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Network Architectures and Services
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Network = Process + Graph
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Graph (Structure)
Hardware, Topologie
Relationship between items
and/or processes

Process (Function)

Software, service

transport of items A →B
A

B

Network Science: Theory of processes on/in graphs

Duality between process and graph is cornerstone
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Three equivalent representations of an
undirected graph
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Topology domain Spectral domain

𝐴 = 𝐴! = 𝑋Λ𝑋!

𝑋!×!: orthogonal
eigenvector matrix

Geometric domain

Λ!×!: diagonal
eigenvalue matrix

Each undirected graph
with N nodes
= a simplex in Euclidean
(N-1)-dimensional space
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Devriendt, K. and P. Van Mieghem, "The Simplex Geometry of Graphs", 
Journal of Complex Networks, Volume 7, Issue 4, pp. 469–49 August 2019.  
(http://arxiv.org/abs/1807.06475).
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Local Rule – Global Emergent behavior
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Structure:
Contact graph

Process
Virus spread

While infected until recovered 
then do infect healthy neighbors

LRGE dynamics:
#$!(&)
#&

= 𝑓( 𝑥((𝑡) + ∑)*+! 𝑎()𝑔 𝑥( 𝑡 , 𝑥)(𝑡)
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Outline

Inverse linear process:
Inverse all shortest path problem

Inverse non-linear process:
Prediction of LRGE dynamics
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Shortest Path Routing

• Link metric is non-negative and additive (e.g. delay, cost,...)
• Weight of path ℘() is 𝑤 ℘() = ∑,∈℘!"𝑤,

• The shortest path ℘()
∗ is minimizer of 𝑠() = 𝑤 ℘()

∗ ≤ 𝑤 ℘()
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N = 11
L = 20

P. Van Mieghem, Data Communications Networking, 
(ISBN: 978-94-91075-01-8), 2011

𝑠%& = 𝑤 ℘%&∗ = 19
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Inverse All Shortest Path Problem (IASPP)

7

Given an 𝑁×𝑁 demand matrix D 
find the weighted adjacency matrix A
subject to
1) each shortest path weight obeys

𝑠%& ≤ 𝑑%&
for any node pairs (a,b) in the graph    
with N nodes

2) 𝐷 − 𝑆 is minimized

𝑠01 = 𝑤 ℘01
∗ = 1

,∈℘#$
∗

𝑤,

Topology 
𝐴 = ?

𝑑%&a b

Motivation: 
• end-to-end delay (QoS) in telecommunications 
• travel times in transportation 
• seismic tomograph (earthquakes) of geologic zones 
• EEG/MEG in human brain

D: not necessarily a distance matrix
S: always a distance matrix
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Function of network
• Usually, the function of a network is related to the transport 

of items over its underlying graph
• In man-made infrastructures: two major types of transport

o Item is a flow (e.g. electrical current, water, gas,…)
o Item is a packet (e.g. IP packet, car, container, postal 

letter,…)
• Flow equations and physical laws determine transport 

Maxwell equations, Kirchhoff & Ohm, hydrodynamics, Navier-Stokes 
equation (turbulent, laminar flow equations, etc.), epidemic spread, ...

• Protocols determine transport of packets (IP protocols and IETF
standards, car traffic rules, etc.)
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Laplacian matrix Q

QN×N =

3 −1 −1 0 0 −1
−1 4 −1 0 −1 −1
−1 −1 3 −1 0 0
0 0 −1 2 −1 0
0 −1 0 −1 3 −1
−1 −1 0 0 −1 3
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6 5

3
N = 6
L = 9

𝑄 = Δ − 𝐴 A : adjacency matrix and Δ = 𝑑𝑖𝑎𝑔(𝑑( 𝑑)⋯ )𝑑*

Degree of node 𝑑+ = ∑,-(* 𝑎,+

P. Van Mieghem, Graph Spectra of Complex Networks,
2nd edition, Cambridge University Press, 2023 (to appear)
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Linear dynamics on flow networks
Linear dynamic process: “proportional to” (~) graph of network
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Examples:
• water (or gas) flow ~ pressure
• displacement (in spring) ~ force
• heat flow ~ temperature
• electrical current ~ voltage

P. Van Mieghem, K. Devriendt and H. Cetinay, 2017, "Pseudoinverse of the 
Laplacian and best spreader node in a network", Physical Review E, vol. 96,
No. 3, p 032311. 

injected
nodal
current
vector

nodal
potential
vector

x   =        Q       .      v
weighted
Laplacian
of the
graph

i

j

𝑣+ − 𝑣.~𝑦+.

