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1. Introduction: Multicast Routing

The main problem considered in this paper is that of routing from a single source node to
a set of p destination nodes, also called multicast source routing or point-to-multipoint
routing. The advances in technology and the fast emerging multimedia applications have
provided great impetus for new (real-time) multicast applications. A frequently
encountered example of a real-time multicast application is videoconferencing, but many
others will emerge in the future. Videoconferencing, as a good representative of the class
of real-time multicast applications, requires sufficient bandwidth and, in addition, limits
to the maximum delay, jitter and (packet) loss. These requirements, which we consider
the same for all members, are referred to as Quality of Service (QoS) constraints. Many
multicast applications will not operate properly if QoS cannot be guaranteed. Hence,
future multicast algorithms must be capable of satisfying a set of (feasible) QoS-
constraints.
A main property of multicast routing is the efficient use of resources (Van Mieghem et
al., 2001a). Because each of the p destination nodes will receive the same information,
unicast (sending the information p times over each shortest path to each individual
multicast participant), is inefficient since most likely there will be some overlap among
the set of shortest paths. Multicasting as few duplicate packets as possible and only
duplicating them if necessary clearly is more efficient. For the case of a single metric,
multicast source routing can be implemented by forwarding the packet of a flow or
session over the shortest path tree. The more general problem of multipoint-to-multipoint
leads to the optimal solution of the minimum Steiner tree problem (Hwang et al., 1992).
The main contributions of this paper are ordered as follows. Section 2 will give a formal
definition of the main problems of multicast routing with multiple constraints. Since all
previous research on multicast routing focuses on finding a multicast tree (e.g. see
Salama et al., 1997) and often only considers a fixed number of constraints (e.g. only
delay and jitter in Rouskas and Baldine, 1997), we shall discuss multiple-constrained
multicast trees in section 3. We will demonstrate that finding a tree subject to multiple
QoS requirements is not always possible. Section 4 will briefly overview SAMCRA, our
previously proposed unicast QoS-algorithm (Van Mieghem et al., 2001b). In section 5 we
will extend this algorithm to a multicast QoS-algorithm called MAMCRA, Multicast
Adaptive Multiple Constraints Routing Algorithm. MAMCRA finds the set of shortest
paths to all destinations and then reduces the consumption of resources without violating
the QoS-constraints. Section 6 gives a discussion on multicast routing and poses some
suggestions, after which section 7 concludes this paper.

2. Problem Definition

A communication network is modeled as an undirected graph G(N, E), where N is the set

of nodes and E is the set of links1. Each link is characterized by a link vector w
��

consisting of m link metrics wi, for i = 1, …, m. We presume that the full network

                                                
1 With a slight abuse of the notation, we sometimes also denote the cardinality |S| of the set S by S. Thus,
the number of nodes |N| in the set N, by N and similar for the number of links E.
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topology is known at a certain time interval and regard the topology metrics as frozen. A
network topology supporting QoS consists of link vectors with non-negative QoS-metrics
as components. The QoS-metric of a path can either be additive in which case it is the
sum of the QoS-metrics of the links along the path (such as delay, jitter, the logarithm of
packet/cell loss, cost of a link, etc.) or it can be the minimum(maximum) of the QoS-
metrics along the path (typically available bandwidth and policy flags). Min(max) QoS-
metrics are treated by omitting all links (and possibly disconnected nodes) that do not
satisfy the requested min(max) QoS-constraints. This is called topology filtering. This
paper only considers m additive QoS-metrics, which cause more difficulties (as explained
below) than min(max) QoS-constraints. The m QoS-constraints Li, for i = 1, …, m are
represented by the constraint vector L

��

. Since all participants receive the same multicast
application emitted by the source, the constraint vector L

��

 is the confining vector for all
multicast members of the group.
A multicast sub-graph M({s, D}, H) ⊆  G(V, E) has p < N multicast destination nodes
(multicast group members or participants) represented by the set D = {d1, …, dp}. Each of
these destination nodes is connected to the source node s, by the links in H ⊆  E. As will
be exemplified below, M is best regarded as a set of paths from s to dj, j=1,..p, which use
the links in H.

Definition of a cycle: A cycle is a path in a graph, which starts and ends at the
same node and includes other nodes at most once.

Definition of dominance: Let a
�

 and b
�

 be two different vectors, each consisting

of m components. a
�

 dominates b
�

 if ai ≤ bi, for i = 1, …, m, with an inequality
sign for at least one i.

Definition of non-dominance (Henig, 1985): A vector a
�

 is called non-

dominated if there does not exist a vector b
�

 that dominates a
�

.

