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Adjacency matrix A
(0.1 1 0 0 1]
176 1 0 1 1
Ay 1 1. 9.1 0 O
0 01 o 1 0
01 0 1 6_1
| 1 1 0 0 1 0]
For an undirected graph: A = AT is symmetric
N
Number of neighbors of node /is the degree: d; = Eaik
k=1
if there is a link between node i and j, thena; =1 &
elsea; =0 TUDelft

Incidence matrix B

« Label links (e.g.: I, = (1,2), I, = (1,3), Is = (1,6),

ls =(2,3), 1s =(2,5), ls =(2,6), } =(3,4), ls =(4,5), s =(5,6))

» Col kfor link I, = (i,j) is zero, except:
sourcenodei=1 > b =1
destination node j = -1 > by = -1

1 1 -1 O o0 o o0 o

-1 0 O 1 -1 1 o 0 O

B o -1 o -1 0 O 1 o O
NxL

o o o o o o -1 -1 o

o0 0 o 0 1 0O O 1 -1

o O 1 o o -1 0 O 1

ColsumBiszero: u'B=0

where the all-one vector v = (1,1,...,1)

B specifies the directions of links 'ifu Delft




Laplacian matrix Q

N=6 ]
3 -1 -1 0 0 -1

-1 4 -1 0 -1 -1
-1 -1 3 -1 0 O
0O 0 -1 2 -1 0
0O -1 0 -1 3 -1
| -1 -1 0 0 -1 3

0= BB =A— A Since BB’ is symmetric, so are
‘ Aand Q. Although B specifies
A=diag(d, d, ... d,) directions, Aand Qlost this info here.

v is an eigenvector of @

. : -0
Basic property: | Qu Belonging to eigenvalue x = 0

Qu=BB'u=0 because O0=u'B=B"u 'i"U Delft

Network: service(s) + topology

J transport of items from Ato B

/ A I !B 0 / Service (function)

software, algorithms
b : Topology (graph)
A "./'<_ /
— et hardware, structure

Service and topology
« own specifications
« both are, generally, time-variant
 service is often designed independently of the topology
« often more than 1 service on a same topology
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Function of network

» Usually, the function of a network is related to the
transport of items over its underlying graph
» In man-made infrastructures: two major types of
transport
o Item is a flow (e.g. electrical current, water, gas,...)
o Item is a packet (e.g. IP packet, car, container,
postal letter,...)

* Flow equations (physical laws) determine transport
(Maxwell equations (Kirchhoff & Ohm), hydrodynamics, Navier-
Stokes equation (turbulent, laminar flow equations, etc.)

» Protocols determine transport of packets (IP protocols
and IETF standards, car traffic rules, etc.)

A
]
TUDelft

Linear dynamics on networks

Linear dynamic process: “proportional to” (~) graph of network

Examples:

« water (or gas) flow ~ pressure
« displacement (in spring) ~ force
* heat flow ~ temperature

link flow y;;

X = Q . %
injected weighted nodal
Vi nodal Laplacian potential
l X current of the vector
b vector graph

P. Van Mieghem, K. Devriendt and H. Cetinay, 2017, "Pseudoinverse of the
Laplacian and best spreader node in a network", Physical Review E, vol. 96,
No. 3, p 032311. TUDelft




Pseudoinverse of the Laplacian (review)
The inverse of the current-voltage relation x = Qv
is the voltage-current relation v=0Qx
subject to u”x = 0 and u"v =0
The spectral decomposition
Q = YR=1 Ayzpzy,
allows us to compute the pseudoinverse (or Moore-Penrose inverse)
Q" = Nt =2z
k
The effective resistance Vx N matrix is O = u¢” + ¢u” — 207,
where the & x 1 vector ¢ = (Qf,,01,,-, Q1)
An interesting graph metric is the effective graph resistance

N—1
1

R; = NuT¢ = Ntrace(Q1) = N z —
= Ui

P. Van Mieghem, K. Devriendt and H. Cetinay, 2017, "Pseudo-inverse of the ,‘
Laplacian and best spreader node in a network", Physical Review E, vol. 96, T D f
No. 3, p 032311. UDelft

Inverses: x = Qve» v=0QTx with voltage reference u’v =0

Q1 : pseudoinverse of the weighted Laplacian obeying QQt = QTQ =1 —% ]
J = uuT” : all-one matrix v : all-one vector

Unit current injected in node /7 nodal potential of /
X=6 - v; = Q};