vi

vj

link flow yij

xi

xj

Inverse of x	=	Qv is v	=	𝑄2x subject to 𝑢3𝑣 = 0 (average potential is zero)
𝑄2 is the pseudoinverse of the Laplacian matrix  

11
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⇕effective resistance wab 𝜔%& = 𝑄%%
0 + 𝑄&&

0 − 2𝑄%&
0

The effective resistance matrix Ω is the flow 
analogon of the shortest path weight matrix S

Ic a b

𝑣% − 𝑣& = 𝐼1𝜔%&

𝑣% 𝑣&
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The famous Fiedler’s block inverse
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0 𝑢!
𝑢 Ω

2(
=

−2𝜎) 𝑝!

𝑝 −
1
2𝑄

Ω𝑝 = 2𝜎)𝑢

𝑝 = (
344563 Ω

2(𝑢

Applying inverse block matrix formulae, 

𝐴 = Δ + 2Ω2( −
1
𝜎)
𝑝𝑝!

there the Laplacian 𝑄 = Δ − 𝐴 and Δ = 𝑑𝑖𝑎𝑔(𝑑)

2𝜎) =
1

𝑢!Ω2(𝑢

Inverse flow problem is exactly solvable! 

Van Mieghem, P., 2021, "A tree realization of a distance matrix: the inverse 
shortest path problem with a demand matrix generated by a tree", Delft 
University of Technology, report20211012.
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https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUD20211012_invSPTree.pdf
https://www.nas.ewi.tudelft.nl/people/Piet/papers/TUD20211012_invSPTree.pdf
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From flow to path networks

14

Path networks are more confined than flow networks:  𝜔+. ≤ 𝑠+.

Shortest path weight: 𝑠() = 𝑤 ℘()
∗ = ∑,∈℘!"∗ 𝑤,

IASPP: Demand (end-to-end delay) constraint: 𝑠+. ≤ 𝑑+.
Wrong inequality! 
(we want to replace 𝜔+. by 𝑑+.; in fact, 𝜔+. ≤ 𝑑+.)

IASPP: 
- is NP-complete
- Fiedler’s block inverse does not seem applicable; 

(except for trees: flow = path)
- Spectral sparsification (current research)
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Outline

Inverse linear process:
Inverse all shortest path problem

Inverse non-linear process:
Prediction of LRGE dynamics
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SIS Virus spread in networks

16

Given:

Compute: Probability that node j is infected at time t > 0

Infection process: Poisson with infection strength 𝛽)7
Curing process: Poisson with curing strength 𝛿)

time t = 0

infected

Not infected

j
k

m

1. SIS model: only 2 compartments: S & I
2. graph is static (not time-varying) and known
3. all processen are independent Poisson processes
4. infection and curing have constant strength 

(not time-varying, no mutations)

Assumptions:

16

Markovian SIS epidemics in networks

17

Infection process: Poisson with infection strength 𝛽)7 = 𝛽 (per link)
Curing process:    Poisson with curing strength 𝛿) = 𝛿 (per node)

Each node j possesses a health state 𝑋.(𝑡) at time t :
𝑋) 𝑡 = 0: node j is not-infected at time t
𝑋) 𝑡 = 1: node j is infected at time t 

Infection probability of node j at time t :  𝑣. 𝑡 = Pr 𝑋. 𝑡 = 1

𝑋. 𝑡
𝑡0

1

Susceptible
𝑋. = 0

Infected
𝑋. = 1

𝛽

𝛿

Markov state 𝑋) ∈ 0,1 of node j
is a Bernoulli random variable

Pr 𝑋) 𝑡 = 1 = 𝐸 𝑋) 𝑡

17



9

2N states!

Markov graph of 
the SIS epidemics
on N = 4 nodes
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P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”,
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009).

Structure (graph)

Function (process)

1 2

3 4

18

Governing Markovian SIS equation for node j

19

if infected  (Xj =1):
probability of
curing per
unit time

time-change of
𝐸 𝑋) =Pr 𝑋) = 1
probability that 
node j is infected

if not infected (Xj =0):
probability of infection per
unit time from 
infected neighbors

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani, 
“Epidemic processes in complex networks”, Review of Modern Physics, 
Vol. 87, No. 3, pp. 925-979, 2015

𝑑𝐸 𝑋.(𝑡)
𝑑𝑡

= 𝐸 −𝛿𝑋.(𝑡) + (1 − 𝑋.(𝑡)) 𝛽M
,∈@A+BC&DE(.)