Problem I (Multiple Constrained Multicast (MCM)):
Given s and D, find M({s, D}, H) such that for each path P(s,dj) from s to dj ∈  D,
j=1,…p:

wi(P) ≤ Li, for i = 1, …, m

where w
��

(P) is the vector sum of  the links that constitute P:
( ) ( )i i

e P

w P w e
∈

= ∑ , for i = 1, …, m.

Note that if for a certain dj ∈  D no feasible path exists, dj should be removed from D.

Define 
1 | |

( ) ( )l
l H

w M w e H
≤ ≤

= ∈∑
�� ��

and l(M) = || w
��

(M)|| as the length (or vector norm) of

w
��

(M). The length l(M) can be any function f( w
��

(M)) on the weight vector of M that
returns a real number, provided that f(.) is a vector norm (see 4.2). Throughout this paper
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we consider 
1,...,

( )
( ) max i

i m
i

w M
l M

L=

 
=  

 
, which has been motivated in our study of unicast

QoS routing (De Neve and Van Mieghem, 2000).

Problem II (Multiple Parameter Steiner Tree (MPST)):
For s, D given, find M({s, D}, H) for which l(M) is minimum.

Problem III (Multiple Constrained Minimum Weight Multicast
(MCMWM)):
For s, D given, find M({s, D}, H) such that for each path P(s,dj) from s to dj ∈  D,
j=1,…,p:

wi(P) ≤ Li, for i = 1, …, m
and

l(M) is minimum

Problem III is a combination of problems I and II.

Section 3 will further discuss these three problems: solving the first problem results in
satisfying the QoS requirements, the second minimizes the total resource consumption
and the third optimizes the resources subject to the QoS requirements. Clearly, the last
problem is the most desirable objective for QoS multicast routing.

3. Properties of Multicast QoS Routing

First, all above defined problems are shown to be NP-complete. Subsequently, the MCM
and MPST problem are demonstrated to lead to non-compatible solutions.

Theorem I: MCM, MPST and MCMWM are NP-complete

Proof:
MCMWM is a combination of MCM with MPST. Therefore by proving that
MCM is NP-complete, we will also have proved that MCMWM is NP-complete.

Let us first consider MCM. For D = {d} this problem reduces to unicast QoS-
routing, which is proved to be NP-complete for m ≥ 2 additive parameters (Garey
and Johnson, 1979; Wang and Crowcroft, 1996).

For m = 1, MPST reduces to the minimum Steiner tree problem, which is known
to be NP-complete (Karp, 1972). QED.

In this paper we focus on solving the MCMWM problem that can be considered the
hardest of the 3 problems.

Property 1: The MPST does not necessarily obey the constraints for all multicast
members, even if there exist feasible paths towards these members.
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Proof: It suffices to prove property 1 by providing an example. Consider the topology in 
Figure 1.
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Figure 1. Example topology.

Here s is the source node, i is some intermediate node, and d1 and d2 are the two
destination nodes participating in the multicast session. The MPST connecting s,
d1, d2 is the path s-i-d1-d2 with a total weight vector of (1, 2) + (3, 4) + (5, 6) = (9,
12).  If the constraints were (13, 13), then this would be the best solution to the
MCMWM problem, since all the QoS constraints are met with a minimum
consumption of resources. However, if the constraints are more stringent, say (11,
11) then the path from s to d2 exceeds these constraints. In this case the multicast
tree [(s-i-d1), (s-d2)] obeys the requested constraints. This tree has a weight vector
of (1, 2) + (3, 4) + (10, 10) = (14, 16) and is the 2nd-shortest MPST. QED.

We have proved that the MPST, although optimal in terms of resource utilization, does
not always satisfy the constraints. Since in the example topology of Figure 1 the 2nd-
shortest MPST was the best solution, this suggests that considering k-shortest MPST will
lead to the optimal solution for MCMWM. We will demonstrate that this is not always
the case. We will illustrate that in order to guarantee QoS, we need to abandon the
concept of trees in multiple dimensions. Only for a single metric, the MCMWM solution
is a tree. If the solution to MCMWM would always be a tree, then k-shortest MPST
would give the exact solution.

Property 2: The graph (or topology) solution of the MCM and MCMWM is not
necessarily a tree.

Proof: Again, this property is demonstrated via an example.
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Figure 2. Example topology.

The MPST for the topology in Figure 2 consists of the links s-a, a-c, c-d1 and c-d2

and has a total weight (vector) of (1, 5) + (1, 6) + (1, 8) +(10, 2) = (13, 21). The
path weight vector for the path from s to d1 is (3, 19) and for s to d2 is (12, 13).

