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Abstract— Previously we have computed the probability
distribution of the hopcount in the class of random graphs
Gp(N) with exponential link weights. The applicability of
that asymptotic law of the hopcount has been extended
to other classes of random graphs and other link weight
distributions. In addition, the asymptotic law agrees well
with Internet measurements. After a short review of the
model that lead to the asymptotic law for the hopcount, we
demonstrate that the asymptotic law possesses the remark-
able property of almost sure behavior. Almost sure behavior
means that each histogram obtained by measuring the hop-
count from a source to several (but enough) destinations
will closely resemble the asymptotic law.
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I. INTRODUCTION

In an abundant amount of recent articles on networking,
authors feel the necessity to use or to introduce the con-
cept of Quality of Service (QoS) as a justification for their
work. Anybody familiar with networking knows how intri-
cate QoS problems are and how few proposals really con-
tribute to their solutions. Since the introduction of QoS in
ATM about ten years ago, the QoS problem seems to have
shifted to and penetrated in the Internet, where, initially,
the multiple parameter QoS problem was absent. This ar-
ticles aims to enhance the understanding of the end-to-end
variations in QoS qualifiers such as delay, jitter and packet
loss. These QoS qualifiers can be argued as dependent
on the number of routers traversed since most of the QoS
degradation occurs in routers (apart from mobile networks
that suffer from anomalies of the transmission medium such
as fading, reflections, etc.). Hence, we consider a good un-
derstanding of the distribution of the hopcount, defined as
the number of traversed routers along the shortest path be-
tween a source and destination, as a first step to estimate
end-to-end QoS behavior.

Perhaps the determination of the hopcount in the Inter-
net can be regarded as one of the simplest measurements
due to the large availability in unix-kernels of the trace-
route utility. Unfortunately, as shown in [3], precise and
reliable determination of the hopcount seems less obvious.
In addition, up till now, no underlying theoretical model for
the distribution of the hopcount is known. Here we present
a model for the hopcount and demonstrate the applicabil-
ity of that model to the Internet by illustrating that the
distribution (1) possesses the remarkable property of al-
most sure behavior. The latter implies that (1) features a
high degree of robustness.
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II. MODEL FOR THE HOPCOUNT IN INTERNET

Previously in [6] and [7], we have presented an asymp-
totic expression (1) for the probability density function
(pdf) of the hopcount of the shortest path derived from
random graphs (see e.g. [2] and [5]) of the class G,(N)
with exponentially or uniformly distributed link weights.
The class of random graphs G,(IN) consists of all graphs
with N nodes in which the links are chosen independently

and with probability p. Hence, p = NL(?V%]T) is link density

where L is the (variable) number of links and p(N — 1) is
the average number of links per node. In order to compute
the shortest path between two nodes, the weight of each
link must be specified and exponentially distributed link
weights (with mean 1) have been chosen initially. Under
these model assumptions, we have shown that the distri-
bution of the hopcount can be well represented by the dis-
tribution of the depth in a uniform recursive tree and that
it is given, for large N, by
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where c¢,, are the Taylor coeflicients of ﬁ

6.1.34].

We present a brief explanation of this basic result. We
have demonstrated in [7] that the shortest path problem in
the complete graph K (the case where p =1 in G,(N))
with exponentially distributed link weights can be exactly
reformulated into a Markov discovery process. The hop-
count of the shortest path, deduced from the Markov dis-
covery process, is precisely equal to the depth of a node in
a uniform recursive tree (see Figure 2) rooted at the source.

listed in [1,

Denote by X](\]f) the number of nodes with hopcount £ in
the uniform tree of size N and by yy the hopcount of a
randomly chosen node, possibly equal to the root. Denote
by pg\]? the probability that a randomly chosen node has
hopcount k, then

duid
Priyy = k| = py) = —5— 2)

We prove in [7] that, for N > 1and 1 < k < N — 1, the

probability pg\];) satisfies the recursion
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and that the corresponding generating function equals
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From this generating function, the probability that a uni-
formly chosen node in that tree has hopcount k£ can be

written as (h)
—1— +
(-)N1hs

k
Py = i 3)
where SJ(\];) denotes the Stirling number of the first kind
[1, 24.1.3]. Finally, we are interested in the hopcount yy
excluding the event yy = 0, which means that, for k£ > 1,

Prlhy = k] = Prlyy = klyy # 0]

N
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with corresponding generating function,

on(z) =

Expanding ¢ () in a Taylor series around x = 0, finally
leads, for large N, to the asymptotic law (1).

In [6] and [7], we have extended this result obtained for
the complete graph to almost all connected graphs of the
class G,(N). In particular, we have shown that, for large
N, the hopcount is independent of the link density p, in-
sensitive to the precise details of the topology (as the re-
sults also hold for Waxman graphs, another class of random
graphs) but it varies with the link weight distribution. Be-
sides uniform and exponentially distributed link weights,
the asymptotic law can be extended to polynomially dis-
tributed link weights. Furthermore, the model has been
extended to multiple parameter routing which is the basis
for QoS routing, have been obtained. In the latter, every
link is specified by a link weight vector with several com-
ponents, each independent and uniformly distributed.

