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Abstract

Quality of Service (QoS) provisioning generally assumes more than
one QoS measure which implies that QoS routing can be categorized
as an instance of routing subject to multiple constraints. The ATM-
forum PNNI standard, in particular the routing part, belongs to the
most promising, future-save, QoS-aware, dynamical and hierarchical
routing protocols. The PNNI QoS algorithm is vendor specific and
not standardized.

Here we propose an attractive multiple QoS routing algorithm,
called TAMCRA, standing for Tunable Accuracy Multiple
Constraints Routing Algorithm, well suited for PNNI. TAMCRA
possesses tunable accuracy (coupled to the running time) via one
integer parameter k which reflects the number of shortest paths
taken into account during computation.

Introduction

In the ATM Forum, PNNI is promoted as the future-safe,
powerful protocol that inherits the full QoS capabilities
of ATM. Although the current Internet is a best-effort
network, serious efforts are spent to offer QoS and some
notion of guarantee. Thus, in short, QoS aspects in
dynamic, distributed networks deserve today due
attention.

A user may ask the network for a transfer of his
information subject to requirements for the QoS
measures (such as delay, cost, bandwidth, cell loss, etc.)
along the path from source to destination. A network
topology supporting QoS consists of link metrics vectors
with as components the QoS measures. The QoS measure
of a path can either be additive in which case it is the
sum of the QoS measures along the path or it can be the
minimum(maximum) of the QoS measures along the
path.  Min(max) QoS measures can be dealt with by
omitting all links (and possibly disconnected nodes)
which do not satisfy the requested min(max) QoS
measure before starting to calculate a path. We call this
topology filtering. Additive QoS measures prove to give
more difficulties: the problem of calculating a path which

is subject to more than one additive constraint is known
to be NP-complete [Garey, 1979] and hence, intractable
for large networks.
Although the definition of the additive, multiple
constraints problem can be found in various
publications [Jaffe, 1984; Henig, 1985; Iwata, 1996;
Lee, 1995; Vogel, 1996; Wang, 1996] we rephrase it to
avoid any misconception.

Problem

Given a graph G with V nodes and E links connecting
the nodes, m additive link values  li(e) > 0, i=1,..,m
characterizing each link and m positive values Li,
i=1,..,m serving as constraints, does there exist a path
P(s,k,..,l,d) connecting source node s with destination
node d such that li(P)=li(s_k)+...+li(l_d) <= Li for
each i=1,..,m?

The NP-completeness of this problem was proved only
recently by Wang (1996). A problem is NP-complete
when there is at least one instance of the problem which
cannot be solved in polynomial time. This implies that
some multiple constraints problems can be solved in
polynomial time. Indeed, Jaffe (1984) pointed out that,
if there are only two metrics and if one of the metrics
has a constant link value, then any two constraints
problem can be solved with a polynomial algorithm.
However, in most cases NP-complete problems cannot
be solved in polynomial time. Therefore, a number of
approximative solutions and heuristics have been
proposed which return a path within polynomial time
without guaranteeing that this path satisfies all
constraints.

Existing Solutions

Jaffe (1984) worked out an algorithm to solve a multiple
constraints problem with m=2 constraints (L1,L2). He
proposes to replace the two link values of each link by a



single link value which is a linear combination of the
original link values,

( ) ( ) ( )l e d l e d l e= +1 1 2 2. . (1)

Running the Dijkstra algorithm on the graph with link
values condensated in this way will return a path
P(s,m,...,n,d) between the source s and the destination d
for which
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is minimal. Equation (2) describes a set of equilength
lines in a plane, displaying the length (l1(P), l2(P)) of all
possible paths between the source node s and the
destination node d. This is shown in Figure 1.
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Figure 1: Distribution of paths in the (l1(P),l2(P)) plane.
The solution retrieved by the Dijkstra algorithm is
encircled.

