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Introduction

• Progress in quantum technologies
• Hardware
• Software

• When do we have quantum advantage?
• Accelerate computation of a hard, real-world problem

• Diversity of quantum HW and SW

• Need for application level quantum benchmark
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Introduction

• Component-level benchmarks
• Fidelity of quantum gates
• Number of qubits

• (Sub)system-level benchmarks
• Quantum Volume
• Circuit Layer Operations Per Seconds (CLOPS)

• Application-oriented benchmarks
• QED-C (Quantum Economic Development Consortium) Benchmark
• Q-Pack 
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Introduction

• Q-Score: metric proposed by
• Application-centric
• Hardware-agnostic
• Scalable

• Largest problem size N for which a quantum device 
significantly outperforms a random algorithm at 
solving an NP-hard problem:
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Max Cut problem
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Overview

• Max Cut problem
• Q-Score
• Quantum Annealing
• Q-Score for a Quantum Annealer
• Gaussian Boson Sampling
• Max Clique problem
• Other NP-hard problems
• Other connections with Graph Theory
• Wrap-up
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Max Cut problem

• Cut: number of links between the two sets
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Partition nodes into two sets
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Max Cut problem

• Max Cut: partition with maximum number of links
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• Max Cut problem is NP-hard

Q-Score
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• Needed: a class of graphs for which we have:
• An (asymptotic) expression for Cmax

• A fast random algorithm to determine Crand

• Largest problem size N for which a quantum device 
significantly outperforms a random algorithm at 
solving the Max Cut problem
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Q-Score

9

• Erdős–Rényi graph ER(N, 1/2)
• Random graph on N nodes
• Link probability p = 1/2

Q-Score
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• ER(N, 1/2) An (asymptotic) expression for Cmax

𝐶௫ ≈  
𝑁ଶ

8
+ 0.178𝑁 𝑁
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Q-Score
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• ER(N, 1/2) A fast random algorithm to determine Crand

𝐶ௗ ≈  
𝑁ଶ
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Random partition: two random sets of N/2 nodes

Q-Score
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𝛽(𝑁) =  
 ே ିೝೌ

ೌೣିೝೌ
>  𝛽∗ = 0.2

• Algorithm: for increasing N do:
• Make M realisations of G(N,1/2)
• Run Max Cut algorithm for every graph
• Determine average Max Cut C(N)

• Check whether this average has “sufficiently” high score

𝛽 𝑁 >  𝛽∗• Q-score: highest N for which
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Q-Score
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• ATOS: Quantum Approximate Optimization Algorithm (QAOA)
• Simulation of their own quantum device (gate based)

Q-score = 21

Quantum Annealing
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• Quantum version of Simulated Annealing

• Find global minimum of a given objective function
• Minimize a Ising spin Hamiltonian

• h: external field
• J: spin coupling interactions
• i: spin values {-1,1}
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Quantum Annealing

15

• 5000+ qubits
• Cloud interface (1 minute free QPU time)

Quantum Annealing
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• Ising Hamiltonion  QUBO
• Quadratic Unconstrained Binary Optimization

Minimize y = xTQx

x = N-dimensional binary decision vector 
Q = NxN symmetric constant matrix

15

16



9

Quantum Annealing

17

• Many Combinatorial Optimization problems can be 
formulated as a QUBO

• These problems can be programmed on D-Wave!

Q-Score for a Quantum Annealer
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• Q-Score for D-Wave

2022 IEEE International Conference on Quantum Software (QSW)

Evaluating the Q-score of Quantum Annealers

Ward van der Schoot, Daan Leermakers, Robert Wezeman, Niels Neumann, Frank Phillipson
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• xi + xj – 2xixj = 1   link (i,j) is in the cut

• Binary variables xi
• xi = 1: node i belongs to set 1
• xi = 0: node i belongs to set 2

• QUBO for Max Cut

• xi + xj – 2xixj = 0   link (i,j) is not in the cut

Q-Score for a Quantum Annealer
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• Maximize 𝑦 =  (𝑥 + 𝑥 − 2𝑥𝑥)

(,)∈ா

1

2 4

3
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𝑦 = 𝑥ଵ+𝑥ଶ-2𝑥ଵ𝑥ଶ + 𝑥ଵ+𝑥ଷ−2𝑥ଵ𝑥ଷ

𝑥ଶ+𝑥ସ-2𝑥ଶ𝑥ସ+ 𝑥ଷ+𝑥ସ-2𝑥ଷ𝑥ସ

𝑥ଷ+𝑥ହ-2𝑥ଷ𝑥ହ + 𝑥ସ+𝑥ହ-2𝑥ସ𝑥ହ =

2𝑥ଵ+2𝑥ଶ + 3𝑥ଷ + 3𝑥ସ +2𝑥ହ -2𝑥ଵ𝑥ଶ-2𝑥ଵ𝑥ଷ-2𝑥ଶ𝑥ସ-2𝑥ଷ𝑥ସ-2𝑥ଷ𝑥ହ-2𝑥ସ𝑥ହ =

2𝑥ଵ
ଶ + 2𝑥ଶ

ଶ + 3𝑥ଷ
ଶ + 3𝑥ସ

ଶ + 2𝑥ହ
ଶ-2𝑥ଵ𝑥ଶ-2𝑥ଵ𝑥ଷ-2𝑥ଶ𝑥ସ-2𝑥ଷ𝑥ସ-2𝑥ଷ𝑥ହ-2𝑥ସ𝑥ହ=

Q-Score for a Quantum Annealer
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𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ 𝑥ହ
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3 −1
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𝑥ଷ
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x = 