=== The best spreader is node A with Q}, < @l for1 <i<N

]
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Three representations of a graph

Topology domain Spectral domain  Geometric domain
2

N=6
L=9

O
~e (+) A= AT = XAXT

oo ;

(1) é i 8 (1) i Xnxn: orthogonal 3
eigenvector matrix i
A |1 1 o100 9 Undirected graph on
™ lo o 1010 Apxy: diagonal N n_odels . id
010101 eigenvalue matrix = simplex in Euclidean
1 1.0 01 0 (N-1)-dimensional space

Devriendt, K. and P. Van Mieghem, 2018, "The Simplex Geometry of Graphs”,
Delft University of Technology, report20180717.
(http://arxiv.org/abs/1807.06475). TU Delft




Miroslav Fiedler (1926-2015)

Encyclopedia of Mathematics and Its Applications 139

MATRICES AND GRAPHS
IN GEOMETRY

Father of “algebraic connectivity”
His 1972 paper: > 3400 citations

"This book comprises, in addition to
auxiliary material, the research on which
I have worked for over 50 years.”

CAMBRIDGE

<3
appeared in 2011 TUDelft
i i ?
What is a simplex? Vertex
Facet
[ \ ﬁ : Edge
«

Point Line Segment Triangle Tetrahedron

Roughly :  a simplex is generalization of a triangle
to NV dimensions

Euclidean geometry is the oldest, mathematical
theory

Potential :

T. L. Heath, The Thirteen Books of Euclid’s Elements, Vol. 1-3, Cambridge 4
University Press, 1926 TU Delft




Spectral decomposition weighted Laplacian (1)

Spectral decomposition: Q=2zMZT

where M = diag(uq, 4y, -+, uny—-1,0), because Q u= 0

and the eigenvector matrix Z obeys Z'Z =Z Z" = I with structure

(z)1 (22)1 - (2w (z1)1 (z21 77 1/W
nOdeZ-I(Zl)Z (22)2 (ZN)ZN (Z.1)2 (22)2 1/m
(20w <z2>N @) ey @ o Yom
frequenoes
I (ciccnvalves) [
2
Q = YR=1 UkZyzi, TUDelft

Spectral decomposition weighted Laplacian (2)

Only for a positive semi-definite matrix, it holds that
Q = zZMZ" = (ZVM)(zVM)'

The matrix S = (ZVM)' obeys Q = S”s and has rank -1
(row V=0 due to uy = 0)

Vii(z1)1 Vi (z1)2 Vg (Z)N

\/{1_2(22)1 \/ITz(Zz?z \/M_Z(.ZZ)N
\/#N—l(ZN—l)l \/#N—l(.ZN—l)Z \/#N—l(.ZN—l)N
0 0 0

lf |
3
Q =YN -1 wezzl TUDelft




Geometrical representation of a graph

Vi (z1)1 Vi (z1): o (z)n
\/{1_2(22)1 \/sz(Zz?z \/FTZ(.ZZ)N

\/MN—1(ZN—1)1 \/.uN—l(ZN—l)Z \/.UN—1(ZN—1)N
N faY /A

The /-th column vector s; = (/i1 (z1) 1,12 (22)1, -+, /En (zy) i = 0)
represents a point p;in (N-1)-dim space (because S has rank N-1)

$1 Sz Simplex
A YA g
L: < L 7 :

. - 2
Simplex geometry: omit zero row, Syxy = Sv—1)xn TU Delft

Faces of a SImplex Each connected, undirected graph

on /N nodes corresponds to 1
verte>\<[ Fi2}  specific simplex in /-1 dimensions
5 (Fiedler)

Fli23) = ‘F{ZL}
face

Aface F, = {p € RN 1|p = Sx, with (xy); = 0 and uTx, = 1}
r s |
(xy); ER ifi€eV
(xy); =0 ifigV

Vis a set of vertices of
the simplex in RV~1,
corresponding to a set of
nodes in the graph G

4 .F{3,4}

The vector x,, € RV is a barycentric coordinate with {




Centroids

cy = Sﬁ/—"l is the centroid of face F, with (u,); = 1,y

C1} = C{2,3}

a centroid of a face is a vector  centroid of simplex is origin

r x|
Uy =u—uy == |Vicy =S(u—uy) =—-(N—-V)cy 'I,"U Delft

Geometric representation of a graph
Is;l13 = d; ||sl- - sj||§ = (s; — sj)T(si - sj) = s?si+s]Tsj-Zsfsj

