing the-
ory and the theory of r.g. is presented.

3 Assumptions.

As voice over TP has recently evoked consider-
able attention [10], we will give in this article an
estimate of the end-to-end delay experienced by
two parties communicating via a voice over IP
service. It is assumed that the network only car-
ries voice over IP traffic and no other Internet



data. The end-to-end delay computation does
not include the encoding time nor the packetiza-
tion delay' at each communicating end system,
but only the queueing delay of 1P packets in a
certain network.

A number of assumptions are adopted. First,
we consider each node in the network consist-
ing of a number of separate, single queues, each
devoted to traflic for a same output port. This
allows us to confine to a single server queueing
system. Second, we assume that the input ar-
rival law for the IP packets at each stage is well
approximated by a general independent process
(such as e.g. a Poisson process) with average
number of IP packets per unit time equal to A.
Consequently, the delay in each node may be
modeled as in a GI/G/1 queue [8]. Third, the
influence of the network topology is reflected via
the pdf of the hop count. As shown above, the
Poisson distribution is a reasonable approxima-
tion for the pdf of the hop count. Only two
parameters, the number of nodes N and the
link density p characterize a network topology.
Fourth, an evenly spread load (average of the
arrival process) is assumed. This corresponds
more or less to a well designed network exhibit-
ing load balancing as a desired feature. Another
interpretation of this assumption is that of a per-
fect connectionless mode of operation where opti-
mal throughput in the network is achieved. This
set of approximations clearly idealizes the net-
work performance, most likely furnishing a lower
bound on the (real) average end-to-end delay.

4 Derivation.

Let us denote W(z) and D(z) as the generating
functions of respectively the delay per node and
the end-to-end delay in a r.g. of the class Gp(IV).
The variable z refers to a discrete time generating
function while we will use below the variable s
for continuous time. On the assumption of load
balancing each node in the network experiences
a same (input) load A(p) which is related to the
link density p’, because the total capacity of a
network with identical links is proportional to
P Emaz. In order words, if C' denotes the total

! An analysis including these delay components is found
in [4].

capacity of inflows to the network, each node -

under load balancing - receives a portion & =

E
% ESM of this total capacity. Hence, there holds

)\(p) = /\Tj. The relation between W(z) and D(z)
is

N-1
D(z) = Z Problhop = h].W"(2)
h=1
Using the Poisson approximation for the pdf of
the hop count (1) in a class Gp(N) r.g. yields for
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where the last approximation is justified if N
is sufficiently large. Observe from (2) that
D(1) =1 (or in continuous time, D(0) = 1) since
W(1) =1 (or W(0) = 1) guaranteeing the ba-
sic normalization condition for the discrete-time
(or continuous-time) probability generating func-
tion (dpgf) (or cpgf). The derivative evaluated
at z =1 (or s = 0) equals the average end-to-end
delay. Since

1

D'(z) ~ erlwm w30 wi)

1
x ((N ) W(z) - ->
p
we obtain taken into account that W (1) =1 (or
W(0) = 1),

(p > pc)
(3)
This surprisingly simple results means that the
average end-to-end delay approximately equals
the average delay spent at a node multiplied by
the factor (N — 1) — %. The latter mirrors the
longest possible number of hops decreased by the
inverse of the ’link density p’. In a load balanced
topology where all paths are equally probable to
be used, a full mesh topology causes the longest
average end-to-end delay (because the fraction
of longer paths is just larger than in a sparse
topology as illustrated in Fig. 1). However, the

D'(1) ~ W'(1) ((N - %)



quantity W’(1) involves an average input\ ~ ]lj.
This (queueing) dependence on p outweighs the
sensitivity of the second factor in (3).

A further analysis requires the knowledge of
W (z). The dpgf for the delay in a GI/D/1 sys-

tem is [2]

101 2(U(z) — 1)
L 7 57

where U(z) is the dpgf of the Gl-arrival process.
Thus, for a Poisson arrival process with param-
eter A holds that U(z) = eM*~1 or

1= )z (M=) 1)

Wiz) A z—eMeD)

Perhaps a continuous-time equivalent (where z is
changed for s) as that of the M/M/1 system may
be more appropriate since the IP packets may
have a variable length and, hence, may need a
variable service time (as opposed to the GI/D/1
system where the service time is deterministic
and fixed). From [8, eq. (5.117)], we have

~ (A-pp
Wis) = s+ u(l —p)

where p = % is the traffic intensity and g the
average service time. Introduced into (2), this
cpef leads to a remarkably simple expression for
D(s),

ep(ljp)u
(s +p(l—p))N-1

The inverse Laplace transform, d(y) = Prob[D >
y| = 5k [H D(s) e¥* ds with ¢ > 0, is readily

c—100

D(s) ~ ((1 A

— P

verified with p = %* and p > p. as

Prob[D > y] =

12 o N=2 a4
((N _pQ))!“ (y(p p )u+1> )

p

Relation (4) exhibits that the cumulative pdf
d(y) is proportional to a Poisson law with pa-
rameter LE=LHL ovaluated at index N — 2. In
addition, (4) is a simple expression to estimate
a lower bound on the end-to-end delay in a net-
work with N nodes and link density p.

