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Asymptotics

Two main types of asymptotics in multivariate statistics:

I standard asymptotics
I fixed dimension p and large sample size n→∞;
I classical limit theorems hold

I large dimensional asymptotics
I both the dimension p and the sample size n tend to infinity;
I the ratio p/n tends to a positive constant c > 0;
I classical limit theorems do not hold anymore (the curse of dimensionality).

Which is the right one?

”The large dimensional asymptotics is closer to reality.”

- Huber (1973)

3



The Curse of Dimensionality

Estimation problem

Given: a sequence of i.i.d. p−dimensional random vectors y1, y2, . . . , yn with
population covariance matrix Cov(yi ) = Σ and E(yi ) = 0

I estimate covariance matrix Σ

I estimate eigenvalues

Common estimator: sample covariance Sn = 1
n

n∑
i=1

yiy>i = 1
n YnY>n

I Classical theory: p is fixed and n→∞

Sn
a.s.−→ Σ.

In particular, the p random eigenvalues of Sn converge to the eigenvalues of
Σ.
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An effect of high-dimensions: example
Market application: 500 stocks (= p) and 1000 daily returns (= n)

Question: Can Sn be used estimate covariance in daily returns in this case
(p/n→ 1

2 )?  NO!

I Sn tends to under- or overestimate the true parameter

I eigenvalues of Sn do not consistently estimate eigenvalues of Σ

Example: yi ∼ N (0, Ip) i.i.d, p/n→ 1
2 as n→∞

Warning :  λj
Sn ≠ 1

 λmax
Sn → (1 ± 1 2)2
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Curse of dimensionality: statistical inference

Logarithmic determinant: Let consider the important statistics in multivariate analysis

Tn = log(det(Sn)) =

p∑
i=1

log(λi ) ,

where λi are the eigenvalues of Sn. When the dimension p is fixed it holds

Tn
a.s.−→ 0 as n→∞,√

n/pTn ∼ N (0, 2) as n→∞ .

If p →∞ and n→∞ such that p/n→ c ∈ (0, 1) then

1
p

Tn
a.s.−→ d(c) =

c − 1
c

log(1− c)− 1 < 0,√
n/pTn ∼ d(c)

√
np → −∞.

Warning! The statistical inference is not reliable anymore!
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First Steps in Random Matrix Theory

John Wishart (1928)

I finite-dimensional matrices

I Wishart distribution

Eugen Wigner (1958)

I infinite matrices

I empirical spectral distribution
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Wigner’s motivation: bypass the Schrödinger equation and explain the
statistics of experimentally measured atomic energy levels in terms of the
limiting spectrum of the large random matrices.

Empirical spectral distribution (e.s.d)

For any symmetric p × p matrix A

F A
n (x) =

1
p

p∑
i=1

1{λi ≤ x}

is called empirical spectral distribution function of A.

I analyse the eigenvalue structure of A via the measure F A
n

I find limiting spectral distribution F , i.e. F A
n → F as p →∞
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Wigner’s semi-circle law

This law was first observed by Wigner (1955) for certain special classes of
random matrices arising in quantum mechanical investigations.

Theorem (Arnold, L. (1967))

Let Wn = 1√
n Xn, where Xn is a symmetric random matrix with i.i.d. real

random variables xi,j which have zero means and E(ξ2
i,j ) = 1 for i 6= j and

E(ξ2
i,i ) = 2 (Wigner matrix or GOE for Gaussian case). The empirical spectral

distribution F ′n of the eigenvalues of Wn almost surely tends to

F ′(x) =
1

2π

√
4− x2 × 1|x|≤2 .
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Semi-circular law

Entries xij ~ N(0, 1)
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Figure: Limiting spectral distribution of GOE matrices
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Stieltjes transform

For a function with bounded variation G the Stieltjes transform is defined as

mG(z) =

+∞∫
−∞

1
λ− z

dG(λ) (1)

∀z ∈ C+ = {z ∈ C : Im(z) > 0} .