The 2nd-shortest MPST consists of links s-b, b-c, c-d1, c-d2 and has weight vector
(7, 2) + (7, 3) + (1, 8) + (10, 2) = (25, 15). The path weight vector is (15, 13)
between s and d1 and (24, 7) between s and d2.

In this example, no other non-dominated trees connecting s, d1, d2 exist, i.e. none
of the components of the weight vectors of the remaining (two) trees connecting s,
d1, d2 are smaller than those of the given weight vectors. Therefore, if the above-
mentioned trees do not satisfy a certain QoS, then no tree can satisfy this QoS.
If the constraints are (16, 16) then no tree can provide the requested QoS. The
only way to obey these constraints is by means of two paths: s-b-c-d1 and s-a-c-
d2. In that case the multicast sub-graph, M({s, D}, H), is not a tree. QED.

Property 3: The solution to MPST is always a tree.

Proof:
 P1 

P2 

a b 

Figure 3. A cycle formed by the paths (“branches”) P1 and P2.

If the solution M to MPST is not a tree, then it must contain a cycle as depicted in
Figure 3. The length of this solution M equals l(M) and according to problem
definition II, l(M) must be minimum, i.e.:

l(M) ≤ l(M’) ∀ M’
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Without loss of generality we assume that M only contains the cycle depicted in
Figure 3. Further we define M’ = M\{P2}, i.e. M’ is a tree.
Since all weights are positive, we have:

1 2

1 2

1 2
\( , )

1
\( , )

( ) ( ( ) ( ) ( ))

( ( ) ( )) ( ')

e H P P

e H P P

l M l w e w P w P

l w e w P l M

∈

∈

= + +

≥ + =

∑

∑

�� �� ��

�� ��

This leads to a contradiction, because according to problem definition II l(M) ≤
l(M’). Therefore, the sub-graph M (containing the cycle) cannot be a solution to
MPST. QED.

4. Unicast QoS Routing

First we will give an overview of SAMCRA, Self-Adaptive Multiple Constraints Routing
Algorithm, our previously proposed unicast QoS routing algorithm (Van Mieghem et al.,
2001b), to give some insight into multiple-constrained routing and because we will use
SAMCRA as a basis for our multicast QoS routing algorithm in section 5. Next we will
discuss the definition for length.

4.1 SAMCRA
SAMCRA returns the path between a given source and destination subject to the (end-to-
end) constraints Li on each QoS measure (1 ≤ i ≤ m). SAMCRA is based on three
fundamental concepts: a non-linear measure for the path length, the k-shortest path
approach and the principle of non-dominated paths.
All m additive QoS measures are considered as equally important. Each link is specified

by a m-dimensional weight vector [w1, w2, ..., wm]. The path vector w
��

(P)= {w1(P),
w2(P), ..., wm(P)}  is the vector sum of the link weights along this path, thus, wi(P) = Σ k

→ l ∈ P wi(k → l) for each i. The path length is a vector norm and given by
l(P) = max1≤ i≤m(wi (P)/Li ) (1)

This definition (1) obeys the criteria for ‘length’ or ‘distance’ in vector algebra (see 4.2)
and is motivated by the geometry of the constraints surface in m-dimensional space. We

claim that (1) is extendable to any transformation f( w
��

(P)) of the m-vector components to

a positive real number, provided that w
��

(P) lies within the constraints and obeys the
criteria for length. For example, some QoS measures may be regarded as more important
than others, min-max measures can also be considered. Of course, the difficulty lies in
the motivation of f. Subsection 4.2 is devoted to this discussion. In the sequel, we limit
the focus to the definition (1) for which we refer to (De Neve and Van Mieghem, 2000)
for a detailed discussion. An important corollary of a non-linear length function such as
(1) is that the subsections of shortest paths in multiple dimensions are not necessarily
shortest paths. This corollary suggests to consider in the computation more paths than
only the shortest one, leading us naturally to the k-shortest path (Chong, 1995) approach
(i.e. we consider the shortest path, the 2nd shortest, etc. up to the kth shortest path).
Finally, the multi-dimensional character of QoS routing invites the use of state space
reduction, which has been implemented via the concept of non-dominated paths (Henig,
1985). The number of shortest paths stored, during the computation of SAMCRA, in
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each nodal queue is represented by k. There always exists a finite value of k, which is
upper bounded by

( )  


















−=
∏

= )!2(,
max

min 1
max Ne

L

L
k

j
j

m

i
i

(2)

The first argument of the min-operator in (2) refers to the number of relevant path
vectors within the constraints surface. The second argument, where x  denotes the largest
integer equal to or smaller than x and e = 2.718..., is an attainable upper bound for the
number of paths between 2 nodes in any graph with N nodes (Van Mieghem, 1998,
2001c).
SAMCRA is an exact algorithm in the sense that it always returns the shortest path
according to the length definition.

