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Abstract– Many networked applications can benefit
from a quick estimation of distances to a large number
of hosts. Landmark schemes provide such estimates
based on distances in a hyperspace in which the hosts
are embedded. We evaluate a simple landmark scheme
using empirical data for both delay and hopcount. We
investigate various choices for the hyperspace distance
function. We also compare the measurements with si-
mulations on random graphs with minimal link weight
routing.
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I. Introduction

In various types of networking applications there
is a need for quickly determining how far nodes are
separated from each other. An example is when a
client has to select the nearest from a set of equiv-
alent servers. Similarly, optimization of overlay net-
works like peer-to-peer networks often requires that
nodes connect to peers in their neighborhood. Usually
"sepa-ration" or "neighborhood" is defined in terms of
the network delay experienced in a packet exchange,
but we will use the general term "network distance" to
include other quantities as well. In particular, besides
the delay we will study the hopcount.
Actively measuring network distances between

many pairs of nodes imposes a large load of probe
packets on the network. A delay measurement re-
quires at least a few packet exchanges to filter
out noise. A hopcount measurement using for in-
stance traceroute is even more expensive. Mapping-
techniques based on landmarks or beacons attempt to
solve this problem[1][2]. In these techniques each of
the N nodes measures its distance to a small set of
M well-known landmark servers. By conceiving the
results as the components of a vector, each node is
embedded in a M -dimensional hyperspace. Now it is
assumed that the distance between two network nodes
can be estimated by computing the (e.g. Euclidean)
distance between their respective coordinate vectors
in the hyperspace. The assumption implies that one
can estimate the entries of a large N × N distance
matrix when knowing only M rows or columns. It is
important to stress that the method is entirely heuris-
tic; the only a priori basis is the intuition that nearby
nodes in the network are likely to have "nearby" coor-
dinate vectors. Purely the fact that it seems possible
in practice justifies its use.
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In this paper we evaluate landmark-based distance
estimation using various hyperspace distance func-
tions. Our empirical evaluation is based on data from
the RIPE NCC TTM project. This data-set contains
measurements of both delay and hopcount between a
set of about 60 test-boxes. The network delay directly
influences the user experience in many applications.
There can be an indirect influence as well because the
TCP throughput is roughly inversely proportional to
the round-trip time. The hopcount, on the other hand,
is usually not a network distance of direct relevance
to the user. It is however an important quantity from
a network-centric point of view. When nodes connect
to peers which are separated by a small number of IP
hops, the amount of traffic traversing network bound-
aries can potentially be limited. This argument of
"segregating traffic by topology" has also been given
in [2], but a detailed account of the efficacy still has
to be made.

II. Related work

A closely related work is the GeoPing approach.
GeoPing was originally intended to infer geographi-
cal locations of nodes from delay measurements to a
set of landmarks [1], but later it was also used to infer
the delay itself [3]. In the latter form it coincides with
the method studied by us, except that they just use
the Euclidean hyperspace distance. A main conclu-
sion of our work is that for predicting the delay, the
Euclidean distance function is not the optimal choice.
A minor difference is that they use the median delay in
their later paper, whereas we use the minimum delay.
Guyton and Schwartz [2] studied the problem of se-

lecting the nearest Internet servers in terms of hop-
count. They compare various methods including
(among several methods requiring router-support) the
landmark-based scheme. They use the "triangulation"
hyperspace distance function DA which was first pro-
posed in [8]. The focus in [2] is on the cost of the meth-
ods in terms of the number of packets exchanged. The
effectiveness of "triangulation" is addressed as well,
but using a different measure than we do. We do not
consider costs and focus on the landmark-method, for
which we evaluate the effectiveness using various hy-
perspace distance functions. Our analysis confirms
that DA is a satisfactory choice for the hopcount. An
added value of our experiment is that we can compare
the effectiveness of hopcount and delay estimation on
the same set of nodes.
Global Network Positioning (GNP) by Ng and

Zhang [7] is a different estimation scheme which is also
based on landmarks. In this approach not only the
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peers but also the landmarks are embedded in the hy-
perspace, based on the measured inter-landmark dis-
tances. The assignment of coordinates to landmarks
and other nodes is cast in the form of a minimiza-
tion problem where the objective function quantifies
the errors in the distance estimates. This minimiza-
tion should be solved online, which imposes a compu-
tational load on nodes and landmarks. The authors
provide an extensive comparison between GNP, the
"triangulation heuristics" D+, D∞, and DA that we
consider in this paper, and IDMaps (see below). They
concluded that D+ is the best triangulation heuristic
for the delay. This is confirmed by our analysis. GNP
is more accurate, at the cost of a higher computation
and communication complexity. Lighthouse [5] and
SCoLE [6] improve on GNP in the sense that the role
of the landmarks is progressively decentralized.
IDMaps [4] is an infrastructure for estimating dis-

tances. Their "tracers" are servers similar to our land-
marks, except that they actively measure their dis-
tances towards other tracers and towards domains on
the Internet.
Various overlay networks use distance estimates to

construct efficient topologies. Ref. [9] describes the
use of a landmark scheme in a distributed hash-table
named CAN.

