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What is temporal networks




Example of temporal networks

Message networks Email networks Physical contact networks



Why temporal networks

Emergence of contacts

Time ordering of contacts




Temporal link prediction

Model temporal networks — Temporal link prediction
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Why Temporal link prediction

e Methodological reasons:
Detect the important feature of the temporal network

eCommercial reason: .
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e Public health reason:
Mitigate disease spreading




What existing methods do

White-box but
e Methods generalized by traditional link prediction methods less accurate

e Machining learning methods

Relatively accurate
but black-box
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What we do
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Time 1 2 3 4
link state
(A.B) (A,E) (B,C) (B,D) (C,D) (D,E)
time id 1 2 3 4 5 6
1 Xx1(1) | Xz(1) | Xx3(1) | Xxa(1) | x5(1) [ Xe(1)
2 x1(2) | x2(2) | x3(2) | x4(2) | x5(2) | Xxe(2)
3 x1(3) | x2(3) | X3(3) | x4(3) | X5(3) | Xe(3)
2 X1(4) | x2(4) | x3(4) | xa(4) | x5(4) | Xe(4)
link state
(A.B) (A,E) (B,C) (B,D) (C,D) (D,E)
time kg _id 3 2 3 4 5 6
1 1 0 0 0 0 0
2 0 0 1 0 0 0
3 0 1 1 0 0 0
4 0 0 0 1 0 0

What we want
Learned model

Link relation
What we assume

zi(t + 1) = fi(z1(2), z2(t), ...

What we choose

elasso Regression
M
.‘?"s(f + 1) — Z .Ifl‘,(f)_."j’,‘j + C;
j=1
eRandom Forest

What we get

el earned model

Prediction

e Link relation
coefficient Bij

Interpretation



Interpretation

Backbone Network
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Network I.. g ® . : )
topology é (’ Link distance Dij

Time 3 4
----- - link 5§qte. o
P(AB)z(AE) (B.CE (B,DF (CD) (D.E)
time id: 1 0 2 3 E 4 5 B 6
1 Xl(l)E x2(1) Xs{i)E x.mE x5(1) | xe(1)
S-l- aTi S-‘-i C s 2 xn(z)i X2(2) xz(z)i xa(Z)E x5(2) | xs(2) . .
PYR TS S O B S Link cross-correlation Rij
4 x'(ﬂi X2(4) 13(4)2 x‘(‘)i Xs(4) | Xs(4)
e -




Conclusion

e Alink's current state is largely determined by its own activity:;
e A link's current state is also influenced by the activities of other links;

e Links tend to influence each other more if they have a shortest paths in the
aggregated network ;

e Links tend to influence each other more if they are more strongly correlated in
their time series;

e The linear regression assumed by Lasso could be one elementary mechanism to
model temporal networks.
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Further works

Other works

e Long-term prediction for temporal networks

e The memory effect on temporal networks prediction
Next topics:

e Model temporal networks

e Epidemics spreading on temporal networks
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