Each of the parallel lines d1.l1(P)+d2.l2(P) = c intersects
solutions with equal length c. All solutions lying above a
certain line have length larger than the ones below or on
the line. The shortest path returned by Dijkstra after
condensation of the two link values (l1,l2) to a single
value l=d1.l1 +d2.l2 will be the first solution intersected by
a set of parallel lines with slope (d2/d1). This is the
encircled solution shown in Figure 1 and in this example
it lies outside the constraint area. Thus, this path does not
satisfy all constraints although it is the shortest path
according to the definition of the pathlength in (2).
Jaffe argues that the best value for the slope is given by
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This implies that in the worst-case scenario, one of the
constraints can be violated by at most 100% [Jaffe,
1984]. The worst-case overshoot of the constraints as
defined by Jaffe is not what we are most concerned
about. If the requested constraints are minimum
requirements then, from the point of view of a network
environment offering QoS guarantees, every solution
outside the constraints is equally bad. We are rather
interested in the probability of not finding a path within
the constraints when actually such a path does exist.

Non-linear Pathlength

When scanning the solution space with a straight
equilength line, the area which is scanned outside the
constraint region would be reduced if the slope of the
straight equilength lines would be given by
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instead of the slope (3) proposed by Jaffe. If the slope is
given by (4), then always half of the constraint area is
scanned before running the risk to select a solution
outside the constraint area. This is shown in Figure 2.
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Figure 2: Straight equilength lines

The area which is scanned outside the constraint area
could be even further reduced if the straight equilength
lines would be replaced by curved equilength lines. Paths
are sorted according to curved equilength lines which
follow the boundaries of the constraint area if the length
l(P) of a path P from the source node s to the destination
node d is defined as a non-linear combination of the
individual pathlengths as in expression (5)
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with
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 This is shown in Figure 3.
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Figure 3: Curved equilength lines

Ideally the equilenght lines should perfectly match the
boundaries of the rectangular constraints, scanning the
constraint area without ever selecting a solution outside
the constraint area, which is achieved when q→∞. In that
case the value of  l(P) in (5) will be completely dominated
by the largest term in the sum (5). This means that the
path with the smallest length as defined in (5) for q→∞ is
also the path with the smallest value of
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with
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Although expression (7) has not the same value as
expression (5) for q→∞, the ranking of the paths
according to (7) is the same as the ranking according to
(5) for q→∞. Thus expression (7) is equally valid as a
definition of the pathlength.

Scanning the constraint area in search for the shortest
path according to (7) is shown in Figure 4. No solution
outside the constraints is selected before any solution
inside the constraints would be found.
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Figure 4: Scanning the constraint area when the length is
defined as in (7)

If no path can be found with length

( )l P <= 1 (9)

the algorithm can stop and decide that there is no path
within the constraints.
The problem of finding a path which satisfies a number
of constraints is thus "reduced" to the problem of finding
the shortest path according to definition of the
pathlength in (7).

However, finding the shortest path according to the
definition in (7) is not straightforward. We propose an
algorithm which is similar to the k-shortest path
adaptation of the Dijkstra algorithm proposed by Chong
et al. (1995) and use expression (7) for the pathlength.

The TAMCRA Algorithm

The principle of TAMCRA is best demonstrated with an
example. Suppose we are looking for the shortest path
between node 1 and node 4 in Figure 5.
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Figure 5: Example graph to demonstrate the principle
of TAMCRA

If we apply the Dijkstra algorithm, in a first stage we
find two possible paths from node 1 to node 2. Both are
represented in Figure 6.
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Figure 6: Representation of the two paths between node1
and node 2 in Figure 5. The length vector (x4,y4)
represents the remaining part to node 4 . The shortest path
to node 2 is encircled once, the shortest path to node 4 is
encircled twice.



According to the definition of the pathlength in (7) and
the positions of the paths in Figure 6, the pathlength for
both paths is given by
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In this example the values of x and y have been chosen
such that l(1-3-2) < l(1-2). The Dijkstra algorithm would
then conclude that the path 1-3-2-4 is the shortest path
between node 1 and node 4. However, the weight vector
of the link from node 2 to node 4 has been chosen such
that l(1-3-2-4) > l(1-2-4). This can be seen in Figure 6
because the path 1-3-2-4 lies outside the constraint area
while the other path lies within the constraint area. Thus,
with the definition of the pathlength according to (7)
subsections of shortest paths are not necessarily shortest
paths themselves and the Dijkstra algorithm will
sometimes fail to find the shortest path. Therefore, in
some cases more than one path between the source node
and some intermediate node needs to be stored. This is
done in TAMCRA via a k-shortest path implementation
of the Dijkstra algorithm which stores k paths per node
instead of only one [Chong, 1995].