III. Problem description and definitions

Let d(A,B) be the network distance between node
A and B. We assume that d(A,B) ≥ 0. Note that
our "network distance" is not a mathematical distance
function. In particular the triangle inequalities may
not hold.
The M landmark servers are denoted as L1, ..., LM .

To each node Xi we assign a coordinate vector

xi ≡ (xi1,xi2, ...,xiM )
where xik = d(Xi, Lk) is the measured distance be-
tween the node i and the landmark k. The hyper-
space distance between the coordinate vectors xi and
xj is written as D(xi,xj), to distinguish it from the
network distance d. The central question of our pa-
per is: To which extent is D(xi,xj) correlated with
d(Xi,Xj)? We answer this question for the following
functionals:

Dq(xi,xj) =

Ã
MX
k=1

(xik − xjk)q
!1/q

, q > 0

D+(xi,xj) = min
k=1,...,M

(xik + xjk)

DA(xi,xj) = (D+ +D∞)/2

DG(xi,xj) =
p
D+D∞

The Holder q-norm Dq generalizes the Euclidean dis-
tance D2 which was used in [3]. For q = ∞, Dq re-
duces to D∞(xi,xj) = maxk=1,...,M |xik − xjk|. The
functions D∞ and D+ play a special role in the sense
that they are a lower and upper bound for the net-
work distance d, assuming that d satisfies the triangle

inequalities. Based on this observation, the arithmetic
average DA of D∞ and D+ has been proposed as a hy-
perspace distance [8][2]. We also include the geomet-
ric mean DG. If d satisfies the triangle inequalities we
have

D∞ ≤ DG ≤ DA ≤ D+

IV. Experiment

Our data are provided by RIPE NCC TTM (Test
Traffic Measurement) project. The TTM is a mea-
surement infrastructure designed and run by RIPE
NCC as a commercial service offered to ISP’s. The
TTM infrastructure consists of approximately 60 mea-
surement boxes scattered over Europe (and a few in
the US and Asia). Between each pair of measurement
boxes, IP packets of a fixed length (100 bytes), called
probe-packets, are continuously transmitted with in-
terarrival times of about 40 seconds, resulting in a to-
tal of about 2160 probe-packets per day. The sending
measurement box generates an accurate time-stamp
synchronized via GPS in each probe-packet, while the
receiving measurement box reads the GPS-time of the
probe-packet on arrival. The end-to-end delay is de-
fined as the difference between these two time-stamps
and has an accuracy of 10 µs. The hopcount is mea-
sured every 6 minutes using traceroute. We have ana-
lyzed the data collected by TTM on May 15, 2003, at
which time there were 58 active boxes, where 48 hosts
are located in Europe, 7 in the US, and 1 in Japan,
Australia and New Zealand. The map in Figure 1
shows the geographical distribution of the test-boxes.
For each sender-destination pair we computed the

minimum end-to-end delay over 24 hours (that is ap-
proximately 2160 probe-packets), in order to know the
congestion-free delay. The RIPE TTM differs from
other infrastructures like PingER and AMP in that it
measures one-way delays rather than RTTs. In this
paper however we do not care about asymmetry, and
we always consider the symmetrized network distance,
defined as the sum of the network distances in both
directions. For the delay, the result can be considered
as a round-trip time. For the hopcount we consid-
ered only the most dominant path during 24 hours.
We omitted pairs for which the delay or hopcount in
one of the directions is missing, leaving in total 1503
pairs and 1024 within Europe. These measurements
provide us with the network distance matrix d(A,B).
Of all the test-boxes, 10 are assigned the status of

landmark. We chose them randomly except that 6
are located in the EU, 1 is located in the Asia and 3
are located in the US. The remaining test-boxes are
referred to as ”peers”. We repeated the experiment
with M = 5 respectively M = 15 landmarks.

