Epidemics on Networks

Piet Van Mieghem

in collaboration with

Eric Cator, Ruud van de Bovenkamp, Cong Li, Stojan Trajanovski, Dongchao Guo, Zhidong He, Qiang Liu, Annalisa Socievole, Bastian Prasse and Huijuan Wang

Outline

Exact SIS model

NIMFA: N-Intertwined MF Approximation

Recent developments
Continuous-time Markovian SIS epidemics on networks

- Constant infection rate β on all links
- Constant curing rate δ for all nodes

\[\tau = \beta / \delta \] effective spreading or infection rate

\(X_j(t) = 1 \) node j is infected at time t

\(X_j(t) = 0 \) node j is healthy at time t

Infection and curing are independent Poisson processes

Markov graph of the exact SIS model on $N = 4$ nodes

Absorbing state

2^N states!

Markov theory

Regular bipartite Markov graph

Recursive structure of infinitesimal general Q_N

Governing SIS equation for node j

\[
\frac{dE[X_j]}{dt} = E \left[-\delta X_j + (1 - X_j)\beta \sum_{k=1}^{N} a_{kj}X_k \right]
\]

time-change of

\[E[X_j] = \text{Pr}[X_j = 1],\] probability that node j is infected

if infected: probability of curing per unit time

if not infected (healthy): probability of infection per unit time

\[
\frac{dE[X_j]}{dt} = -\delta E[X_j] + \beta \sum_{k=1}^{N} a_{kj}E[X_k] - \beta \sum_{k=1}^{N} a_{kj}E[X_jX_k]
\]

Outline

Exact SIS model

NIMFA: N-Intertwined MF Approximation

Recent developments

NIMFA: replace \(\text{rv} \) by its mean

\[
\frac{dE[X_j]}{dt} = E[-\delta X_j + (1 - X_j) \beta \sum_{k=1}^{N} a_{kj} X_k]
\]

NIMFA

\[
X_j \Rightarrow E[\tilde{X}_j]
\]

\[
\frac{dE[E[\tilde{X}_j]]}{dt} = E[-\delta E[\tilde{X}_j] + (1 - E[\tilde{X}_j]) \beta \sum_{k=1}^{N} a_{kj} E[\tilde{X}_k]]
\]

Bernoulli \(\text{rv} \)

\[
\frac{dv_j}{dt} = -\delta v_j + (1 - v_j) \beta \sum_{k=1}^{N} a_{kj} v_k
\]

in normalized time \(t^* = \delta t \):

\[
\frac{dv_j(t^*)}{dt^*} = -v_j(t^*) + (1 - v_j(t^*)) \sum_{k=1}^{N} a_{kj} v_k(t^*)
\]

\[
\tau = \frac{\beta}{\delta}
\]
NIMFA: \(N\)-intertwined mean-field approxim.

\[
\frac{dE[X_j]}{dt} = -\delta E[X_j] + \beta \sum_{k=1}^{N} a_{kj} E[X_k] - \beta \sum_{k=1}^{N} a_{kj} E[X_j X_k]
\]

\[
\text{Cov}[X_j X_k] = E[X_j X_k] - E[X_j] E[X_k] \geq 0
\]

E. Cator, P. Donnelly and P. Van Mieghem, 2018, "Reply to "Comment on 'Nodal infection in Markovian SIS and SIR epidemics on networks are non-negatively correlated'"", Physical Review E, Vol. 98, No. 2, August, p. 026302.

\[
\frac{dE[X_j]}{dt} = -\delta E[X_j] + \beta \left(1 - E[X_j]\right) \sum_{k=1}^{N} a_{kj} E[X_k] - \beta \sum_{k=1}^{N} a_{kj} \text{Cov}[X_j X_k]
\]

NIMFA: upper bounds SIS

R\(_j\) > 0

Lower bound for the epidemic threshold

\[
\frac{dv_j(t)}{dt} = -\delta v_j + \beta \sum_{k=1}^{N} a_{kj} v_k - \beta \sum_{k=1}^{N} a_{kj} E[X_j X_k]
\]

\(v_k(t) = E[X_k(t)]\)

