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Abstract—In this paper we study the spectral radius of a
number of real-life networks. This study is motivated by the fact
that the smaller the spectral radius, the higher the robustness of
a network against the spread of viruses. First we study how well-
known upper bounds for the spectral radius of graphs match to
the spectral radii of the social network of the Dutch soccer team,
the Dutch roadmap network, the network of the observable part
of the Internet graph at the IP-level and the Autonomous System
level. Secondly, we compare the spectral radius for these real-life
networks with those of commonly used complex network models.

I. INTRODUCTION
The theory of the spectra of graphs contains many beautiful

results, that relate physical properties of a network, such as for
instance robustness, diameter and connectivity, to eigenvalues
of matrices associated with the graph, see e.g. [6], [15].
Recently, it has been shown [16] that the spectral radius
of a graph (i.e. the largest eigenvalue of its corresponding
adjacency matrix) plays an important role in modeling virus
propagation in networks. In fact, in [16], the Susceptible-
Infected-Susceptible (SIS) infection model is considered. The
SIS model assumes that a node in the network is in one of
two states: infected and therefore infectious, or healthy and
therefore susceptible to infection. The SIS model assumes in-
stantaneous state transitions. Thus, as soon as a node becomes
infected, it becomes infectious and likewise, as soon as a
node is cured, it is susceptible to re-infection. Epidemiological
theory [7] predicts the existence of an epidemic threshold τ .
If the infection rate along each link is β, while the cure rate
for each node is δ, then the effective spreading rate of the
virus can be defined as β/δ. The epidemic threshold can be
defined as follows: for effective spreading rates below τ the
virus contamination in the network dies out, while for effective
spreading rates above τ , the virus is prevalent, i.e. a persisting
fraction of nodes remains infected. It was shown in [16] that
τ = 1/ρ(G) where ρ(G) denotes the spectral radius of the
adjacency matrix of the graph G. If follows from this result
that the smaller the spectral radius, the higher the robustness
of a network against the spread of viruses.
The contribution of this paper is twofold. First, we study

how well-known upper bounds for the spectral radius of graphs
match the spectral radii of a number of real-world networks.
Secondly, we compare the spectral radius of these real-world
networks with those of commonly used network models.

II. UPPER BOUNDS FOR THE SPECTRAL RADIUS
An upper bound for the spectral radius of a graph [16]

gives a lower bound for the epidemic threshold for virus
propagation of the network. If the effective spreading rate is
below this lower bound, then the virus contamination dies out.
The sharper the upper bound for the spectral radius, the less
effort we need to spend in reducing the effective spreading
rate below the lower bound. The effective spreading rate can
be lowered by either decreasing the spreading rate β (e.g.
by implementing more or better intrusion detection/prevention
software) or by increasing the cure rate δ (e.g. by installing
more virus scanning software).
The most common graphs for which an explicit expression

for the spectral radius is known, are [6]: the complete graph
Kn, the path Pn, the cycle graph Cn, the k-regular graph, the
k-dimensional lattice and the complete bipartite graph Km,n.
Since no closed expression is known for the spectral radius of
a general graph, we will discuss a number of upper bounds
for the spectral radius of graphs. Although many more bounds
are known, the most important (and best) ones are presented.
The bounds differ both in form as in the parameters that are
used. The more information about a graph is used, the better
the bounds can be. Since different parameters of graphs are
used in the bounds, it seems hard to compare them in general.
Now, let G be a graph on N nodes, with L links, with

minimum degree dmin, maximum degree dmax, and spectral
radius ρ (G). The oldest and simplest bound, that can be found
in any book on spectral graph theory, is

ρ(G) ≤ dmax (1)

A bound in terms of the numbers of nodes and links only is
found by Hong [9]: if G is connected, then

ρ(G) ≤
√
2L−N + 1 (2)

Cao [4] improved this bound at the cost of using more
parameters: if dmin ≥ 1, then

ρ(G) ≤
p
2L− (N − 1)dmin + (dmin − 1)dmax (3)

Hong, Shu, and Fang [10] obtained a bound that indicates the
relation of the spectral radius to the minimal degree: if G is
connected, then
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ρ(G) ≤ 1
2

h
dmin − 1 +

p
(dmin + 1)2 + 4(2L−Ndmin)

i
(4)

Das and Kumar [8] obtained a bound that uses very local
information of the graph: if G is connected, and mi is the
average degree of the nodes adjacent to node i, then

ρ(G) ≤ max
©√

mimj : i ∼ j
ª

(5)

Here i ∼ j indicates that nodes i and j are linked. Finally,
Cioabă, Gregory, and Nikiforov [5] obtained an upper bound
that also uses the diameter D of the graph: if G is connected
and nonregular, then

ρ(G) < dmax −
Ndmax − 2L

N(D(Ndmax − 2L) + 1)
(6)

