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Abstract

Optimality of the PNNI topology is investigated analytically based on a routing com-
plexity criterion that only depends on the number of nodes in a (sub)network. Results are
presented for a complexity that is quadratic in the number of nodes because this case corre-
sponds to the complexity of the well-known Dijkstra routing algorithm.

The resulting optimal PNNI topology is highly symmetrical (all peer groups on a same
hierarchical level are of equal size). Moreover, the lowest (physical) peer group size consists
only of a few nodes, while, surprisingly perhaps, just a couple of hierarchical levels are needed
to span a global network of 10'° nodes. Routing algorithms with a higher nodal complexity
than Dijkstra’s bene..t from a higher complexity reduction using a hierarchical PNNI optimal

topology.

1 Introduction.

The ATM Forum’s PNNI topology favours a hierarchical structure of peer groups on dicerent
levels [2]. It is of interest to know how to structure a given network of M nodes into a PNNI
topology with N hierarchical levels so that a minimal routing complexity is achieved.

In the analysis below, the complexity C to compute some measure in this PNNI network
is assumed to be dependent only on the number of nodes, hence C = f(M). For example, to
calculate the shortest path between node a and b, we can use the Dijkstra algorithm that has a
complexity of C = O(M?). In addition, we assume that the complexity is additive meaning that
the complexity of a network consisting of two subnetworks equals the sum of the complexities in
each subnetwork. These simplifying assumptions allow an exact solution of the problem. On the
other hand, the results obtained are only indicative because the additivity assumption ignores
direct interaction between subgroups on one level. Speci..cally, PNNI uplinks are not taken into
account. Finally, only the routing complexity in a static PNNI topology is considered. This
means that computational (or complexity) aspects of information condensation (such as node
and link aggregation) are not given any attention.

Before presenting the analysis, a few words on the notation used are appropriate. The
number of nodes in a certain peer group on hierarchical level k is denoted as My, r, r5 wer, . ThiS
presentation reveals all ancestrial information of this peer group. For example, it demonstrates
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that the peer group in question has as parent the peer group with index ryrarz ¢¢¢rc;1. The
highest level ancestor is indexed by r1 = 1, because at that level, there can be only one peer
group enveloping the whole network. However, that peer group possesses my, nodes. A sketch
of a PNNI topology using this terminology is drawn in Fig. 1.
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Figure 1: A sketch of the here considered simpli..ed PNNI hierarchical topology.

2 The optimal solution.

On the assumption of the additivity of the complexity, we simply need to sum the complexities
in all peer groups. Clearly, this implies a worse case approach because we assume that a path
traverses the total hierarchy of peer groups. Thus, on the highest level the complexity is C; =
f(mrl;_t, while on the subsequent lower level, consisting of m,, dicerent peer groups, we have

C, = ?;rzllf(mrl r,). Proceeding in this way, we verify that
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Our goal is to minimize the complexity. We invoke the method of Lagrange multipliers that
optimizes (2) subject to the constraint that the total number of nodes on the lowest peer group
level equals the number of nodes M in the original network. Only this lowest level consists of
physical nodes, the higher levels are merely logical nodes. Thus, we have as Lagrange function
L
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In order to fully exploit the strengths of functional analysis, we extend the integers m; to real
numbers. The system of extremal equations then becomes
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For each hierarchical level k, one may verify by induction from (3) that
L L -
0 = ¢ (for all 1 i;J ry) (6)
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because each peer group on a same hierarchical level plays a similar role leading to formally
identical partial derivatives.

This relation (6) indicates that an optimal solution exhibits symmetry. Moreover, this sym-
metry substantially simpli..es the analysis because it means that on each hierarchical level, the
peer groups have a same number of nodes. Consequently, guided by this symmetry, the nota-
tional burden can be signi..cantly reduced: there is no longer any reason to specify the ancestrial
dependence in the notation. Hence, in the optimal topology, we write my instead of My, r, r5 etr,. -
Using this simpler notation, the Langrange function (3) becomes
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while the set of extremal equations simpli..es to
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This set (8,9) should be solved for fmyg. Concentrating on the ..rst set of N equations in (8),
we observe recursion,

(@) 1
b ¢ NA W
fiimy) = i@ (m;) mj + m; A (10)
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fo(mN) = i,

A brief inspection reveals a quite simple relationship between my.; and my, for we can rewrite
the ..rst relation as
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With (10) applied to hierachical level k + 1, the last term between brackets is identi..ed as
i F'(my+1). Hence, we ..nd the important recursive relationship

M) = i F(Mia1) + Micea F(Micra) (11

or, summarizing the relevant equations,

me = FO G F(mga) + My F(Mga)] (12)

my = FUil(G)) (13)
W

M = mj 14
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where we have denoted f'i1(x) as the inverse function of f'(x).