Complexity:
The worst-case complexity of SAMCRA is O(kNlog(kN) + k2mE), with k = kmax given by
(2).
Simulations on millions of random graphs reveal that k << kmax (Kuipers and Van
Mieghem, 2001). (For m = 1, SAMCRA turns into Dijkstra’s algorithm).

4.2 On The Definition of Length in QoS Routing
The definition l(.) of the length of a vector p

��

 must satisfy the following criteria (Golub
and Van Loan, 1983; Royden, 1988):

(1) l( p
��

)>0 for all non-zero vectors and l( p
��

)= 0 only if p
��

 contains one or more zeros.

(2) for all vectors p
��

 and u
�

 holds the triangle inequality

l( p
��

 + u
�

) ≤  l( p
��

)+l(u
�

) (3)

If p
��

 and u
�

 are non-negative vectors (i.e. all vector components are non-negative), we
have

l( p
��

 + u
�

) ≥  l( p
��

) (4)
because the length of a non-negative vector cannot decrease if a non-negative vector is
added.

For example, if p
��

 = [1, 3, 5, 1, 9], u
�

 = [4, 5, 2, 1, 0] and L = [10, 1, 10, 10, 1], then,

using (1), p
��

 + u
�

 = [5, 8, 7, 2, 9], l( p
��

) = 9 and relation (4) gives l( p
��

 + u
�

) =  l( p
��

) = 9.

Depending on the constrained optimization problem, we can use SAMCRA with different
length functions, provided they obey the criteria for length. This subsection is devoted to
the motivation of suitable length functions for QoS routing, by giving three length
functions for some problems encountered in QoS routing. The three problems considered
are the Multiple-Constrained Path (MCP) problem, the Delay-Constrained Least-Cost
(DCLC) path problem and the Hop-Constrained Maximum Bandwidth (HCMB) problem.

Multiple-Constrained Path (MCP):
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Given a graph G(N, E) with m metrics per link and a constraint vector L
��

, find a path P
from source s to destination d that obeys all constraints of the constraint vector.

SAMCRA was designed to solve this problem, moreover with the length function (1),
SAMCRA not only finds a feasible path (if one exists), but the path is optimized for all
metrics. SAMCRA may however be stopped if a feasible path is found, instead of
continuing the search via (1) for the constraints-optimized path (the path that lies as far as
possible from all the constraints).

Delay-Constrained Least-Cost (DCLC) path:
Given a graph G(N, E) where each link is characterized by a delay and (monetary) cost,
a source node s and a destination node d. Given a delay-constraint D, the problem is to
find a path P within the delay-constraint for which the cost is minimum.

A suitable length function for this problem is:
( )

, ( )
( )

,

c P
if d P D

l P C
else

 ≤= 
 ∞

       (5)

where 
1
max( ( ))l

l E
C N c e

≤ ≤
=  is a cost-constraint that each cycle-free path can obey, c(P) is

the cost of path P and d(P) is the delay of P. The length function (5) only optimizes for
one metric, the cost (price). The price is often considered the most important metric to
minimize.
Although it is tempting to call this length function linear since it only optimizes a single
metric, the constraint(s) make (5) non-linear (the function is linear only within the
constraints surface). Therefore, again, the subsections of shortest paths are not necessarily
shortest paths. E.g. see Figure 4 with D = 15: The least-cost path from s to d is s-b-d with
cost 2 and delay 20. This path exceeds the delay constraint and therefore the length is set
to ∞. The path s-a-b-d does obey the delay-constraint and therefore is the shortest path
from s to d, but its sub-path from s to b is not the shortest path to b.
Guo and Matta (1999) have successfully used this approach to solve the DCLC problem.

 

a 

b s d 

10

1

 
 
 

 
10

1

 
 
 

 

1

1

 
 
 

 
1

1

 
 
 

 

Figure 4. Example topology. Top metric corresponds to delay and bottom metric to cost.

Hop-Constrained Maximum-Bandwidth (HCMB) problem:
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Given a graph G(N, E), where each link has a specified capacity (bandwidth). Given a
source s and a destination d, find a path P with no more than X hops that has maximum
capacity.