Non-dominated Paths

TAMCRA does not store every path. Imagine that the
two paths from Figure 6 are positioned as in Figure 7.
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Figure 7: Two paths to the same node, the shortest path is
encircled once.
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for any value of x4, y4. Thus, we are sure that the
shortest path between source and destination will not
make use of the path 1-2 and this path should not be
stored. Using the terminology of Henig (1985), path 1-2
is dominated by path 1-3-2 and only non-dominated
paths can lead to the shortest path.

The time-complexity of the TAMCRA algorithm is
the time-complexity of a k-shortest path algorithm with
the extra complication of verifying whether a path is not
dominated by another path. This leads to the following
expression for the time-complexity of the TAMCRA.
algorithm:

( )O kV kV k mElog( ) + 3 (14)

In the simulations, the calculation time of TAMCRA
was found to increase only linearly with k.

Results

We measured the probability that a non-shortest path is
found as a function of the parameter k. This is a worst-
case probability of missing a path which lies within the
constraints: if there are more paths which satisfy the
constraints then missing the shortest path does not
necessarily mean that all paths within the constraints are
missed.

The probability of missing the shortest path is
estimated by calculating for each source-destination pair
in a random graph, the value of k which is needed to find
the shortest path. Figure 8 shows the result for a
Waxman graph [Calvert, 1997] with 100 nodes,
approximately 200 links and two link measures per link.
Each link is bi-directional with the same characteristics
in both directions. For each metric, the link weights are
uniformly distributed random numbers between 0 and 1.
This is a worst-case situation in the sense that any other
scheme to attribute weights to the links has resulted in a
higher probability to find the shortest path with a given
value of k.
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Figure 8: Probability of missing the shortest path for
Waxman graphs with 100 nodes and two measures per link

If TAMCRA is applied with k=1, the probability of
missing the shortest path in the Waxman graph with 100
nodes is about 17%. This means that for 83% of all
source-destination pairs, the two-constraint problem is
solved with a Dijkstra-like complexity.  The probability
of missing the shortest path rapidly decreases as k is
increased: with k=4 the probability has dropped below
1%, which means that the TAMCRA algorithm with k=4
perfectly solves the two-constraints problem in more than
99% of all cases.

We have also monitored the time needed for one node
to calculate the shortest path to all other nodes in the
graph as a function of k. The calculation is done on a Sun
SPARC Ultra Workstation and Figure 9 displays the
result in absolute time units. As a reference we added the
running time of the Dijkstra algorithm (m=1, k=1).
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Figure 9: Calculation time of the TAMCRA algorithm for
Waxman graphs with 100 nodes and two measures per link

To solve a two-constraint problem with an accuracy of
99% in a graph with 100 nodes TAMCRA needs k=4.
The time complexity of TAMCRA with k=4 is about 3.7
times the time-complexity of the Dijkstra algorithm.

For the Waxman graphs with 100 nodes and two
constraints, on the average only three to four paths per
node are non-dominated. This means that TAMCRA
does not store more than these three to four paths even if
it is allowed to store more. This is why the observed
calculation time saturates as the value of k gets larger.

Conclusions

The TAMCRA algorithm demonstrates that the routing
problem in PNNI of calculating a path which has to
satisfy more than one additive constraint can be solved
accurately within polynomial time-bounds because the
probability of missing the shortest path decreases very
fast with increasing k.  The NP-completeness resides in
the fact that the value of k which is needed to solve the
problem exactly is a (polynomial) function of the
constraints. This also means that beyond a certain value
of k, TAMCRA can solve multiple constraints problems
exactly [De Neve, 1998].
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