However, to proceed further, f(n) needs to be speci..ed. Although the recursion (12) starting
from (13) can be computed formally, only a very small class of functions allows an exact solution
in terms of M using (14). The class of arbitrary powers, f(n) = n®, is such an example.

Fortunately, just a power law complexity O(n®) is generally found to express complexity of
tractable algorithms. In the next section, we will investigate in greater detail the case where
f(n) = n? which corresponds to the complexity of the Dijkstra algorithm [1] that is known to
be of the order! of M? where M are the number of nodes in the network.

We still did not prove that the solution of the Lagrange equations corresponds to a minimum.
However, rather than embarking on a mathematical track to prove this, we derive below in sec. 3
the Lagrangian (with _ = 0) evaluated at the extremal solution. Comparison with the complexity
of the original network clearly demonstrates that the extremal solution is indeed a minimum.

3 The complexity of Dijkstra’s algorithm.

Although we concentrate in this section primarily on the n2-complexity of Dijkstra’s routing
algorithm, the mathematical framework is general enough to treat an arbitrary power law com-
plexity. In order not to obscure the understanding by tedious mathematical manipulations,
we merely will state the results for f(n) = n® (where ® > 1 and real) without detailing the
derivation.

3.1 Analytical solution.

Using f(n) = n? in (11), we have

m
myg = ;-'_1 (15)
H !
® 1 &1 &
me &1 T mi (16)

which means that, in the optimal con..guration, the number of nodes on a higher hierarchical
level k is half the square of the number of nodes of one peer group on a lower level k+1. Further,

1The order notation, the Landau big O notation, can be rigorously de..ned. A function (x) = O(g(x) for large

- f(x)
X means that limy s 1. 300 — L.



equation (15) exhibits self-similarity: precisely the same structure appears on all levels, however,
scaled according to (15). This property stems from both the hierarchical PNNI topology and
the polynomial complexity assumption. In addition, (15) is a simple dicerence equation with
initial value given by (13). The solution for k > 0 is
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We nowy turn to the elimination of the Lagrange multiplier _ using (14), which we rewrite as
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Using (19) to specify the my leads to
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Substituting these relations into (2) gives the minimal complexity we can achieve employing
the PNNI hierarchical structure based on the complexity of Dijkstra’s algorithm. After some
algebraic manipulations, we arrive at
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Compared to the original complexity which is O(M?), the optimal PNNI topology de..nitely
results in huge savings. Speci..cally, the amount of saving can be estimated for ® > 2. De..ne
g(®) as the exponent of M in (26). Then, we have
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For succiently large ®, we observe from (27) that g(®) = O(®=N). Due to the fact that the
denominator is an alternating series, g(®) rapidly behaves linear in ®. Indeed, numerical results
indicate that this is already the case for ® > 2 and moderate values of N (2 N < 5). This
result means that the savings in complexity, O(M® j M®™N), increase with the complexity
measure ® and with the number of hierarchical levels N.

We are now su€ciently prepared to investigate how much hierarchical levels N are required.
From the previous equations (21,22), we observe that the limiting behaviour where N ¥ 1
results in the somewhat singular case where my = 2 (mg . ®&i1) for all the in..nitely many
hierarchical levels. But then, the number of nodes M also tends to in..nity. This "optimal’ limit
situation learns that in each peer group (even on the lowest level) there must be at least 2 (or
§37) nodes.

Consider now the situation where all lowest peer groups consist of x physical nodes. This

means that on (21), we have A _

my =2 2iNM 2Nt 7y
from which we can estimate N as a function of the total number of nodes. Indeed, this equation
reduces to SR |

2N Iogzg +N = log, g M (28)

However, no exact solution exists apart from in..nite expansions. But, assuming that N is
su€ciently large, we may neglect the linear term in N and solve for N resulting in

A 1
N < log, 1+°%2M (29)
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where we have written the inequality sign to account for the neglect of the linear term. Hence,
we have found an upper bound for the number of hierarchical levels as a function of the total



number of nodes M and the number of physical nodes in each lowest level peer group. The
assumption of large N is to some extent compensated by the integer nature of N. Even if we
could solve the equation exactly, we would ..nd a non-integer value of N, almost surely. Hence,
con..nement to integers by taking the integral part would be necessary.