A suitable length function for this problem is:
1

, ( )
( )( )

,

if h P X
BW Pl P

else

 ≤= 
 ∞

       (6)

where BW(P) is the capacity of path P in minimum units (e.g. Mb/s) and h(P) is the
number of hops taken by P. The length function (6) is very similar to (5), but is given to
illustrate that min/max parameters can also be incorporated. Note that besides a different
length function, this problem requires us to make a small but simple change to
SAMCRA’s code, because BW(P) is not the sum of the capacities of the links on P, but
the minimum link capacity on P. A discussion of the HCMB problem can be found in
(Apostolopoulos et al., 1999; Guérin and Orda, 2000).

We have shown that, provided a suitable length is chosen, SAMCRA applies to numerous
constraint/optimization problems. MAMCRA, the multicast version of SAMCRA, can
therefore be used for all types of constrained-based (optimization) problems.

5. MAMCRA

This section presents the algorithm MAMCRA, the Multicast Adaptive Multiple
Constraints Routing Algorithm. The solution provided by MAMCRA solves problem I
exactly and approximates problem III in the sense that is does not always find the
multicast sub-graph M with minimum weight (= minimum resource consumption).
Although MAMCRA was not designed to solve problem II, it may also be considered a
heuristic to this problem. The quality of MAMCRA with respect to problem II is topic for
further study.

MAMCRA operates as follows:
A. First the set S of shortest paths from s to all p multicast members is calculated.
B. Optimize M, i.e. reduce l(M), without violating the constraints

Step A in the basic MAMCRA operation is readily obtained since it only requires a small
modification of SAMCRA. SAMCRA’s stop condition (line 8 in the meta-code below) is
altered, so that it only stops if all destinations (within the constraints) have been reached.
Since S(M)AMCRA operates in a Dijkstra-like manner, during the computation of the set
of shortest paths to the multicast members, we may find shortest paths to other
destinations. One may choose to also include these paths in the set S. Then, if one of
these destinations decides to join the multicast session, we already have a compliant path.
When removing the overlap of paths, the set S may lead to a tree, but this tree may not be
optimal in terms of resource consumption. E.g. if we again consider the example
topology of Figure 1, with the constraints (13, 13), the set S consists of the paths s-i-d1
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and s-d2, which form a tree. The tree s-i-d1-d2, however, also obeys the constraints and is
more efficient in terms of resource consumption.
Step A is easily completed and provides us with a solution to MCM. We just need to
remove the overlap in the set S, so that duplicate packets are only generated when
necessary. The elimination of overlap (including the check on min/max constraints) will
be addressed below and in section 6.

Step B requires some more effort. Some additional terminology is needed.

We define the concatenation of two paths P and Q by PQ, i.e. PQ is the path generated

by appending path Q to path P. Note that w
��

(PQ) = w
��

(P) + w
��

(Q).

With 
d

≤  we refer to non-dominance, i.e. w
��

(P) 
d

≤  w
��

(Q) means that w
��

(Q) is dominated by

w
��

(P).

Consider two paths P1(s,d1) and P2(s,d2) that form a cycle, i.e. both paths have two nodes
in common. The first node in common is the source node and the other is node x ∈  N\{s,
d1, d2}. If the two paths have more than two nodes in common, we have a concatenation
of cycles with x the (common) node that is most hops away from s.

Property 4:
If

w
��

(P2(s,d2)) – w
��

(P2(s,x)) + w
��

(P1(s,x)) 
d

≤  L
��

then P2(s,d2) may be rerouted to P1(s,x)P2(x,d2) without violating the constraints.

Proof:

Let Pold = P2(s,d2) and Pnew = P1(s,x)P2(x,d2), with w
��

(Pold) 
d

≤  L
��

If

w
��

(Pold) – w
��

(P2(s,x)) + w
��

(P1(s,x)) 
d

≤  L
��

and the fact that

w
��

(Pold) – w
��

(P2(s,x)) = w
��

(P2(x,d2))
Then

w
��

(P2(x,d2)) + w
��

(P1(s,x)) = w
��

(Pnew) 
d

≤  L
��

QED.

Property 4 tells us that by removing cycles, we are optimizing the total weight vector,
since:

w
��

(P1(s,d1)) + w
��

(P2(x,d2)) 
d

≤ w
��

(P1(s,d1)) + w
��

(P2(s,d2))
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For example consider Figure 2, where P1(s,d1) = s-b-c-d1 and P2(s,d2) = s-a-c-d2. The
total weight vector of these two paths is (27, 26). Assuming that property 4 holds, we can
reroute P2(s,d2) to P1(s,x)P2(x,d2). The total weight vector has now reduced to (25, 15).

