

Li Zou
PhD student,
Multimedia computing,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology

Email: <u>I.zou@tudelt.nl</u>

Research topic: Model temporal networks

Alan Hanjalic

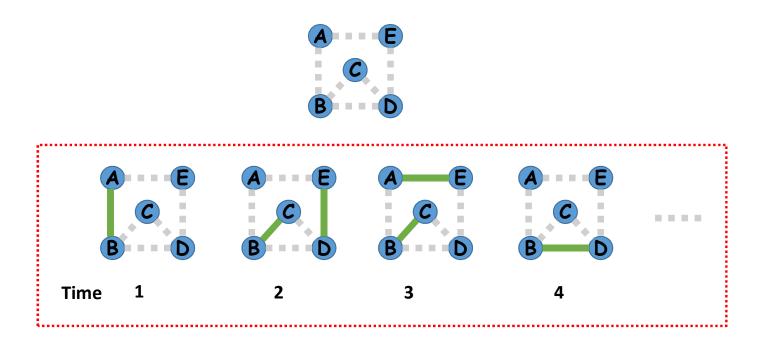
Huijuan Wang

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Temporal Network Prediction and Interpretation

Li Zou, Xiu-Xiu Zhan[®], Jie Sun, Alan Hanjalic[®], Fellow, IEEE, and Huijuan Wang[®], Member, IEEE

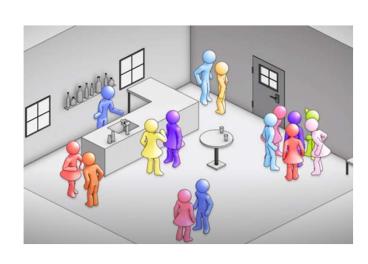
What is temporal networks



Example of temporal networks

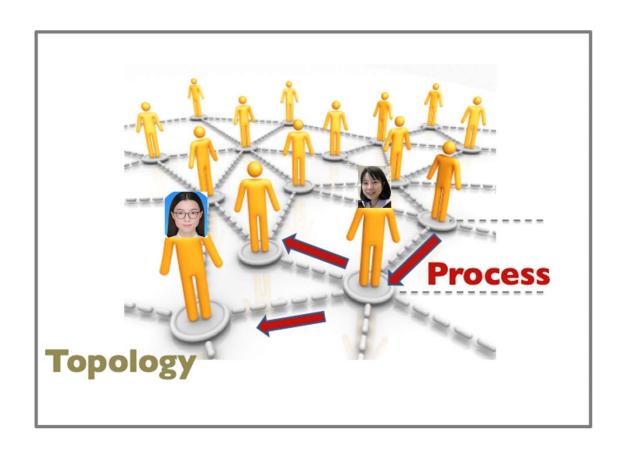
Message networks

Email networks



Physical contact networks

Why temporal networks



Emergence of contacts

Time ordering of contacts

Temporal link prediction

Why Temporal link prediction

Methodological reasons:
 Detect the important feature of the temporal network

•Commercial reason:
Recommendation system

Public health reason:
 Mitigate disease spreading

What existing methods do

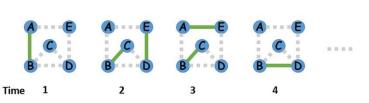
• Methods generalized by traditional link prediction methods

White-box but less accurate

Machining learning methods

Relatively accurate but black-box

What we do



	link state								
	(A,B)	(A,E)	(B,C)	(B,D)	(C,D)	(D,E)			
time link id	1	2	3	4	5	6			
1	X1(1)	X2(1)	X3(1)	X4(1)	X5(1)	X6(1)			
2	X1(2)	X2(2)	X3(2)	X4(2)	X5(2)	X6(2)			
3	X1(3)	X2(3)	X3(3)	X4(3)	X5(3)	X6(3)			
4	X1(4)	X2(4)	X3(4)	X4(4)	X5(4)	X6(4)			

	link state								
	(A,B)	(A,E)	(B,C)	(B,D)	(C,D)	(D,E)			
time link id	1	2	3	4	5	6			
1	1	0	0	0	0	0			
2	0	0	1	0	0	0			
3	0	1	1	0	0	0			
4	0	0	0	1	0	0			