= Qu + Qjj — 2Qij
= d;+d; + 2a;j for i # j,else zero

1113 = dy

The matrix with off-diagonal elements
d; + d; + 2a;; is a distance matrix
(if the graph Gis connected)

Te _ _
5182 = Q12 = —aqgy

The geometric graph representation is not unique (node relabeling changes 2)

st'sj = YRt VI (@) iBe(zi) j = SR=1 ti(zxezf,).. = Qi

2
Q =YN-twezizt and Q = STS TUDelft
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Geometry of a graph (dual representation)
Spectral decomposition: @t = zZMTZT = (Z\/W)(Z\/W)T
The matrix ST = (Zx/W)T has rank V-7 and @ = (s1)" st
The £th column vector s obeys
2 T
1 IsT = s7ll, = (i — &) @ (er — ) = wy;

T
) From s7gt — j — " .
inverse N

simplex

]
w;; is the effective resistance between node /7and j TUDelft

Volume of simplex and inverse simplex of

a graph
N
Volume of the simplex Ve = W\/E N1
' 1
where the number of (weighted) spanning trees ¢ is ¢ = N 1_[ Uk
k=1
1
. . V+ —
Volume of the inverse simplex G (N — 1)1 \/E
v N-1
. —G = =
Hence: v N¢& guk

K. Menger, “"New foundation of Euclidean geometry”, (‘
American Journal of Mathematics, 53(4):721-745, 1931 TU Delft
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Steiner ellipsoid of simplex

4‘ Es projection sTe,= u,(z,)4
Ay d

semi-axis: ||e,| = N1

Uz

volume:

\_/ /2 NN/2 N

s = [(N/2+1) (N—1)N/2

Hence,
2 _ (NN N
£ (F(N/2+1))2(N—1)N l_[k=1 l’lk
e T e
VN-eliipsoid TNZ+ D Qek TU Delft

altitude(s) in a simplex
Fiedler

simplex inverse
P simplex
4 4
1 1
3 3
. 1
lagl = = lag > = —
Q;rz da

The altitude from a vertex s;" to the complementary face F{{} in the inverse simplex

idual iraih reiresentationi has a Ienith eiual to the inverse deiree of node i

recall that Q;rl- = v; (nodal potential, best spreader) -i-‘u Delft
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Cut size of graph and altitude of simplex
4 ,  Cutsize: |aV] = ufQuy
LR N s 4 Q =STs
\ N - oV | = ulSTSuy
% complementary sets = | SuV||%
) =
= lleylI3V?
altitude:
vector from face F,
to face F, and
4 orthogonal to both
c faces
1 {34}
3 |a+V| = quTuV
d{3,4 2 1
el = 222 ool = oy
¢y = S s the centroid of face F, with (u,); = 1; i3
VoW v vJi = liev TUDelft

Metl‘iCS /a)l] and wij
Is! = sfll. = Jou

the Euclidean distance between vertices of inverse simplex ST

vertices of STare an embedding of nodes of the graph G
according to the metric /(Oij (a.0. obeying the triangle inequality)

Also ||sf — sz||§ = w;; is a metric

Inverse simplex sTof the graph G with positive link weights is
hyperacute

Unpublished recent work with K. Devriendt

3
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Generalization metrics

Q' is the Gramm matrix of a hyperacute simplex S* — determines a metric

md = (e;—¢)" (F(@)' (e; — ¢) is @ metric when f(Q) is a Laplace matrix

A\Y

" metrics on a graph

N-1 ((Zk)i—(zk)j)z

mE @) = (g — )" (e@Pe0t — [ 4 g0, )" (e; — ) = TN e

ij
with t = k%T and pN = —E (chemical potential or Fermi energy)

g = -1 — Bose-Einstein
g = 0 — Maxwell-Boltzmann
=1 > i-Di

Unpublished recent work with K. Devriendt
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Summary

 Linearity between process and graph naturally leads to
the weighted Laplacian Q and its pseudoinverse Q

» Spectral decomposition of the weighted Laplacian Q
and its pseudoinverse QT provides an /-7 dimensional
simplex representation of each graph,

o allowing computations in the /-7 dim. Euclidean space (in
which a distance/norm is defined)

o geometry for (undirected) graphs

» Open: “Which network problems are best solved in the
simplex representation?”

3
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