Property 5:
Given a path P(s,d) within the constraints that uses the sub-path P(s,a), then P(s,a) also
lies within the constraints (but is not necessarily the shortest path from s to intermediate
node a).

Property 5 follows from the basic property of a non-linear length in multiple dimensions
provided in (Van Mieghem et al., 2001b), namely that sub-paths of shortest paths in
multiple dimensions are not necessarily shortest paths.

Meta-code:
The meta-code of MAMCRA is divided into two parts A and B. A gives the adjusted
code of SAMCRA (lines 8, 9) and B gives the code for optimizing the resource
utilization.

A.
1. counter = 0 for all nodes
2. endvalue = 1.0
3. path(s[1]) = NULL and length(s[1]) = 0
4. put s[1] in queue
5. while(queue ≠ empty)
6. EXTRACT_MIN(queue) -> u[i]
7. u[i] = marked gray
8. if all members have been extracted
9. STOP and return the set of shortest paths (S)
10. else
11. for each v ∈  adjacency_list(u)
12. if(v ≠ previous node of u[i])
13. PATH = path(u[i]) + (u,v)
14. LENGTH = length(PATH)
15. check all non-black paths at v and PATH for

dominancy, endvalue -> mark obsolete paths black
16. if(LENGTH ≤ endvalue and non-dominated)
17. if(paths are not black)
18. counter(v) = counter(v) + 1
19. j = counter(v)
20. path(v[j]) = PATH
21. length(v[j]) = LENGTH
22. put v[j] in queue
23. else
24. replace a black path with PATH

Lines 1 to 4 are initializations, line 1 initializes the counter for each node to zero. This
counter keeps track of the number of entries in the queues. To start the algorithm with the
source node, this node is inserted into the queue (line 4). The EXTRACT_MIN function
(see Cormen et al., 2000) in line 6 selects the minimum path length in the queues and
returns the associated node u with its entry number i, which is the i-th path stored in the
queue at node u. The extracted node is marked gray in line 7. The first time that a
destination node is extracted, we store this node and its entry number, so that we can back
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trace this shortest path at the end of the algorithm. If the extracted node u equals the last
destination (member) that was not yet extracted, all the shortest paths satisfying the
constraints are returned; else the scanning procedure is invoked (lines 11 and 12). Similar
as in Dijkstra’s algorithm, the neighbors of the extracted node are examined. Line 13
describes how the path up to node u is extended towards the neighboring node v. Line 15
checks for path dominance as explained in (De Neve and Van Mieghem, 2000). If an old
unmarked path is dominated by the new entry PATH, it is marked black. A node marked
black has become obsolete and may be replaced by a new path. If the path is within the
constraints and not dominated, it can be added to the queue. Lines 17 to 24 describe how
path(length)s for a node can be added. If there are black paths in the queue, a black path
may be replaced by the new path, else the path must be added as a new entry.

B.
1. If S ≠ ∅

add the path with most members (dj) to M. (If there are more 
maximum member paths available, choose the one with smallest 
length).

else
return M

2. If the newly added path forms a cycle in M, try to optimize M by
means of property 4.

3. Check if the new path does not violate the min/max constraints
4. Remove from S all paths to nodes that are already visited by M

(property 5).
5. go to 1.

 
s x1 x2 xi 

Figure 5. Concatenation of cycles.

In part B of MAMCRA’s meta-code, by sequentially adding and optimizing paths the set
of shortest paths S found in part A is lowered in order to obtain a multicast sub-graph M
that uses as few links from S as possible. In step 1 if the set S is not empty, this means
that at least one member is not part of M yet. If there are multiple paths in S left, we
choose the one that traverses most members. In case there are multiple paths with the
largest number of members, the path with smallest length is chosen. The chosen path is
added to M. In step 2, the newly added path may form multiple cycles (< N) as depicted
in Figure 5. In that case we first try to optimize for all cycles, by considering them as
being one large cycle2 s->xi->s, where i equals the number of cycles. If this is not
possible, we repeat the procedure without examining the last cycle, i.e. s->xi-1->s. When
a cycle cannot be removed/optimized, this means that some overlap may be introduced
that cannot be removed, i.e. M is not a tree and therefore some link(s) may see duplicate
packets. When considering the min/max constraint bandwidth, this means that the link
has to be able to provide more bandwidth than the bandwidth consumption of the source,
i.e. the capacity of the link must be equal or larger than r times the bandwidth constraint,

                                                
2 Since the weight vector of a concatenation of cycles equals the sum of the individual weight vectors of the
cycles, this assumption is justified, with only a slight abuse of the definition of a cycle.
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where r equals the number of replicated packets on the link. Therefore, if a tree cannot be
formed, an additional check on the min/max constraints is required. This check is made
in step 3. This procedure is repeated until S is empty, which means that M contains all
feasible members.