A. Delay

In Figure 2 we plot the data for the delay, using
10 landmarks. The figure shows six panels, corre-
sponding with six different hyperspace norms: D1,
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Fig. 1. Location of the RIPE test-boxes

D2, D∞, D+, DA, and DG. Each data point cor-
responds to a pair of peers. On the horizontal axis
is their actual network distance d(A,B), on the ver-
tical axis their distance predicted by the landmark
scheme, that is their hyperspace distance D(xA,xB).
The lines shown are the least-squares fitted line, and
the diagonal D = d. The inset also shows the linear
correlation coefficient,

r(D, d) =
cov(D, d)p

var(D) · var(d) .

We repeated the experiment using less a smaller (5)
respectively larger (15) number of landmarks. We also
repeated the experiment on the subset of test-boxes
(landmarks and peers) which are all in Europe, again
with 5, 10, and 15 landmarks. The results are sum-
marized in Table I. Each row corresponds to a differ-
ent hyperspace distance function; each column corre-
sponds to a different number of landmarks, selected
from the complete set of test-boxes ("All") or from
those in Europe only ("Eur"). The first number in
each cell is the linear correlation coefficient r(D, d).
It makes sense to study also Spearman’s rank correla-
tion coefficient

r0(D, d) ≡ r(rank(D), rank(d))

quantifying the ability to predict which nodes are clos-
est irrespective of the actual values of the distance.
The rank correlation is given as the second number in
each table cell.
The D+ hyperspace distance gives the highest cor-

relations, in particular higher than for the Euclidean
distance D2. The results for DA and DG are almost
as good as D+.

B. Hopcount

We now turn to the results for the hopcount. Fig-
ure 3 shows the results for 10 landmarks. The com-
plete results including those for M = 5 and M = 15
landmarks are summarized in Table II with the same
notation as Table I.
The plots and the table both show that for the hop-

count, as compared to the delay, the correlation be-
tween estimated and actual distance is smaller. The

functional DA shows the largest correlation. Another
interesting observation about the hopcount is that the
majority of data-points in the scatterplot forD∞ (D+)
is located below (above) the diagonal. This means
that in practice these lower and upper bounds derived
by assuming the triangle inequalities are satified more
often than not. Note that a violation of only one of
the inequalities for one of the triangles XiXjLk is suf-
ficient for a violation of either the lower bound (i.e.
d < D∞) or the upper bound (d > D+).

V. On network distance triangulation

We have seen that although the delay and hopcount
do not by construction satisfy the triangle inequalities,
a prediction scheme based on the triangle inequalities
can be relatively successful. Apparently these network
distances are sufficiently correlated between triplets of
nodes. In this section we try to shed some light on
the possible origin of such correlations. The most ob-
vious origin is the fact that a communication network
is embedded in the real, Euclidean world. Even when
network distances are only weakly correlated to geo-
graphical distance, the network distance matrix will
bear some reminiscence of the geographical triangle
inequalities.
Geographical embedding is however not a necessary

condition for correlations in the network distance ma-
trix. Consider an arbitrary network topology where
the paths are sought to minimize the sum of given
link weights. Note that in such a scenario the path
weights obey the triangle inequalities by construction,
whereas the hopcount does not. We did some simu-
lations in order to see to which extent both types of
network distances can be predicted using landmarks.
For sake of simplicity we simulated random graphs

with i.i.d. link weights w. We applied landmark esti-
mation to both the path weight and the hopcount, for
the six hyperspace distances defined before. In partic-
ular we generated random graphs of 2000 nodes and
link probability p = 0.01. Each link weight w is drawn
from a polynomial distribution,

Pr[w ≤ x] = xα · 1x∈[0,1]
where α is a positive real number. For large values of
α the link weights are nearly constant (and equal to
unity), so the path weight becomes identical to the
hopcount. For α = 1 the link weight distribution
is uniform. For small values of α the fluctuations of
the link weights are much larger than their average.
As representative values for these regimes we consider
α = 0.1, 1, and 10. For each value of α, 104 ran-
dom graphs were generated, and in each of them, 10
random nodes were elected as landmarks, and 10 oth-
ers were randomly chosen as "peers". In Table III we
summarize the results. The column names "hops" and
"weights" correspond with the choice of the network
distance being estimated.
The following observations are made from these

data:
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• The correlations for "hops" are always smaller than
for "weights". This was more or less expected, in view
of the fact that the (minimized) path weights satisfy
the triangle inequalities, while their hopcounts do not.
For larger values of α the difference between hops and
weights will disappear, and both will satisfy the tri-
angle inequalities. (The results shown for "hops" and
α = 10 are somewhat anomalous for the network size
studied because the hopcount is only a small integer.)
• For α = 0.1 and "weights" the correlations are
nearly perfect. Also the correlations for the hopcount
have reached a moderately high level. This can be un-
derstood because for sufficiently small α, all shortest
paths in the graph lie on a single spanning tree [10].
As a consequence, the triangle inequalities are satisfied
not only for path weights but also for the hopcount.
In conclusion, the hopcount on minimal weight

paths satisfies the triangle inequalities both in the
limit of weak and strong link weight fluctuations. This
result is actually quite robust and independent from
the graph topology and details of the link weight dis-
tribution. In the Internet path selection is obviously
more complicated since routing policies play an im-
portant role. It remains an interesting question to
model the effect of these policies on network distance
matrices.