0
1
1
0
0

y = xTQx = 5 

Q-Score for a Quantum Annealer

22

• Results TNO paper

Q-Score for a Quantum Annealer

D-WAVE QUBO solvers
(60 seconds time limit)
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• Q-Score determined for
• Gate based device (ATOS)
• Quantum Annealer (D-Wave)

• Other physical quantum devices exist

23

Q-Score for a Quantum Annealer

Gaussian Boson Sampling

• Available quantum computers
• Diversity of physical platforms

• Superconducting qubits
• Trapped ions
• Photonics
• Quantum annealers
• Rydberg atoms
• …
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Gaussian Boson Sampling

• Special-purpose photonic platform
• Gaussian Boson Sampling
• Sampling tasks intractable to classical computers

25

Gaussian Boson Sampling

• Symmetric square matrix A (representing graph G)
 can be encoded into GBS device

• State of GBS correlates with Hafnian of A

• Hafnian of A: = # perfect matchings of G
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Gaussian Boson Sampling

• Perfect matching: set of links such that each node is 
adjacent to exactly one link

27

G Haf(G) = 3

Gaussian Boson Sampling

• # perfect matchings correlates with link density
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Gaussian Boson Sampling

• Subgraph sampling  high probability to sample a 
dense subgraph
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• Can be explored for efficient algorithms for
• Max Clique
• K-densest subgraph identification
• Graph similarity algorithms

Gaussian Boson Sampling
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Max Clique problem

• Clique = complete subgraph in G
• Max Clique = largest clique in G

31

• Max Clique problem is NP-hard

G Clique Max Clique

32

• Implementable on
• Gate based devices
• Quantum annealer
• Gaussian Boson Sampling device

• Largest problem size N for which a quantum device 
significantly outperforms a random algorithm at 
solving the Max Clique problem

Max Clique problem

• proposed Q-Score+
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𝛾(𝑁) =  
ெ ே ିெೝೌ

ெೌೣିெೝೌ
>  𝛾∗ = 0.2

• Algorithm: for increasing N do:
• Make M realisations of G(N,1/2)
• Run Max Clique algorithm for every graph
• Determine average Max Clique M(N)

𝛾 𝑁 >  𝛾∗• Q-score+: highest N for which   

Max Clique problem

• Check whether this average has “sufficiently” high score

34

Max Clique problem

• For ER(N,1/2) we need:
• An (asymptotic) expression for Mmax

• A fast random algorithm to determine Mrand

Mmax
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Max Clique problem

• ER(N,p) Random variable X(N,p): Max Clique of ER(N,p)

𝑀௫ 𝑁 = 2𝑙𝑜𝑔ଶ 𝑁 − 2𝑙𝑜𝑔ଶ 𝑙𝑜𝑔ଶ 𝑁 + 2𝑙𝑜𝑔ଶ

𝑒

2
+ 1

𝑁 →  ∞ 𝑋 𝑁, 𝑝 =  𝑍(𝑁, 𝑝   𝑜𝑟 𝑍(𝑁, 𝑝

• Good approximation for ER(N,1/2):

𝑍 𝑁, 𝑝 = 2𝑙𝑜𝑔ଵ


𝑁 − 2𝑙𝑜𝑔ଵ


𝑙𝑜𝑔ଵ


𝑁 + 2𝑙𝑜𝑔ଵ


𝑒

2
+ 1
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Max Clique problem

ER(N,1/2)
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Max Clique problem

Mrand

𝑀ௗ 𝑁  ~ 𝑙𝑜𝑔ଵ


𝑁

Max Clique problem

38

Random algorithm:

Label the nodes
Clique = node 1

Loop
Take next node
Is node connected to all nodes in current clique?

Yes? Add node to clique
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Max Clique problem

N = 180; M = 1000; T = 0.1 s

ER(N,1/2)

40

Max Clique problem
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Max Clique problem

42

Max Clique problem

Classical

Quantum Annealer

Hybrid

Gate-based
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Max Clique problem

Gate-based
Photonics

Other NP hard problems
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Other NP hard problems

45

• K - densest subgraph
• Minimum vertex covering
• Maximal matching
• Clique covering
• Number of perfect matchings
• Hamiltonian cycles
• Longest path
• Graph isomorphism
• …

Other connections with Graph Theory
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• D-WAVE QPU architectures

Chimera graph Zephyr graph
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Other connections with Graph Theory

47

• Greenberger-Horne-Zeilinger state 

Other connections with Graph Theory
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• Extension to Dicke states

• Involves multi-graphs with multi-colored edges

• Found a new case of |𝐷ସ
ଶൿ

|Ψௗ >  
ଵ


(|0011⟩ + |0101⟩+|0110⟩+|1001⟩+|1010⟩+|1100⟩)

a b

c d
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Wrap-up

49

• Graph Theory Inspired by Quantum Technology

• Asymptotic expressions for NP-hard problems

• Implementations on D-Wave

• Embeddings on D-Wave graphs

• Properties of multi-graphs with bi-colored edges
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Interact with me!

r.e.kooij@tudelft.nl

9th floor
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