Complexity:
The worst-case complexity is O(kNlog(kN) + k2mE), with k = kmax given by (2) for part A
and O(Np2) for part B.

Example of MAMCRA:
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Figure 6. Example topology

s a b c e d1 d2

0 (0,0)
1 s(1,5) s(7,2)
2 a(2,11)
3 b(14,5)
4 c(3,12)
5 e(4,20) e(12,13)
6 Shortest path to d2 found
7 c(15,6)
8 e(16,14) e(24,7)
9 Shortest path to d1 found

STOP
Table 1. Execution steps of MAMCRA part A

Table 1 shows the steps taken by MAMCRA in part A, given the topology of Figure 5.
During initialization, the source node is set to (0, 0). In the next step s scans its neighbors
and finds paths to a and b, with path vectors respectively (1, 5) and (7, 2). We also keep
track of the previous node. If we use the length function (1), vector (1, 5) is the smallest
entry and therefore a is extracted next and the scanning procedure is repeated. This
process of extracting and scanning is continued until both destinations have been
extracted once. By back-tracing the paths from d1, d2 to s we receive the set S = {(s-b-c-e-
d1), (s-a-c-e-d2)}.
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So far, the constraints have not yet been taken into account. (This is an exception, used
solely to simplify this example and because the constraints are identical this does not alter
the true operation. Normally, part A also includes the constraints).
Now we optimize S (part B) to gain M, using two scenarios. First the constraints are (20,
20):
1. We add (s-a-c-e-d2) to M, because this path is shortest in length where all paths have

the same amount of members (only one).
2. No cycle was formed, so we add (s-b-c-e-d1) to M
3. (s-b-c-e-d1) creates a cycle (s-a-c-b-s) in M. When property 4 is applied, we see that

w
��

(s-b-c-e-d1) - w
��

(s-b-c) + w
��

(s-a-c) = (16, 14) – (14, 5) + (2, 11) = (4, 20) 
d

≤  (20,
20). We therefore reroute (s-b-c-e-d1) to (s-a-c-e-d1).

The result is M = {(s-a-c-e-d1), (s-a-c-e-d2)}, which can be written as a tree M = {(s-a-c-
e),(e-d1),(e-d2)} if we remove the overlap.

If the constraints are (16, 16), we cannot optimize S and therefore M = S = {(s-a-c-e-d2),
(s-b-c-e-d1)}.

Part B constructs the multicast sub-graph by sequentially adding paths. This approach
allows MAMCRA to add new members to an existing “tree”. Part A first calculates the
paths to the new members, after which part B sequentially and efficiently adds them to
the existing sub-graph. However, re-computing the entire multicast sub-graph is hardly
more intensive and may therefore be preferred. The choice of how to add/remove
members is part of the QoS multicast protocol (see 6.3).

6. Discussion

6.1 Tuning MAMCRA
MAMCRA gives an efficient but not always optimal solution to MCMWM. It is possible
to further optimize MAMCRA by considering not only the shortest paths to dj (j=1,…,p),
but by storing all krequested-shortest paths (within the constraints) from s to dj in S. The cost
of optimizing MAMCRA in this way lies in complexity (running time). Each node now
has a queue-size krequested ≤ k ≤ kmax. Although this approach does not alter the worst-case
complexity of part A (after all, MAMCRA already works with k-shortest paths, the only
difference now is that we examine at least krequested shortest paths instead of as few as
possible), it will have an effect on the running time, which will increase proportional to k2

(see MAMCRA’s complexity). The worst-case complexity of part B becomes O(kNp2).
However, the larger we choose k, the higher the probability that we find the exact
solution to MCMWM. Therefore k is considered to be a tuning parameter. Note that since
part B is a heuristic, this approach will never be able to guarantee that the exact solution
to MCMWM is always found.