III. SPECTRAL RADIUS OF REAL-WORLD NETWORKS
In this section, we give the spectral radius ρ for the follow-

ing real-world networks: the social network that is formed by
all soccer players that have played an international match for
the Dutch soccer team1 (A), the Dutch roadmap network (B)
[11], the network of the observable part of the Internet graph
at the IP-level (C) [12] and the Autonomous System level (D)
[13].
An impression of the network of Dutch soccer team players

is given in Figure 1. In this social network every node
corresponds to a soccer player that has played a game for
the Dutch national team. A node is connected with another
node if both players have appeared in the same match.
For the considered real-world networks, we show in Table I,

a set of generic topological characteristics. Furthermore, Table
II illustrates the tightness of the upper bounds introduced in
Section II.
We conclude from Table II that for networks A, B and

C the upper bound (5) of Das and Kumar exhibits the best
match with the real spectral radius. The overestimation of
this upper bound for networks A, B and C is 31%, 20% and
20%, respectively. For network D, the upper bounds (2), (3)
and (4) provide the best match. However, in this case, the
overestimation is as high as 187%. In addition, the following
observations can be made from Table II:
• the upper bounds (2), (3) and (4) are of the same order
• the upper bound (6) does not give an improvement of
upper bound (1)

• for networks A and B, the simple upper bound (1)
outperforms the upper bounds (2), (3) and (4).

Next, we explore the spectral radius of generic models (see
e.g. [1] and [14]), used for modelling the evolution and the
topology of real-world networks, i.e. the random graph of

1The data for the Dutch soccer team network was obtained through
www.voetbalstats.nl, which gives the line-ups for all Dutch international
soccer matches. We have considered all matches up till Ireland-Holland (16
august 2006), which was match number 644.

Fig. 1. The real-world network of Dutch soccer team players.

Erdös-Rényi (ER) [2], the small-world graph of Watts-Strogatz
(WS) [17] and the scale-free graph of Barabási-Albert (BA)
[3].
The ER graph is the most investigated topology model [2].

The most frequently occurring realization of this model is
Gp(N), in which N is the number of nodes and p is the
probability that there is a link between any two nodes. The
major characteristic of Gp(N) is that the existence of a link
is independent from the existence of other links. The total
number of links in Gp(N) is on average equal to pLmax,
where Lmax =

¡
N
2

¢
is the maximum possible number of links.

Hence, the link density q = L
Lmax

equals p.

topological
characteristics

A B C D

N 685 14098 4058 18121
L 10271 18689 6151 59507
dmax 117 6 107 2404
dmin 9 1 2 1

d 30 2.7 3 6.2
D 11 255 34 8
ρ 50.7 3.5 14.2 110.8

TABLE I
TOPOLOGICAL CHARACTERISTICS OF THE REAL-WORLD NETWORK OF
DUTCH SOCCER TEAM PLAYERS (A), DUTCH ROADMAP (B), IP-LEVEL
(C) AND AS-LEVEL (D) INTERNET GRAPH. THE NOTATION WAS

INTRODUCED IN THE PREVIOUS SECTION, WITH THE EXCEPTION OF d
WHICH DENOTES AVERAGE NODAL DEGREE.

The WS graph captures the fact that, despite the large size of
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upper bound A B C D
ρ 50.7 3.5 14.2 110.8
1 117 6 107 2404
2 140.9 152.6 90.8 317.6
3 123.8 152.6 65.5 317.6
4 120.0 152.6 65.2 317.6
5 66.6 4.2 17.1 1252.5
6 117 6 107 2404

TABLE II
UPPER BOUNDS ON THE SPECTRAL RADIUS OF THE REAL-WORLD

NETWORK OF DUTCH SOCCER TEAM PLAYERS (A), DUTCH ROADMAP
NETWORK (B), IP-LEVEL (C) AND AS-LEVEL (D) INTERNET GRAPH.

Fig. 2. Comparison between the spectral radius of the real-world network
of Dutch soccer team players and the spectral radius of networks models: the
random graph of Erdös-Rényi, the small-world graph of Watts-Strogatz and
the scale-free graph of Barabási-Albert.

the topology, in most real-world networks, there is a relatively
short path between any two nodes. The diameter D, presented
in Table I, aims to illustrate this effect. Initially, the WS graph
is built on the ring lattice C(N, k), where each of the N
nodes is connected to its first 2k neighbors (k on either side).
Subsequently, a small-world is created by moving, for every
node, one end of each link (connected to a clockwise neighbor)
to a new location chosen uniformly with rewiring probability
pr, except that no double links or loops are allowed. The
number of links L in the WS graph, irrespective of pr, is
always equal to L = Nk. Hence, the link density is q = 2k