The fundamental connection to random matrices: The Stieltjes transform of
the e.s.d. Fn(λ) of Sn is given by

mFn (z) =
1
p

p∑
i=1

+∞∫
−∞

1
λ− z

δ(λ− λi )dλ =
1
p

p∑
i=1

1
λi − z

=
1
p

tr{(Sn − zI)−1} . (2)
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Volodymyr Marčenko Leonid Pastur

In Distribution of eigenvalues for some sets of random matrices,
Matematicheskii Sbornik 114(4) (1967), the limiting distribution of the
eigenvalues of a sample covariance matrix as the size of the matrix grows
was derived
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Theorem
Silverstein’s (Marčenko-Pastur) equation

Assume that (A1) holds, p/n→ c ∈ (0,+∞) and that FΣn converges weakly
to a cumulative distribution function (c.d.f.) H.
Then the e.d.f. F 1/nYnY>

n converges weakly almost surely to some
deterministic c.d.f.s F , which Stieltjes transformation mF (z) is the unique
solution of the following equation

mF (z) =

+∞∫
−∞

dH(τ)

τ(1− c − czmF (z))− z
. (3)
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Marchenko-Pastur Law, Σn = σ2I

X :  1000 × 500 matrix

Entries :  N(0, 1)
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Marchenko−Pastur Law and Histogram of empirical eigenvalues

Figure: Marchenko-Pastur law for a Gaussian random matrix.

F ′(λ) =

 (1− 1
c )δ0(λ) + f (λ) for c > 1

f (λ) =
1

2σπ

√
(λmax − λ)(λ− λmin)

cλ
for c ≤ 1 ,

(4)

with λmax = σ
2(1 +

√
c)2 and λmin = σ

2(1−
√

c)2
.
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Nuclear Physics = Economy

Scattering cross-section of neutron
scattering for the Gadolinium-156
nucleus (it determines how likely
the neutron is to bounce off the nu-
cleus.) (Source: Coceva and Stefanon, Nuclear

Physics A, 1979)

The probability density for
the nearest neighbor spac-
ings in slow neutron reso-
nance levels.
(Source: Liou et al, Phys.rev C5, 1972)
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Nuclear Physics = Arriving of the bus = Number theory

A histogram of spacings be-
tween bus arrival times in
Cuernavaca (Mexico)
(Source: Krbalek-Seba, J. Phys. A., 2000)

Spacing distribution for a billion
zeroes of the Riemann zeta
function and RMT prediction
(Source: Andrew Odlyzko, Contemp. Math.

2001)
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Quote of the day

”Why should the same equation describe both the structure of an atomic
nucleus and a sequence at the heart of number theory? And what do random
matrices have to do with either of those realms? In recent years, the plot has
thickened further, as random matrices have turned up in other unlikely
places, such as games of solitaire, one-dimensional gases and chaotic
quantum systems. Is it all just a cosmic coincidence, or is there something
going on behind the scenes? .”

- Brian Hayes, ”The spectrum of Riemannium”,
American Scientist, 2003
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Spectral properties of model networks

I It is well-known that the properties of networkor graphs can be
characterized by spectrum of associated adjacency and Laplacian
matrix (Chang, Spectral Graph Theory (1997)).

I For an unweighted graph, adjacency matrix A is defined in following way:
Aij = 1, if i and j nodes are connected and zero otherwise.

I For undirected networks, adjacency and Laplacian both are symmetric
matrices and consequently have real eigenvalues.

I The rich information about the topological structure can be extracted
from the spectral analysis of the networks.
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Nearest Neighbour Spacing Distribution (NNSD)

Denote the eigenvalues of a network by λi , i = 1, . . . ,N with N - size of the
network.

Definition (NNSD)

Let λ̄i = N̄(λi ) = NF (λi ) be the unfolded eigenvalue. Then the Nearest
Neighbour Spacing is defined as

si = λ̄i+1 − λ̄i .