Ignoring the last summation:

\[
\frac{dV(t)}{dt} \leq (-\delta I + \beta A) V(t)
\]

\(V(t) \leq e^{(-\delta I + \beta A)t} V(0)\)

If all eigenvalues of \(\beta A - \delta I\) are negative, \(v_j\) tends exponentially fast to zero for sufficiently large time \(t\). Hence, if

\[
\beta \lambda_\ell(A) - \delta < 0
\]

\(\tau = \frac{\beta}{\delta} < \frac{1}{\lambda_\ell(A)} < \tau_c\)

The NIMFA epidemic threshold is precisely

\[
\tau_c^{(1)} = \frac{1}{\lambda_\ell(A)} < \tau_c
\]

\[
\tau_c^{(2)} = \frac{1}{\lambda_\ell(A)} < \tau_c^{(2)} = \frac{1}{\lambda_\ell(H)} < \tau_c
\]
What is so interesting about epidemics?

- Network protection
- Self-replicating objects (worms)
- Propagation errors
- Rumors (social nets)
- Epidemic algorithms (gossiping)
- Cybercrime: network robustness & security

\[
t_c = \frac{1}{\lambda_1(A)}
\]

\[
\max \left(E[D] \sqrt{1 + \frac{\text{Var}[D]}{E[D]^2}} \cdot d_{\text{max}} \right) \leq \lambda_1(A) \leq d_{\text{max}}
\]

Exact vs. Mean-field approx. (NIMFA)

- 2^N linear equations
- Steady-state
 - Absorbing (healthy) state
 - Reached after unrealistically long time
 - Difficult to analyze
- Only for exponential infection and curing times

- N non-linear equations
- Meta-stable state:
 - Phase-transition
 - Epidemic threshold
 - Realistic
 - Analytically tractable
 - Lower bound epidemic threshold
 - Valid for any infection and curing time distribution

Extensions of NIMFA

- **In-homogeneous**: each node i has own β_i and δ_i:

- **SAIS** (Infected, Susceptible, Alert) and **SIR** instead of SIS:

- Generalized Epidemic mean-field model (**GEMF**): extension of NIMFA to m compartments (includes both SIS, SAIS, SIR,...):

- **NIMFA on Interdependent networks**

- **Universal SIS mean-field framework**: NIMFA is close to optimal

Outline

Exact SIS model

NIMFA: N-Intertwined MF Approximation

Recent developments

- **Non-Markovian epidemics**
- Tanh-approximation
- Inferring the graph
Epidemic times are not exponential

\[f_r(t) = \frac{\alpha (\frac{t}{b})^{\alpha-1}}{b} \exp\left(-\frac{t}{b}\right) \]

Same mean \(E[T] \):

\[b = \frac{1}{\beta \Gamma\left(1 + \frac{1}{\alpha}\right)} \]

\(T \) is the time to infect a neighboring node

Non-Markovian epidemic threshold

Non-exponential infection time has a dramatic influence!

GSIS: SIS with general infection times

NIMFA: valid provided the effective infection rate \(\tau \) is replaced by the av. number \(E[M] \) of infection events during a healthy period (via renewal theory assuming existence of metastable state):

\[
E[M] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \phi_T(z) \phi_R(-z) \frac{dz}{z}
\]

\(\phi_X(z) = E[e^{-zX}] \)

NIMFA steady state:

\[
0 = -v_{j\infty} + \tau (1 - v_{j\infty}) \sum_{k=1}^{N} a_{kj} v_{k\infty} \quad \tau = \frac{\beta}{\delta}
\]

\[
0 = -v_{j\infty} + E[M] (1 - v_{j\infty}) \sum_{k=1}^{N} a_{kj} v_{k\infty}
\]

GSIS: SIS with general infection times

Generalized criterion for the NIMFA epidemic threshold: \(E[M_c] = \frac{1}{\lambda_1} \)

If the recovery time \(R \) is exponential, then \(E[M] = \frac{\phi_T(\delta)}{1-\phi_T(\delta)} \)
and the epidemic threshold obeys: \(\phi_T(\delta) = \frac{1}{1+\lambda_1} \)