The degree (or number of neighbors) per node in the In-
ternet is very low (about 3 to 5 on average). The extension
of the asymptotic law (1) in [6] to almost every connected

graph of G,(NN) has been rigorously proved under the re-
Npy

log® N
number of nodesgN . This condition still implies that, in the
limit N — oo, the average number of neighbors Npy grows
unboundedly. While this result is apparently not realistic,
we note that if Npy ~ log IV, the average degree per node
returns ’realistic’ numbers around 10 for the currently es-
timated size of the Internet (N ~ 10°). By simulation in
[7], we have shown that the asymptotic law (1) still holds
if the average degree is further pushed down: Npy — A,
with A a large constant. Since the number of router ports is
limited even if the number of routers (nodes) N increases,
the asymptotic law (1) with constant A can serve to model

striction that

— 00, where p = py depends on the

shortest paths between source and arbitrary destination in
the Internet. Finally, the asymptotic expression (1) has
been compared with Internet measurements in [7] and in
[3]. The agreement was surprisingly good.

Although the Internet is not a random graph of the class
Gp(N), the results deduced in the way presented here can
be understood as follows. First of all, any graph is a sub-
graph of the complete graph, also the graph of the Internet.
Next, we have randomly thinned the complete graph in two
different ways: by altering the structure via p and by super-
imposing weights on the links. Any graph where communi-
cation takes place between arbitrary nodes using a short-
est path algorithm can be obtained in this way, by erasing
from the complete graph the appropriate links that are not
present in the real graph, and putting the right weights on
the available links. Next, the focus on the shortest paths
starting from a destination node A towards an arbitrary
node B in the network leads us to consider a shortest path
tree. Only links of this shortest path tree matter for the
hopcount and a large number of links in the topology seems
superfluous. Thus, by confining to the shortest path, we
filter the actual topology to a tree rooted at A that is de-
pendent on the link weights. This explains the apparent
negligible influence on the details of the topology and un-
derlines the importance of the link weight distribution. It
also shows that information about the hopcount alone is in-
sufficient to construct the Internet topology: not the num-
ber of links from a given node matters but the number of
links with small weights.

In [8], we have proposed a general theory to compute the
efficiency of multicast over unicast, defined as the number
of links in a shortest path tree to m multicast group mem-
bers. Again for random graphs, exact formulas for the ef-
ficiency were derived. Comparison with Internet measure-
ments have shown that shortest path trees computed via
random graphs are quite accurate. This can be regarded as
another, independent verification of the quality of shortest
path result based on random graph models.

III. ALMOST SURE BEHAVIOR.

The remarkable agreement with Internet measurements
is surprising as explained below, not because the model
would be speculative, but, because it suggests an additional
property of the hopcount in Internet, namely, almost sure
behavior. There are two different approaches to compute
the probability distribution function (pdf) of the hopcount
of a path from A to B. Either we fix the topology and
vary the source and destination over all possible couples,
or we choose a particular source and destination, and let
the topology change over all possible graphs (e.g. all graphs
in Gp(N)). The first approach suffers from the fact that
the paths are not independent because of overlap. Since
the influence of the correlation structure of this overlap on
the hopcount is a priori difficult to estimate, in simulations
and computation, the second approach had been followed.

However, the experimental trace-route measurements [3]
are all performed on one fixed graph (the Internet graph)
starting from one source (at Delft University of Technol-
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Fig. 1. Hopcount distributions obtained from a single instance of the
class of random graphs (dashed line) together with the theoretical
distribution law (1) (full line) for N = 105.

ogy) to a finite number of randomly chosen destinations
(about 200). The good agreement between the model and
the measurements points towards almost sure behavior. Al-
most sure behavior means that, for sufficiently large IV, the
distribution of the hopcount deduced from a source to a
set of destinations in any random graph of the class G, (V)
with exponentially (or uniformly) distributed weights is the
same.

A. Simulations.

In order to motivate the theoretical results in the next
section, we present here simulation results of the almost
sure behavior. In each of the randomly generated graphs
of the class Gp(NN) with exponentially distributed link
weights, the distribution of the hopcount from an arbitrar-
ily chosen source to each other node in that same graph
has been computed.

In Figure 1, the pdf of the hopcount for three random
graphs has been plotted for N = 10°, which is estimated
as roughly the size of the current Internet. The full line
depicts the theoretical law (1). The correspondence of each
distribution with the asymptotic law (1) is convincing.

B. Theory.

We will confine ourselves to analyzing the almost sure be-
havior in the complete graph with exponential weights. We
expect that the almost sure behavior then can be extended
in similar way as outlined above to almost all connected
graphs of the class G, (V).