𝑋,(𝑡)

HI J8
HK = −𝛿𝐸 𝑋. + 𝛽∑,-(* 𝑎,. 𝐸 𝑋, − 𝛽∑,-(* 𝑎,. 𝐸 𝑋.𝑋,

Complication
𝐸 𝑋&𝑋' =Pr 𝑋& = 1, 𝑋' = 1

19
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Mean-field approximation: 
replace random variable by its mean

20

𝑑𝐸 𝑋.
𝑑𝑡 = 𝐸 −𝛿𝑋. + (1 − 𝑋.)𝛽M

,-(

*
𝑎,. 𝑋,

𝑋. ⟹ 𝐸 O𝑋. = 𝑤.

𝑑𝑤.
𝑑𝑡 = −𝛿𝑤. + (1 − 𝑤.)𝛽M

,-(

*
𝑎,. 𝑤,

From 2* linear Markov differential equations to
N non-linear mean-field approximating diff. equations

P. Van Mieghem, "The N-Intertwined SIS epidemic network model", 
Computing (Springer), Vol. 93, Issue 2, p. 147-169, 2011

NIMFA

20

Graph Reconstruction from epidemics

Aim: Determine the N×𝑁 adjacency matrix 𝐴 of the contact graph 
from a series of infection probabilities over time of all nodes

Viral state observation = infection 
probability 𝑣) 𝑡 = Pr 𝑋) 𝑡 = 1 over time, 
instead of {0,1} bit sequence 𝑋)(𝑡)

Topology 
𝐴 = ?

Solution: only partially possible

Prasse, B. and P. Van Mieghem, 2018, "Exact Network Reconstruction 
from Complete SIS Nodal State Infection Information Seems Infeasible", 
IEEE Transactions on Network Science and Engineering, Vol. 6, No. 4, 
October-December, pp. 748-759.

time t

V
ira

l s
ta

te
 𝑣
.
𝑡

21

https://www.nas.ewi.tudelft.nl/people/Piet/papers/Computing2011_N_intertwined_SIS_virus_spread.pdf
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Agitation modes

𝑁 differential equations  &'9 (
&(

= 𝑓)*),+ 𝑤 𝑡 ,
𝑖 = 1,… ,𝑁

𝑚 < 𝑁 differential equations  &,: (
&(

≈ 𝑦-.𝑓)*) ∑-/01 𝑐- 𝑡 𝑦- , 𝑙 = 1,… ,𝑚

Projection on agitation modes 𝑦,

𝑦+, … , 𝑦;: orthonormal agitation modes
𝑐, 𝑡 = 𝑦,3𝑤 𝑡 : scalar, projection of w 𝑡 on 𝑦,

Proper orthogonal decomposition (POD) of the viral state vector
𝑤 𝑡 ≈ ∑,*+; 𝑐, 𝑡 𝑦,

If the POD is accurate, we do not need 𝑁 differential 
equations: 

𝑤 𝑡

𝑒(

𝑒N

𝑦) = 𝑒)

𝑦(

𝑤 0

Prasse, B. and P. Van Mieghem, 2022, "Predicting network dynamics without 
requiring the knowledge of the interaction graph", Proceedings of the 
National Academy of Sciences (PNAS), Vol. 119, No. 44, e2205517119
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Accurate prediction of epidemic outbreaks 
without accurate network reconstruction

Basis of the Network Inference Prediction Algorithm (NIPA)
Real-time data loading from RIVM (Dutch ministry of health):

https://www.nas.ewi.tudelft.nl/nipa/covid-prediction

Prediction Reconstruction

AUC = 0.51

B. Prasse and P. Van Mieghem, 2020, “Network Reconstruction and Prediction 
of Epidemic Outbreaks for General Group-Based Compartmental Epidemic 
Models”, IEEE Transactions on Network Science and Engineering, 
Vol. 7, No. 4, October-December, pp. 2755-2764 

Process: only a few agitation modes Graph: nearly all eigenmodes

23
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Summary: Inverse problems
• Inverse all shortest path problem (IASPP):

o Broad application range
o Exact solution for flow networks

Ø effective resistance matrix for any graph are one-to-one coupled with 
the adjacency matrix (Fiedler’s block inverse)

o Path networks are generally challenging (NP-complete)
Ø Current work : construct approximate algorithms for IASSP

• Prediction of ”local-rule, global emergent” dynamics:
o Possible without knowing the (assumed fixed) interaction graph!
o Explanation of success of “deep learning methods”

Ø Autonomous dynamic in high dimensions only evolves in a small 
subspace

24
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Thank You

Piet Van Mieghem
NAS, TUDelft

P.F.A.VanMieghem@tudelft.nl
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