What we want Learned model Link relation What we assume

$$x_i(t+1) = f_i(x_1(t), x_2(t), ..., x_M(t))$$

What we choose

•Lasso Regression

$$x_i(t+1) = \sum_{j=1}^{M} x_j(t)\beta_{ij} + c_i$$

•Random Forest

What we get

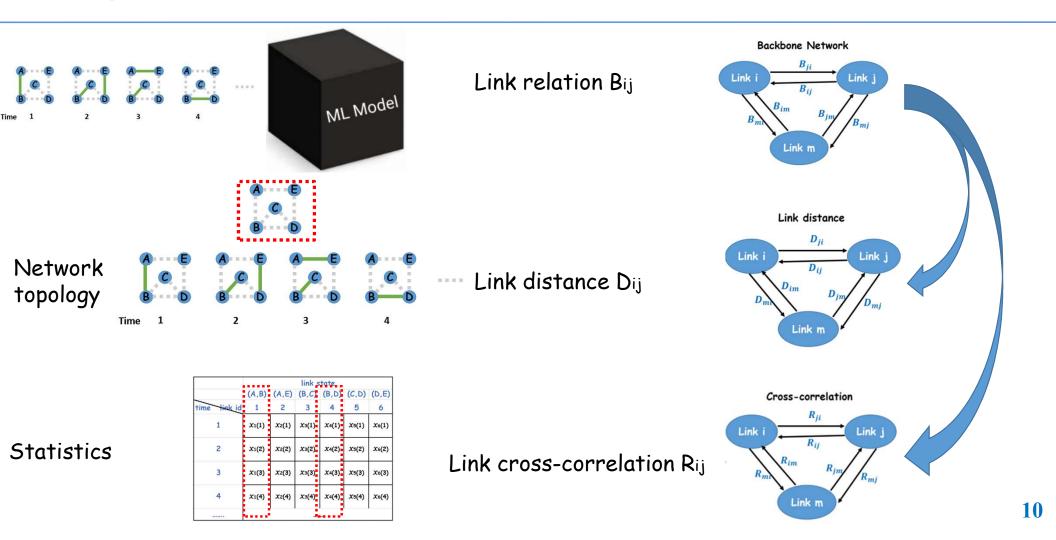
•Learned model

Prediction

 Link relation coefficient Bij

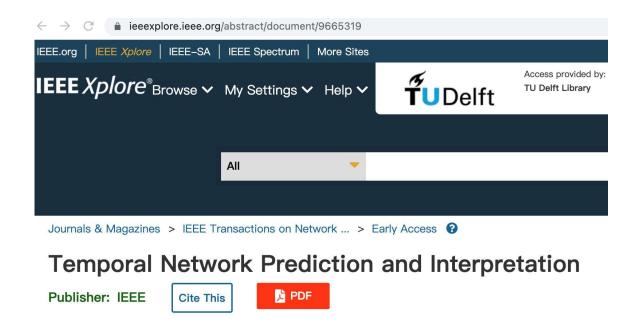
Interpretation

Interpretation



Conclusion

- A link's current state is largely determined by its own activity;
- A link's current state is also influenced by the activities of other links;
- Links tend to influence each other more if they have a shortest paths in the aggregated network;
- Links tend to influence each other more if they are more strongly correlated in their time series:
- The linear regression assumed by Lasso could be one elementary mechanism to model temporal networks.



Li Zou; Xiu-xiu Zhan; Jie Sun; Alan Hanjalic; Huijuan Wang All Authors

Further works

Other works

- Long-term prediction for temporal networks
- The memory effect on temporal networks prediction

Next topics:

- Model temporal networks
- Epidemics spreading on temporal networks

Thanks