As an estimator for the average number of nodes at k
hops from the source, we use

XY

Clearly with (2), the mean of this estimator is £ []55\];)} =

(k)

py  so that the estimator is unbiased. From (3) or (1),

we observe that, for any k, pg\];) — 0, if N — oco. Almost
sure behavior would follow if, for large IV, the variance

2 2
of the estimator ﬁg\’f), E {(ﬁg\’;)) ] — (pg\’f)) tends to zero

N 2
more rapidly than (py\;)) . Equivalently, the condition for

(k)
almost sure behavior is var [Eﬁ—l = o(1) so that
Py’

]5(’@
lim % =1
N—oo pN

in probability.
In order to compute the variance var [AS\];)] , we will take

benefit of properties of the uniform recursive tree.

N- N, nodes

Fig. 2. The recursion relation for a uniform recursive tree.

As illustrated in Figure 2, we grow uniform recursive
trees by starting with a single node (the root). During
the construction procedure, each new (i.e. not yet placed)
node of the set of N — 1 nodes, has equal probability to
be connected to any of the already attached nodes. We
observe that the cluster connected to the root (via node A
in Figure 2) is again a uniform recursive tree of size Nj.
This size V7 is a uniform random variable in 1,---, N — 1.
Moreover, also the tree connected to the root obtained by
deleting this cluster of size N7 is a uniform recursive tree of
size N — Nj. These observations lead to the relation that

k k—1 k
Xy =Xy X (4)

where the latter two random variables are conditionally
independent given N7. Hence, we arrive at

(1)) 1 1) ® )
P(x)] = 5y D om| (o e xi)]
The cross term can be computed analytically

N-—1
i = 5 [ e,

m=1
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Denoting sk, N| = E [(Xgﬁ) ] and taking into account

that X](\’f) = 0 if £ > N, the following recursion must be
solved

1 N-1 1 N-1
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+alk, N7,

with initial condition s[0, N] = 1. By inspection, we find

as solution
1 Nek—1 min[k,N—k—1] /97 )
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Explicitly, for the highest values of k, we have

1
sSIN—2,N] = % N>3

The solution (5) can be rewritten with (3) as
2 2\ (i
eleaey] sy (G o

which shows that all terms in the summation are positive.
Using (6), the variance

o 8] = )] - )
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It remains to demonstrate that the right hand side of (7)

tends to zero as N — oo. Numerical data indeed shows
(k)

that var [%\2_] decreases monotonous for any computed
PN
N = 1000) and fixed k. Also if

(k)
% decreases as a function

large N (verified up to
k = [log N] and N large , var

of N per region where k = [1og N] is constant. Note that
[z] denotes the largest integer smaller than or equal to .
For extreme values of k, such as k = N — 1, we find that

P
var [%] =(N-1)!-1
N

N — o0 is still unknown. The k-region of practical interest,
however, extends roughly from k£ = 1 to k = E[hy] +
cy/varlhy] = log N +cy/log N, where c is a small constant,
say ¢ < 10.

For k = o(log N), we can apply the asymptotic expres-
sion [1, 24.1.3.11T],
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~ e 7
(v -l eE ®
into (7)
. . L k y
ﬁsl\;) min[k,N—k—1] 2] ‘S](V-i-l-i-])‘ (N _ 1)|
var m = Z . 3 —
Py =0 J (S(kJrl))
N i(?}) ’y+logN)
(v—l—logN’”J J (k+J)!
f—

B (k!)2 <2j> (v +log Ny

(v +log N)* = \J (k+)!
20k )\ (B 1
- 20 amerey

g=1
(k)
Clearly, if k is fixed, the latter shows that var [gﬁ%} ~
P
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successive coeflicients in the ¢-series equals
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For sufficiently large k, we have %17 ~2o0r by~ by (%)q
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with by = ( (kfl))m =21
(k)
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var [m] b1 Z
PN
by k
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Since the asymptotic expression (8) is only valid for k =

7+logN))

(k)
o(log N), we arrive at var |28 | = o(1). So far, we have
PN

demonstrated almost sure behavior for all £ = o (log N).
The remaining region (from k& = o(log N) to k = log N +
¢v/log N) is expected to obey the condition for almost sure
behavior. Simulations up to N = 1000 are confirming the
trend, but a rigorous proof is still lacking.

IV. CONCLUSION.

A model for the number of traversed routers in the In-
ternet has been reviewed. The good agreement with var-
ious measurement of the hopcount has suggested that the
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asymptotic probability density function of the hopcount
(1) is likely to possess the remarkable property of almost
sure behavior. Such behavior implies that any hopcount
distribution in the Internet deduced by measurement from
a source to various destinations will satisfy (1) closely. In
this sense, the asymptotic law can be regarded as robust
against small changes in the model assumptions.

The major contribution of this article lies in the the-
oretical demonstration that the probability distribution
of the hopcount indeed possesses the property of almost
sure behavior. The result has been shown for hopcounts
kE = o(log N). In addition, almost sure behavior has only
been demonstrated for the complete graph with exponen-
tially distributed link weights, but we claim that the results
also holds for almost all connected random graphs of the
class Gp(NN) and that by a similar coupling argument in [6]
the claim is very likely to be proved.
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