An evalution of the goodness of this simple es-

timate (4) stands on the agenda for further work.
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1 The pdf of the hop count in G,(N).

A path p of length ¢ is completely characterised
by a list of ¢ + 1 different nodes, pa_p =
n1,m9,- -« ,nip1] with ng = A, n;y1 = B and
ng # ny for all k,j € [1,7+ 1]. Sometimes a
more illustrative representation is given such as
pa—B = (n1 — n2)(ng — nz)--- (i — niy1).
The maximum number of hops is clearly N — 1.
There are two different approaches to compute
the probability distribution function (pdf) of the
hop count of a path from A to B. Either we fix
the topology and vary the source and destination
over all possible couples or we choose a particu-
lar source and destination and let the topology
change over all possible forms. Here, the latter
is preferred with A =1 and B = N.

The connectivity of network topology with N
nodes can be represented by a symmetrical con-
nection matrix 7' consisting of elements T;; that
are either one or zero depending on whether there
is a link or edge between node 7 and j or not.

hops |1 2 3 4 5 N

Figure 2: A sketch of the possible constructions
of paths with 2 hops.

The average number of paths with 1 hop
equals p, because it is related to the probability
that T3y = 1. The maximum number of differ-
ent links used is clearly one, which we denote as
Ly =1.

The average number of paths with 2 hops is
E [Zi]\gl(l N N)} = (N —2).p%. Indeed
as illustrated in Fig. 2, initially, all paths with
2 hops start at 1, visit an intermediate node 1
different from 1 and N from which they depart
to the final destination N. Also, the maximum
number of different links used to construct a path

with 2 hops equals Ly = 2(N — 2).
Analogous, the average number of paths with
3 hops is

E [Sizam Sigim (12 0.5 ). 5 V)]
= (N =2)(N -3).p?

The maximum number of links used is now Lg =
Fraz — 2. Indeed, only two link transition are
forbidden, 13y and one out of the N — 2 remain-

ing last column values.
In general, we have that the average (or ex-
pected) number of paths with ¢ hops, H;, equals

1D N SRR S

S #F{LNY 2#4{1,5, N} Jio A L5102, N}
(12 5).G1 D go)e e (i D N)}
S1#{1,N} j27#{1,5:,N} Jic1#A4{L,41,di—2,N}
E[(1 5 ). E[(y 2 da)]. -+ -El(ji 1 B N)]
S0 S SED S
J17#{1,N} j27#{1,51,N} Jic1#{1,41, - di—2, N}
Sy Y ey
J1#{1,N} 52#{1,5,,N} Ji #{L, 41, di—2,N}
(N=2)t

- ot )

H;

The maximum number of links used equals L; =
FErar — 1+ 1 because there are, besides 11 5, now
i — 2 last column elements not allowed.

Lemma 1 The mazimum total number of paths
in any graph is upper bounded by

M = [e(N —2)]] (N >3) (6)

where [x] is the integer smaller than or equal to
x.

Proof. That maximum M will clearly be at-
tained in case £ = FEgp or p=1
Using (5) and summing over all hops yields

N-1 N-2
(N =2)! 1
M = —— = (N -2)! —
i:ZI(N_Z_l)! jzoj!
= (N-2)le—R

where
1 & (N=2)!
R = (N-2)! Y == ]\(7—1+)'
j=N-17"  j=0 J
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meaning that for N > 3, R < 1. Since M must
be an integer, this brings us to the surprisingly
simple, exact result (6) for the total number of
paths in a full mesh. W

We now turn to the probability distribution
function (pdf) of the hop count of a path.

Theorem 2 The pdf of the hop count in con-
nected r.g. of Gp(N) is
1 N—i—1

Ap/
(N—i—1)!

P[path = ihops] = (p > pe)

(7)

Nz (3)
20
where pe > ﬁ is a critical threshold

Proof. We observe

N-1
Z Plpath =ihops| =1 (8)
i—1
where
Plpath = ih ]—CM (9)
patft =1aops = Iy i — 1 P

On the assumption that all graphs are con-
nected, the probability that there is no path from
1 to N, P[path = Qhops], is exactly zero. No-
tice, however, that this assumption restricts the
value of p from below by a critical threshold, i.e.
P > pe, where p. corresponds with the link den-
sity leading to disconnectivity in the r.g.. The
proportionality factor C' follows from (8) as

1
C= — (10)
(N —2)lpN=1 TP

*Expression (7) bears resemblance to the fa-
mous Erlang B-formula[8, pp. 106],
ﬁ

_ m!
- k
ko
where pp, is the probability that, in a

M/M/m/m system with traffic intensity p, all
m servers are busy.

Pm

Using (10) in (9) leads to (7). W
The proof of theorem 1 is immediate from the-
orem 2 and the inequality

N—2 (l)k )
Z AV < er

!
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