The NNSD is defined as a probability distribution P(s) of si ’s.

Poisson density: P(s) = e−s

GOE density: P(s) = π
2 se−

πs2
4

Brody distribution: P(s) = Asβe−αsβ+1

with A = (1 + β)α and α =
[
Γ
(
β+2
β+1

)]β+1

NNSD reflects local correlations between eigenvalues.
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Spectral rigidity ∆3

Definition (∆3 statistic)

For any x from the spectrum denote

∆3(L, x) =
1
L

min
a,b

x+L∫
x

[FN(λ)− aλ− b]2 dλ

where a and b are obtained from the OLS fit. Then the average over several
values of x gives the spectral rigidity ∆3(L).

It measures the least-square deviation of the spectral staircase function FN

from the best straight line fitting for a finite interval L of the spectrum.

“Picket fence” strongly correlated ∆3(L) = 1/12. The most rigid with all
spacing equal (e.g., 1-D harmonic oscillator)

Uncorrelated ∆3(L) = L/15 (strong fluctuations around spectral density F ′)

GOE ∆3(L) ∼ 1
π2 log(L) (intermediate case)

∆3 reflects the long-range correlations among the eigenvalues.
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Erdös-Rényi network

Starting with N nodes, random connections between pairs of nodes are made
with probability p

average graph degree k = p(N − 1) ∼ pN

degree distribution P(k) = CN−1
k pk (1− p)N−1−k

adjacent matrix A would have 2pN2 entries equal to one and rest entries
zeros.

We pick p = 0.01 and N = 2000, which leads to a connected graph with
average degree 20 and ca. 1% of nonzero values in matrix A. We generate
10 of such networks and plot the averages of the quantities of interest:
spectral density, NNSD and ∆3.
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Erdös-Rényi network contd.

Rai, A., Jalan, S. (2015). Application of Random Matrix Theory to Complex Networks. In: Banerjee, S., Rondoni, L. (eds) Applications of

Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer
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Scale-free network

Scale-free networks are mostly modeled using algorithm provided by
Barabási and Albert (2002, Rev. Mod. Phys.):

I Starting with a small number, m0 of the nodes, a new node with m ≤ m0

connections is added at each time step.

I This new node connects with an already existing node i with probability
π(ki ) ∝ ki with ki being degree of node i .

I After τ time steps the model leads to a network with N = τ + m0 nodes
and mτ connections.

This ensures

degree distribution P(k) = k−γ (power law). γ = 3 for π(ki ) ∝ ki .

adjacent matrix A would have 2pN2 entries equal to one and rest entries
zeros.

We keep N = 2000 with average degree of 20.
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Scale-free network contd.

Rai, A., Jalan, S. (2015). Application of Random Matrix Theory to Complex Networks. In: Banerjee, S., Rondoni, L. (eds) Applications of

Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer
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Small-World networks

Small-world networks are constructed using the following algorithm of Watts
and Strogatz (1998, Nature):

I Starting with an one-dimensional ring lattice of N nodes in which every
node is connected to its k = 2 nearest neighbors, each connection of the
lattice is rewired randomly with the probability p such that
self-connections and multiple connections are excluded.

I Thus, p = 0 gives a regular network and p = 1 comletely random

network.

I For N = 2000 and average node degree of 20, the typical small-world
behavior is observed around p = 0.005
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Small-World network contd.

Rai, A., Jalan, S. (2015). Application of Random Matrix Theory to Complex Networks. In: Banerjee, S., Rondoni, L. (eds) Applications of

Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer
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Modular networks
Modular networks carry signature of community structure.

I Let us assume, for simplicity, that communities are modeled by random
networks.

I Random matrices corresponding to unweighted random networks have
entries 0 and 1, where number of 1’s in a row follows a Gaussian
distribution with mean p and variance p(1− p).

I Take m random networks with connection probability p (each block GOE)
I Introduce random connections among sub-networks with probability q

A = A0 + Aq

I The ratio q/p can be considered as the relative strength of Aq and A0

I q = 0 corresponds to two completely separate blocks and q = p to a
random network.