When the infection time \(T \) is Weibullian: \(\phi_T \left(\frac{1}{\tau T(1+1/\alpha)}; \alpha \right) = \frac{1}{1+\lambda_1} \)
with pgf \(\phi_T(w; \alpha) = \alpha \int_0^\infty e^{-\frac{wx-x^\alpha}{\lambda_1}} d\alpha \)

Scaling law for large \(N \)
When infection time \(T \) is Weibullian: \(q(\alpha) = O(1) \)

\[
E[M] = \frac{1}{2\pi i} \int_{L(-\infty)}^{L(\infty)} \frac{\phi_T(z) \phi_R(-z) dz}{1 - \phi_T(z) z}
\]
Epidemic threshold $\tau_c^{(1)}(\alpha)$ versus α

\[
\tau_c^{(1)}(\alpha) = \frac{1}{\lambda_1}
\]

\[
\frac{1}{\tau_c^{(3)}(\alpha)} = \ln(1 + \lambda_1) + \frac{1}{2} \left(\psi'(1) - \psi'(\alpha) \right) \ln^2(1 + \lambda_1) + O\left(\frac{1}{\alpha^7} \right)
\]

\[
\eta(\alpha, \rho)
\]

Given that 1 infection event has occurred in $[0, \rho]$, what is the prob. of its occurrence at time σ?
GSIS: infection time T is Gamma

The infection time \(T \) is Gamma distributed:
\[
f_T(x; \xi) = \frac{(x/b_T)^{\xi-1} e^{-x/b_T}}{b_T^\xi \Gamma(\xi)}
\]
with mean \(E[T] = \beta r \xi \) and pgf \(\phi_T(z; \xi) = (1 + b_T z)^{-\xi} \)

Comparison requires \(E[T] = \frac{1}{\beta} \) so that \(b_T = 1/(\xi \beta) \)

If the recovery time \(R \) is exponential, then \(E[M] = \frac{\phi_T(\delta)}{1-\phi_T(\delta)} \)

The NIMFA epidemic threshold obeys \(E[M_C] = \frac{1}{\lambda_1} \), so \(\phi_T(\delta) = \frac{1}{1+\lambda_1} \)

\[
\tau^{(1)}_{C\Gamma}(\xi) = \frac{1}{\xi \left(1 + \frac{1}{\lambda_1} \right)^{\xi-1}} = \frac{1}{\xi \left(\ln(1+\lambda_1) \right)^{\xi-1}}
\]

\[
E[M] = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\phi_T(z) \phi_R(-z)}{1 - \phi_T(z)} \frac{dz}{z}
\]

Epidemic threshold \(\tau^{(1)}_{C\Gamma}(\xi) \) versus \(\xi \)

One-to-one relation infection time of viral item and its global endemic effect in a graph

Time-dependent prevalence $\alpha \to \infty$

$\lim_{\alpha \to \infty} \tau_c^{(1)}(\alpha) = \frac{1}{\ln(1 + \lambda_1)}$

$\alpha \to \infty$ represents a synchronized infection

Epidemic threshold: $\frac{1}{1-p}$

p: fraction of nodes being cured

If $\ln\left(\frac{1}{1-p}\right) = 1$ or $p = 0.632$, then pulse curing is comparable with Poisson curing:

Challenges for epidemics on networks

- Tight upper bound of the epidemic threshold (for any graph), or near to exact determination of t_c
- Time-dependent analysis of SIS epidemics: beyond the tanh-formula
- Non-Markovian epidemics
- Epidemics on evolving, adaptive and temporal networks
- Competing and mutating viruses on networks
- Modeling of social contagion
- Control of epidemics on networks
- **Measured data** of epidemics (e.g. fraction of infected nodes, the underlying topology of the ‘contact’ network) in real-world networks!

Books

Performance Analysis of Complex Networks and Systems
Piet Van Mieghem

Graph Spectra for Complex Networks
Piet Van Mieghem

Data Communications Networking
Piet Van Mieghem

Articles: http://www.nas.ewi.tudelft.nl
Thank You

Piet Van Mieghem
NAS, TUDelft
P.F.A.VanMieghem@tudelft.nl