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Overview

• Introduction & Motivation


• Definitions & Results


• Conclusions
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Why do we characterise evolving networks?

• Comparing different networks


• Detecting properties that can influence dynamic processes unfolding on 
evolving networks


• Guiding the development of improved evolving network models
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• Characterization of properties of 
(weighted) aggregated topology 
(ignores time!!)


• Characterization of temporal 
properties of the time series of 
contacts of a single link (or node) 
(ignores topology!!)e topology!!)
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How do we characterise evolving networks?

Systematic methods to characterize simultaneously the temporal and topological 
relations of contacts/events are still missing.



Do contacts close in time  
occur close in topology too?



Systematic characterization of contacts
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Systematic characterization of contacts

• Interrelation of topological and temporal distance of contacts 

• Local analysis of temporal correlation around a link

Are results  
statistically significant? 
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Systematic characterization of contacts
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• Interrelation of topological and temporal distance of contacts 

• Local analysis of temporal correlation around a link



Contacts of which evolving networks?
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Randomised reference models
𝒢

9Gauvin, Laetitia, et al. "Randomized reference models for temporal networks."  
arXiv preprint arXiv:1806.04032 (2018).
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Topological and temporal distance of contacts

• Topological distance of two contacts:  





• Temporal distance of two contacts:  


η(ℓ(i, j, t), ℓ(k, l, s)) = {
minu∈{i,j}, v∈{k,l}}(h(u, v) + 1) e(i, j) ≠ e(k, l)
0 e(i, j) = e(k, l)

𝒯(ℓ(i, j, t), ℓ(k, l, s)) = | t − s |
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Interrelation of topological and  
temporal distance of contacts 
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Contacts close in ,me are close in topology!

Temporal proper,es of single link ac,vity 
 cannot explain these trends, 

especially in virtual contacts and Infec,ous!

Interrelation of topological and  
temporal distance of contacts 
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Local analysis of temporal correlation around a 
link

Local analysis around a link 
 =  

Link egonetwork

13
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Local analysis of temporal correlation around a 
link

Local analysis around a link 
 =  

Link egonetwork

Temporal correlation of  
egonetwork activity  

=  
Train size distribution 
of egonetwork activity
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Train size distribution with Δt = 60s
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Train size distribution with Δt = 60s
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Train size distribution with Δt = 60s

temporal correlation among neighbouring links = higher chance of long trains
14



Number of active links during a train
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Number of active links during a train

ℳ = 4
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In physical contacts, the number of active links during  
a train is influenced by the social context! 
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Take home messages

• Contacts close in time tend to happen also close in topology


• Temporal correlation among neighbouring links is particularly evident in 
virtual contacts and Infectious datasets


• The number of active links during a train reflects different social contexts
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