I As the coupling between the two blocks increases (q > 0), the density
distribution manifest a transition to the semicircular form at q = p:

ρ(λ) =
2
πλ2

0

√
λ2

0 − λ2 with λ0 = (λmax − λmin)/2 .

I We take m = 2, for N = 500 (each).
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Modular networks contd.

Rai, A., Jalan, S. (2015). Application of Random Matrix Theory to Complex Networks. In: Banerjee, S., Rondoni, L. (eds) Applications of

Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer
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Sample correlation matrix

Let x1, . . . , xn be a sequence of independent p-dimensional random vectors
from some common distribution with mean vector µ and covariance matrix Σ.
The corresponding correlation matrix R is defined by

R = diag(Σ)−1/2 ×Σ× diag(Σ)−1/2,

Similarly, let S be the sample covariance matrix with the corresponding
sample correlation matrix defined by

R̂ = diag(S)−1/2 × S× diag(S)−1/2 .

In this talk we will present the central limit theorem (CLT) for log |R̂| in case

I p →∞, n→∞ and p/n→ γ ∈ (0, 1] and p ≤ n,

I the spectral norm of R is uniformly bounded,

I finite fourth moments, i.e., E(x4
ij ) <∞.
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Why logarithmic determinant of sample correlation matrix?

The sample correlation matrix R̂ is a popular target in multivariate analysis.
See, for example, the classical books by Anderson (1958), Muirhead (1982)
and Eaton (1983).

I |R̂| is the likelihood ratio test statistic for testing that the p entries of x1

are independent/uncorrelated.

I If R = I, the density of R̂ is given by

Constant× |R|(n−p−2)/2dR .

Then in case p = n − 2 or p/n→ 1 one can test on the (approximate)
uniformity of the entries of a large random correlation matrix.

I The volume of a hyperellipsoid constructed from standardized vectors is
proportional the determinant of the sample correlation matrix.
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What is already known?

In case R = I and x1 is multivariate normal it is much known about log |R̂|,
i.e.,

I Empirical distribution of the eigenvalues of R̂ satisfies Marchenko-Pastur
law (Jiang (2004))

I The largest eigenvalue of R̂ asymptotically satisfies the Tracy-Widom law
(Bao, Pan and Zhou (2012))

I The quantity log |R̂| satisfies the CLT (Jiang and Yang (2013) and Jiang
and Qi (2015)).

In case R 6= I and x1 is multivariate normal there is the CLT proved by Jiang
(2019, AoAP).

Nothing is known about log |R̂| in case R 6= I and x1 with
generic non-normal distribution.

Till now...

31



What is already known?

In case R = I and x1 is multivariate normal it is much known about log |R̂|,
i.e.,

I Empirical distribution of the eigenvalues of R̂ satisfies Marchenko-Pastur
law (Jiang (2004))

I The largest eigenvalue of R̂ asymptotically satisfies the Tracy-Widom law
(Bao, Pan and Zhou (2012))

I The quantity log |R̂| satisfies the CLT (Jiang and Yang (2013) and Jiang
and Qi (2015)).

In case R 6= I and x1 is multivariate normal there is the CLT proved by Jiang
(2019, AoAP).

Nothing is known about log |R̂| in case R 6= I and x1 with
generic non-normal distribution.

Till now...

31



What is already known?

In case R = I and x1 is multivariate normal it is much known about log |R̂|,
i.e.,

I Empirical distribution of the eigenvalues of R̂ satisfies Marchenko-Pastur
law (Jiang (2004))

I The largest eigenvalue of R̂ asymptotically satisfies the Tracy-Widom law
(Bao, Pan and Zhou (2012))

I The quantity log |R̂| satisfies the CLT (Jiang and Yang (2013) and Jiang
and Qi (2015)).