3.2 Numerical examples.

Some numerical examples may illustrate the above analysis. Suppose we have in each lowest
level peer group X = 5 nodes and a total of M = 1010 physical nodes in the original network. The
upper bound (29) gives N < 4:7, thus N = 4. Suppose we use N = 5 in the exact equation (28),
the left hand side amounts to 47.24 while for N = 4 we ..nd for the left hand side 25.15. The
number closest to the right hand side (which equals 34.54) is evidently the better, hence, N = 4.
This example illustrates that the upper bound (29) is quite useful although the assumption of
large N is seemingly not supported.

Let us consider the sensitivity of N. Using (21), we list below my and the order of the
complexity Cy as a function of M = 10'° and N:

N =1 m; = 10%° Ci = 0O(10%)

N = 2 m, = 2714:42 C, = 0(2:1510%)
N = 3 ms = 39:86 Cs = 0(2:6810')
N = 4 my = T7:71 Cs = 0O(4:64 10'9)
N =5 ms = 3:75 Cs = 0(2:10 109
N = 6 me = 2:69 Ce = O(1:44 1019
N = 7 m; = 2:30 C; = 0O(1:19 1019
N = 8 mg = 2:14 Csg = 0O(1:09 109
N = 9 mg = 2:06 Co = O(1:04 1019
N = 10 myp = 203 Cio = 0O(1:02 1019

These numbers illustrate that my very rapidly tends to its limiting behaviour my = 2 as
N ¥ 1. This supports the assumption of large N in (29). Moreover, we observe that the
optimal restructuring of a complete network of M = 100 nodes is highly ecective only when
using a relatively small number of hierarchical levels. The savings in complexity by de..ning
more than N > 5 hierarchical levels is clearly not worth the ecort. Again, this is in favour of
(29).

An illustration of the number of nodes on all levels as a function of N and K is given in the
table below that lists the values of my forall 1  k N with M = 1010,

k=N 1 2 3 4 5 6 7

1 10'° 3684030 315693 98212:3 48469:5 29038 18988:9
2 2714:4  794:6 443:2 311:3 241:.0 194:9
3 39:9 29:8 24:9 21:9 19:7
4 77 71 6.6 6:3

5 3.7 3:6 35

6 2.7 2.7

7 2:3




4 Conclusions.

The optimal PNNI topology has been determined by minimizing the routing complexity. The
results are speci..ed for Dijkstra’s algorithm, although extensions to arbitrary polynomial com-
plexity functions, f(n) = n® with real, positive ®, are straighforward. We have shown that
the more complex the algorithm is (thus, the larger ®) the higher the saving we achieve with a
hierarchical, optimal PNNI topology. The interest of this result is that in real PNNI implemen-
tations, the routing complexity will be likely higher than that of Dijkstra (® = 2), mainly due to
the requirements for quality of service (QoS). Just in that case (® > 2), the PNNI hierarchical
structure ozers more advantageous complexity savings.

The optimal topology is highly symmetrical and even self-similar, characterized by the fun-
damental equation (15). In this optimal PNNI topology, the number of peer group nodes on
level k decreases by going to a lower level k + 1 whereas the number of peer groups on level k,
given by my; 1, just increases in that direction. This means that on the physical (or lowest) level,
the peer group size is the smallest. Just at this level, QoS and tra¢c issues are to be considered
in detail. The small size of the lowest level peer group substantially simpli..es the latter analysis
even to such an extent that queueing analyses may be feasible. Successful dynamic control on
the queueing level can further lead to overall optimality of the PNNI-protocol.

Only a very small number of hierarchical levels, N = O(log, log, M), are needed in realistic
network con..gurations. Earlier studies by Kleinrock and Kamoun[3] on general hierarchical
structures found N = O(In M) by optimizing the length of the routing table.

In spite of the enthusiasm, some caution would seem to be appropriate. The analysis only
relies on the number of nodes, discarding the dicerences in links, neglecting QOS-related param-
eters or supplementary nodal information that may impact on the topology (such as node and
links aggregation) and omitting the infuences of the fooding mechanism. However, fooding is
not believed to be problematic since the basic peer group is quite small implying fast conver-
gence. Admitting the simpli..cations, we believe this study suggests useful design rules for a
hierarchical PNNI structuring of the topology.
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