N−1 .
The BA graph gives rise to a class of graphs with a

power-law degree distribution. The BA graph is based on
two ingredients, growth and preferential attachment of nodes,
which implies that nodes with larger degree are more likely
candidates for attachment of new nodes. The BA algorithm
starts with a small numberm0 of fully-meshed nodes, followed
at every time step by a new node attached to m ≤ m0

nodes already present in the system. After t time steps this
procedure results in a graph with N = t + m0 nodes and

L = m0(m0−1)
2 + mt links. Hence, the link density is q =

m0(m0−1)+2mt
n(n−1) .
Figure 2 compares ρ(A) and the average value of ρ for

generic network models. Furthermore, in Table III we consider
ρ, calculated for a graph of identical link density as the one
in real-world networks under consideration.
Figure 2 illustrates that the value of ρBA is closest to ρ(A).

Moreover, as shown in Table III, the same tendency is observed
for network C, whereas for network D the value of ρ(D) is not
consistent with any of the examined models. Finally, the Dutch
road infrastructure (network B) is most likely a subgraph of a
two-dimensional2 lattice graph, as found in [11].

spectral radius A B C D
ρ 50.7 3.5 14.2 110.8
ρER 30.9 4.1 4.4 7.7
ρWS 32.9 5.8 5.2 10.3
ρBA 52.9 14.2 14.3 15.1

TABLE III
THE SPECTRAL RADIUS OF NETWORK MODELS: THE RANDOM GRAPH OF

ERDÖS-RÉNYI, THE SMALL-WORLD OF WATTS-STROGATZ AND THE
SCALE-FREE GRAPH OF BARABÁSI-ALBERT. FOR THE SIMULATIONS OF
THE SPECTRAL RADIUS THE SAME NUMBER OF NODES AND LINKS IS USED

AS IN THE REAL-WORLD NETWORKS UNDER CONSIDERATION.

From the simulation results, we saw for small and medium
rewiring probabilities pr that the spectral radius ρWS virtually
corresponds to ρER. For example, the difference in ρ between
the WS graph with pr = 0.5 and the ER graph, in the complete
q-range, is hardly noticeable (not shown). However, for high
rewiring probabilities pr (close to 1), ρWS has the tendency
not to converge to ρER, see Figure 2. Thus, the spectral
properties of the WS graph with pr = 1 are not identical
to those of the ER graph. In order to examine this unexpected
behavior in more detail, we have conducted some additional
simulations on graphs with a small number of nodes, i.e.
N = 21 nodes. To obtain the WS graph with the link density
q = 0.5 and pr = 1, we move k = 5 links of a given node to a
new location chosen randomly in the ring lattice. The resulting
spectral radius, after each rewiring step, is depicted in Figure
3. In addition, Figure 3 contains the spectral radius of the
ER graph with the same link density. The depicted values are
obtained by averaging over 100 simulation runs. It is obvious
that ρWS of the WS graph (obtained after 21 rewiring steps) is
larger than ρER of the ER graph. A possible explanation lies in
the fact that for pr = 1.0, the WS graph is an approximation
of the random graph with the constraint that each node has
a minimum of dmin = k links. This implies that the degree
distribution of the WS graph is skewed. Figure 4 shows clearly

2The spectral radius of the 2D-lattice with sizes z1 and z2 such that N =
(z1 + 1)(z2 + 1) and L = 2z1z2 + (z1 + z2) is

ρ2D-Lattice = 2cos
π

z1 + 2
+ 2 cos

π

z2 + 2
< 4
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that the degree distribution of the ER graph is not identical to
the one of the WS graph, where indeed dmin = k.

Fig. 3. The spectral radius of the small-world graph of Watts-Strogatz after,
for every node, each link connected to a clockwise neighbor (i.e. here k = 5
links) is rewired to a randomly chosen node with the probability pr = 1.0.
At the end of N steps, which correspond to the N nodes, the spectral radius
is compared with the one of the random graph of Erdös-Rényi, both for the
link density q = 0.5.

Fig. 4. The degree distribution of the small-world graph of Watts-Strogatz
and the random graph of Erdös-Rényi, both for the link density q = 0.5.

IV. CONCLUSION

In this paper we have studied the spectral radius of a number
of real-world networks. Our main conclusions are:
• for the Dutch soccer team network, the Dutch road map
network and the Internet graph at router level, the upper
bound given in [8] is reasonably tight

• for the Internet graph on AS level, all considered upper
bounds seriously overestimate the spectral radius

• the spectral radii of the Dutch soccer team network and
the Internet graph at the router level match well with
those obtained from scale-free Barabási-Albert graphs
with the same link density

• the spectral radius of the Dutch road map network
matches well with that of a two dimensional lattice

• all considered network models, i.e. the random graph,
small-world and scale-free graph give spectral radii that
are much smaller than that of the Internet graph on AS
level.
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