6.2 QoS Negotiation
We have indicated that guaranteeing QoS and optimizing resource utilization are two
conflicting interests. Depending on the wishes of the client (multicast member), a trade-
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off can be made between QoS and resource utilization. This trade-off will be based on
monetary cost, since guaranteeing a high level of QoS will inflict a large consumption of
resources, which has to be paid for. It is not likely that all members are willing to pay the
same price. It would therefore be beneficial if some sort of negotiation between QoS and
price could take place. For instance, MAMCRA (in step A) computes the set of shortest

paths based on the maximum allowable constraints ( maxL
�����

). In the optimization phase, the

different wishes (
jdL

���� d

≤  maxL
�����

) of the members can be taken into account. For instance if a

certain level of QoS (within the maxL
�����

 constraints) has a high price and another slightly

worse level of QoS (also within the maxL
�����

 constraints) has a significant lower price, the

client may negotiate his requested level of QoS. As argued in section 4, SAMCRA only
examines the solutions within the constraints and hence we can apply any length-
function, provided it obeys the criteria for length (see 4.2). Because price is often
considered the most important parameter to minimize, we can take l(P) = wi(P), where wi

corresponds to the price metric (see 4.2).

6.3 QoS Multicast Protocol
In the first scenario of our example (Figure 6) both paths use s-a-c-e and we therefore
need to send a packet only once over this sub-path, after which it is duplicated at node e
and sent to d1 and d2. In the second scenario the paths have an overlap on c-e. Since the
packets at the source are duplicated and forwarded to a and b, duplicate packets arrive at
node c. These duplicate packets have traveled a different path towards c and have
different weights. E.g. one packet may arrive later at c than its duplicate counterpart, but
its price/loss/jitter may be less. Since the paths from c to the destinations also have
different weights, we must maintain both packets at link c-e. Only allowing one packet on
c-e would results in a violation of the constraints of one of the destinations. Thus we can
only remove an overlap on s to some node i. As argued earlier, if we have an overlap, we
should check if the min/max constraints are still guaranteed or perhaps renegotiate the
constraints (6.2). The task of efficiently forwarding/replicating packets is part of the
multicast protocol in use and not of MAMCRA. Several traditional multicast protocols
exist, like DVMRP (RFC 1074), MOSPF (RFC 1583) and PIM (RFC 2362). These
protocols were designed for best-effort traffic. The protocols in (Carlberg and Crowcroft,
1997; Faloutos et al., 1998 and Chen et al., 2000) are better suited for delivering QoS.
However these and other protocols only consider multicast trees. MAMCRA therefore
either requires a new or modified multicast protocol. This protocol has to cope with
different dynamics, e.g. network dynamics or the joining/leaving of multicast members. It
must ensure stability of the multicast “tree”, but it must also (efficiently) guarantee QoS;
which are conflicting targets. Since providing QoS is the goal, also some type of resource
reservation is desirable.
It has been a goal of this paper to address the difficulties in providing guaranteed
multicast QoS. We have seen that the constraints, imposed by guaranteed QoS, introduce
numerous difficulties mainly related to the possible overlap (caused by the absence of a
tree) and hence an objective of a network provider should be to always strive towards a
multicast tree.
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6.4 Multicast in an Active Network
Inspired by Connectionless Multicast (CLM) (Bovie et al., 2000) we touch upon diffserv
multicast and its exact active counterpart. In CLM, the packet header carries the IP
addresses of all the multicast members. Each router determines the next hop for each
destination and constructs a new header for every distinct hop. The new header only
contains destinations for which the next hop is on the shortest path. In conformance with
unicast diffserv, we can extend CLM, such that each packet belongs to a certain Class of
Service (CoS) and each router has a routing table for each CoS. We have proved (Van
Mieghem et al., 2001b) that destination-based QoS routing can only be guaranteed in an
active network. If we store the history of an active packet in its header, then for each
packet arriving at a router, MAMCRA is used to compute the best forwarding/replication
strategy. The best use for such an active strategy is in highly dynamic (e.g. wireless)
environments, since we do not need (to recalculate) routing tables. However, we do need
to have an accurate view of the network.

7. Conclusions

We have proposed an algorithm to find an efficient multicast graph in a network that
obeys a set of QoS-constraints. We have shown that a multicast tree may not always
guarantee the requested QoS-constraints, while multiple unicast QoS sessions can. This
property enhances the complexity of constrained multicast routing (besides the proven
NP-completeness), since we have to maintain a set of paths/trees and we need to check if
no min/max constraints are violated (merely topology filtering may be insufficient). A
trade-off between efficient use of resources and QoS has to be made, which resulted in
the proposed algorithm MAMCRA. MAMCRA computes the set S of shortest paths from
source s to all other nodes, and then reduces this set to an efficient set of multicast routes,
without compromising the requested level of QoS. It was shown that it is desirable to
always construct (or strive for) a multicast tree, either by fine-tuning MAMCRA or by
renegotiating the constraints.
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