VI. Conclusions

We evaluated a landmark-based estimation scheme
using real data for the delay and hopcount between
Internet hosts. In particular we studied which hyper-
space distance function correlates best with the actual
distances between hosts. From our experiments and
simulations we could draw the following conclusions:
• The best results for the delay estimation are ob-
tained using D+.
• The best results for the hopcount estimation are ob-
tained using DA.
• Hopcount is generally harder to estimate than delay.
• Theoretically, we found that even if a network is
not embedded in a Euclidean space, and routes are
based on link weight minimization, the hopcount dis-
tance matrix can be sufficiently correlated to support
landmark-based estimation.
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Fig. 2. Scatterplots for the delay measurements. Shown is the estimated (i.e. hyperspace) distance versus the measured distance,
for six hyperspace distance functions. The number of landmarks is10. The plotted lines are the diagonal, D = d, and a least-squares
fit.

5 (All) 10 (All) 15 (All) 5 (Eur) 10 (Eur) 15 (Eur)
D1 0.86, 0.91 0.91, 0.88 0.89, 0.91 0.76, 0.75 0.89, 0.84 0.64, 0.80
D2 0.90, 0.91 0.93, 0.86 0.96, 0.90 0.78, 0.74 0.90, 0.80 0.83, 0.74
D∞ 0.93, 0.90 0.91, 0.77 0.88, 0.84 0.65, 0.70 0.70, 0.75 0.91, 0.70
D+ 0.96, 0.90 0.98, 0.93 0.99, 0.93 0.96, 0.80 0.96, 0.87 0.93, 0.84
DA 0.95, 0.93 0.97, 0.86 0.98, 0.90 0.79, 0.77 0.81, 0.82 0.91, 0.76
DG 0.94, 0.93 0.97, 0.90 0.98, 0.91 0.81, 0.81 0.77, 0.82 0.94, 0.83

TABLE I

Correlation coefficients for the delay data.

5 (All) 10 (All) 15 (All) 5 (Eur) 10 (Eur) 15 (Eur)
D1 0.23, 0.19 0.45, 0.46 0.51, 0.53 0.39, 0.40 0.45, 0.46 0.57, 0.60
D2 0.29, 0.28 0.48, 0.47 0.54, 0.54 0.40, 0.37 0.46, 0.46 0.57, 0.60
D∞ 0.35, 0.37 0.41, 0.40 0.47, 0.45 0.40, 0.35 0.38, 0.35 0.46, 0.44
D+ 0.67, 0.65 0.71, 0.67 0.79, 0.78 0.64, 0.58 0.65, 0.60 0.70, 0.62
DA 0.67, 0.71 0.78, 0.74 0.81, 0.80 0.66, 0.61 0.70, 0.65 0.75, 0.70
DG 0.54, 0.58 0.71, 0.67 0.76, 0.74 0.55, 0.50 0.62, 0.58 0.68, 0.65

TABLE II

Correlation coefficients for the hopcount data.
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Fig. 3. Scatterplots for the hopcount. The number of landmarks is 10.

α = 0.1 α = 1 α = 10
hops weights hops weights hops weights

D1 0.60, 0.54 0.97, 0.98 0.13, 0.13 0.92, 0.86 -0.10, -0.10 0.39, 0.33
D2 0.60, 0.58 0.97, 0.99 0.14, 0.14 0.93, 0.87 -0.10, -0.10 0.47, 0.39
D∞ 0.60, 0.57 0.99, 0.99 0.16, 0.16 0.92, 0.87 0.12, 0.10 0.50, 0.41
D+ 0.60, 0.60 0.97, 0.99 0.20, 0.19 0.98, 0.94 0.32, 0.31 0.65, 0.43
DA 0.70, 0.71 0.99, 0.99 0.25, 0.24 0.98, 0.95 0.35, 0.33 0.70, 0.51
DG 0.70, 0.71 0.99, 1.00 0.25, 0.24 0.97, 0.94 0.27, 0.32 0.70, 0.49

TABLE III

Correlation coefficients for the random graph simulations.