In case R 6= I and x1 is multivariate normal there is the CLT proved by Jiang
(2019, AoAP).

Nothing is known about log |R̂| in case R 6= I and x1 with
generic non-normal distribution.

Till now...

31



What is already known?

In case R = I and x1 is multivariate normal it is much known about log |R̂|,
i.e.,

I Empirical distribution of the eigenvalues of R̂ satisfies Marchenko-Pastur
law (Jiang (2004))

I The largest eigenvalue of R̂ asymptotically satisfies the Tracy-Widom law
(Bao, Pan and Zhou (2012))

I The quantity log |R̂| satisfies the CLT (Jiang and Yang (2013) and Jiang
and Qi (2015)).

In case R 6= I and x1 is multivariate normal there is the CLT proved by Jiang
(2019, AoAP).

Nothing is known about log |R̂| in case R 6= I and x1 with
generic non-normal distribution.

Till now...

31



What is already known?

In case R = I and x1 is multivariate normal it is much known about log |R̂|,
i.e.,

I Empirical distribution of the eigenvalues of R̂ satisfies Marchenko-Pastur
law (Jiang (2004))

I The largest eigenvalue of R̂ asymptotically satisfies the Tracy-Widom law
(Bao, Pan and Zhou (2012))

I The quantity log |R̂| satisfies the CLT (Jiang and Yang (2013) and Jiang
and Qi (2015)).

In case R 6= I and x1 is multivariate normal there is the CLT proved by Jiang
(2019, AoAP).

Nothing is known about log |R̂| in case R 6= I and x1 with
generic non-normal distribution.

Till now...

31



Non-centered case

First, we start with the (non-centered) sample correlation matrix R given by

R̂ = diag(S)−1/2 S diag(S)−1/2 ,

where S = (1/n)XX> = (1/n)Σ1/2ZZ>Σ1/2 with the noise matrix
Z = (z1, . . . , zn).

Theorem (Logarithmic law in the non-centered case)

Assume that zij are independent random variables with mean zero, variance one and finite fourth
moment E|z11|4 <∞. If the spectral norm of R is uniformly bounded and p/n→ γ ∈ (0, 1), and
let

µn = log det(R) + (p − n +
1
2

) log(1−
p
n

)− p +
p
n

+
1
2

p
n

(E|z11|4 − 3)
(

CR1/2 − 1
)

σ
2
n = −2 log(1−

p
n

)− 2
p
n

+ 2
p
n

tr(R− I)2
/p

then

log det(R̂)− µn

σn

d−→ N (0, 1),

where CR1/2 = 1
p ||R

1/2 ◦ R1/2||2F = 1
p tr
[(

R1/2 ◦ R1/2
)2
]

and ′◦′ denotes the Hadamard

product.
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Centered case

One has rather to consider rather a centered sample corelation matrix

R̂c = diag(Sc)−1/2 Sc diag(Sc)−1/2 ,

where Sc is the centered (by the sample mean) sample covariance matrix
given by

Sc =
1

n − 1
(X− x̄1>)(X− x̄1>)> with x̄ = 1/nX1 the sample mean

and 1 = (1, . . . , 1) denotes the n-dimensional vector of ones. We have the
following corollary.

Corollary (Logarithmic law in the centered case (substitution principle))

Under conditions of main Theorem and for centered sample correlation
matrix Rc the obtained CLT still holds if one replaces everywhere in formulas
of µn and σ2

n the sample size n by n − 1.
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Finite sample example I

p = 63, n = 100, t−distribution with 100 degrees of freedom
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Finite sample example II

p = 63, n = 100, t−distribution with 10 degrees of freedom
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Finite sample example III

p = 63, n = 100, t−distribution with 5 degrees of freedom
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Finite sample example IV

p = 63, n = 100, t−distribution with 3.5 degrees of freedom
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Thank you very much for your attention!

Rai, A., Jalan, S. (2015). Application of Random Matrix Theory to Complex Networks. In:
Banerjee, S., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Science
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