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The challenge: reconstructing (interbank)
networks from partial information

Systemic risk

risk of collapse of
entire (financial) system
crucially depends on

network topology
which is however unknown

Public information:

each bank’s total exposure towards the aggregate of all other banks

Hidden information:
each bank’s individual exposure towards each single bank
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Local properties
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Original network
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NETWORK RECONSTRUCTION
OUR GOAL : Can we (statistically) reconstruct
the original network in such a way that...

1) Privacy is protected ?
2) Higher-order effects are correctly predicted 0
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Traditional deterministic (dense) solution
w. _.:.true (unknown) link weights of G *
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ﬁadiﬁonal C'PPVOGCR With respect to real networks,

links are too many
and thus too weak:

(from “strengths” only)
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Probabilistic method: Maximum-eniropy principle

. ! Impose available info as constraint
Partial information

C(G*)
Maximize Shannon's entropy

S ==Y P(G)log P(G)

Find unbiased probability
P(G)

Constrained ensemble of networks
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T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)




Microcanonical vs Canonical ensembles

KMic:rocqnonical 1/Q4., if G(G) = 5)
(hard constraints) e e ’
, else,
P R =< i Il B e I I /

VS

/Ccmonical - exp[—H (G, %)]
(soft constraints) FPean(G) = Z(6%)

T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)



Possible choices of local consiraints

Binary
graphs

Welighted

graphs
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Possible choices of local consiraints

Binary
graphs

Welighted

graphs
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For a moment,
let us pretend
the world Is
binary ...

-streMgth &

out-strength



Binary configuration model (BCM): fixed degrees
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[Park & Newman, Phys. Rev. E 70, 066117 (2004)]



Binary configuration model (BCM): fixed degrees

>/ C={k}

Equiprobable configurations:

(must hold for all vertices simultaneously)



Using the BCM for network reconstruction:
Maximum-Likelihood Principle

Given the real network G*
find 8¢ that maximizes E(f)’) = In P(G*|§)

For a generic ensemble
Solution. (5>§. = Z G(G)P(Gﬁ*) = 5((3*)
G

Garlaschelli & Loffredo, Phys. Rev. E 78, 015101 (2008)

For the Binary Configuration Model
;I?T;'I?f'f

Solution: —— = I;(AY)
Py 1+ Ty

Squartini & Garlaschelli, NJP 13, 083001 (2011)
codes available:
Squartini, Mastrandrea, Garlaschelli, NJP 17, 023052 (2015)




U Si n Il.h e BCM fo': fi)t:;O: social network [27]
n elllwor re C o n S'I'rU C'I'I 0 n @ Research group social network[27]

© Fraternity social network [27]
® Maspalomas Lagoon food web [28]
® Chesapeake Bay food web [28]

Resu": gOOd pred|c1'|on Of ® Crystal River (control) food web [28]
. . ® Crystal River food web [28]
higher-order properties (from ® Michigan Lake food web [28]
. . ® Mondego Estuary food web [28]
degrees only) in binary graphs @ Everglades Marshes food web [28]

Italian interbank network (1999) [26]
® World Trade Web (2000) [20]
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New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Zooming in on the eMID interbank network

Average nearest- Binary
neighbor degree clustering coefficient
1.0F
0.8}
S I
< 0.6
5 0.4F
Vo
0.2F ]
X0 :
0 50 100 150 200
k
N
X;X;
pij-= ——
| + XiXj
\. J

T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)



Zooming in on the eMID interbank network

Binary
clustering coefficient

NOTE: different
from popular

. — 1  LOf
factorized L sl
expression 2 el
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T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)



Zooming in on the eMID interbank network

NOTE: different
from popular
factorized
expression

py=kik,/2L 1!

SO, even if constraints are only
local (configuration model),
here degree “correlations”,
clustering, cycles, and other
higher-order properties are
automatically accounted for.

r

\

Pij-=

XiX;

| + XiXj

J

T. Squartini and D. Garlaschelli, New. J. Phys. 13, 083001 (2011)



Zooming in on the eMID interbank network

SO, even if constraints are only
local (configuration model),
here degree “correlations”,

NOTE: different
from popular

facforlz.ed clustering, cycles, and other
expression higher-order properties are
p;=kik;/2L !l atically accounted for.

but what about
link weights?

T. Squart] #hd D. Garlaschelli, New. J. Phys. 13, 083001 (2011)



Weighted configuration model (WCM): fixed strengths

y3 é={Si}—<; -




Weighted configuration model (WCM): fixed strengths

y3 é={Si}—<Ele>
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(probability of w ‘occupations’)

[Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)]



Weighted configuration model (WCM): fixed strengths

y:” é={Si}=<rEWij\>

P(G) = ¢ HG) /7

[ a;0vi)
i<

(yiy;)" (1 = yiy;)
oo et
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(probability of w ‘occupations’)

[Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)]

If w.=+=, the expected oy Yi)j BOSE-
occupation number is (wij) = 1 — v.v, EINSTEIN !
21

[Park & Newman, Phys. Rev. E 70, 066117 (2004)]



Weighted configuration model (WCM): fixed strengths

}/ C=1s)

Equiprobable configurations:
1 1
y 3 JL o
2 1
2 2
Y \
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(must hold for all vertices simultaneously)
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Result: bad reconstruction
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Reason:
poor binary reconstruction from strengths only

250
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Naive expectation that aggregate weighted properties
are more informative than binary ones is incorrect !

New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Doubling the constraints (degrees + strengths):
Enhanced Configuration Model (ECM)

Yo o =)

1<] | lﬁ Wiij'] roeer Wi

> @ (Wij):(]ij:o,]

-  Combination of Fermionic and Bosonic constraints;
- Extra energy (+ or -) for first occupation (i.e. edge weight);
- (+): Initial barrier/threshold; (-): saturation/aging.

Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)



The generalized Bose-Fermi distribution
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Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)



Doubling the constraints (degrees + strengths):
Enhanced Configuration Model (ECM)

>/ + >3/ C={k,s}
" \
M) =P () =P (<

Note: equivalent fo mm/mlzmg Kullback-Leibler distance

from “topological prior” (BCM) rather than uniform prior
Garlaschelli & Loffredo, Phys. Rev. Lett. 102, 038701 (2009)



Reconstruction greatly improved by the ECM:

Standard Enhanced
reconstruction reconstruction
from strengths only: from strengths and degrees:
Bose distribution (WCM) Bose-Femi distribution (ECM)
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Average nearest-neighbor degree

New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Reconstruction greatly improved by the ECM:

<c>

Standard Enhanced
reconstruction reconstruction
from strengths only: from strengths and degrees:
Bose distribution (WCM) Bose-Femi distribution (ECM)
1% -——eee Ty . o
08 % T ee :o’.;;';.‘;::. ':‘ b 0.8 i : .o ;
' . I T o:.. ’o E S
' e "o o *3 1' : ‘ o e
06 f : 06 | . o
‘ CO Y . 2 "o o
04t e 4GP g omage cume - 04 | . + 2 : %
02+t - 02t :”
0 : 0
0 02 04 06 08 1 0 02 04 06 08 1
c C

Binary clustering coefficient

New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Reconstruction greatly improved by the ECM:

Standard Enhanced
reconstruction reconstruction
from strengths only: from strengths and degrees:
Bose distribution (WCM) Bose-Femi distribution (ECM)
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New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Reconstruction greatly improved by the ECM:

Standard Enhanced
reconstruction reconstruction
from strengths only: from strengths and degrees:
Bose distribution (WCM) Bose-Femi distribution (ECM)
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Weighted clustering coefficient

New J. Phys. 16 (2014) 043022 R. Mastrandrea, T. Squartini, G. Fagiolo, D. Garlaschelli



Reducing the required input info
inference from strengths and only some proxy of link density
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G. Cimini, T. Squartini, D. Garlaschelli, A. Gabrielli, Scientific Reports 5, 15758 (2015)



Reducing the required input info
inference from strengths and only some proxy of link density
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Predicting systemic risk estimators

Percolation Path length Group DebtRank
(relative size of (distribution of (total devaluation induced
giant component vs shortest distances A by an initial devaluation ©)
occupation probability p) among pairs of nodes) [Battiston et al. 2012]
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ﬁadiﬁonql approa% / Enhanced method

(dense: many links, but weak) (sparse: few links, but strong)
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Independent tests of our method

The method

“outperforms the other methods
when the same input information is used”

[Mazzarisi et al 2017]

and “is the clear winner
among probabilistic methods”

[Anand et al. 2017]

Anand et al, “The missing links: A global study on uncovering financial network structure
from partial data”, (2017) [Journal of Financial Stability, in press].

Mazzarisi P., F. Lillo “Methods for Reconstructing Interbank Networks from Limited
Information: A Comparison”, in Econophysics and Sociophysics: Recent Progress and
Future Directions, New Economic Windows, Springer International Publishing (2017).
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Extension to the bipariite European network
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Extension to the bipariite European network
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INSIGHTS | PERSPECTIVES

COMPLEX SYSTEMS

Complexity theory and financial regulation

Economic policy needs interdisciplinary network analysis and behavioral modeling

By Stefano Battiston,™ J. Doyne Farmer,>?
Andreas Flache,* Diego Garlaschelli,*
Andrew G. Haldane,®* Hans Heesterbeek,”
Cars Hommes,**} Carlo Jaeger,o:"22
Robert May," Marten Scheffer™

raditional economic theory could not

explain, much less predict, the near

collapse of the financial system and its

long-lasting effects on the global econ-

omy. Since the 2008 crisis, there has

been increasing interest in using ideas
from complexity theory to make sense of eco-
nomic and financial markets. Concepts, such
as tipping points, networks, contagion, feed-
back, and resilience have entered the finan-
cial and regulatory lexicon, but
actual use of complexity models
and results remains at an early
stage. Recent insights and techniques offer
potential for better monitoring and manage-
ment of highly interconnected economic and
financial systems and, thus, may help antici-
pate and manage future crises.

POLICY

TIPPING POINTS, WARNING SIGNALS. Fi-
nancial markets have historically exhibited
sudden and largely unforeseen collapses, at
a systemic scale. Such “phase transitions”
may in some cases have been triggered by
unpredictable stochastic events. More of-
ten, however, there have been endogenous
underlying processes at work. Analyses of
complex systems ranging from the climate
to ecosystems reveal that, before a major
transition, there is often a gradual and un-
noticed loss of resilience. This makes the sys-
tem brittle: A small disruption can trigger a
domino effect that propagates through the
system and propels it into a crisis state.

'Department of Banking and Finance, University of Zurich,
8032 Zarich, Switzeriand. ?Institute for New Economic
Thinking, Oxford Martin School, and Mathematical Institute,
University of Oxford, Oxford 0X12.D, UK.Santa Fe Institute,
Santa Fe, NM 87501, USA. “Department of Sociology,

Recent research has revealed generic em-
pirical quantitative indicators of resilience
that may be used across complex systems to
detect tipping points. Markers include rising
correlation between nodes in a network and
rising temporal correlation, variance, and
skewedness of fluctuation patterns. These
indicators were first predicted mathemati-
cally and subsequently demonstrated experi-
mentally in real complex systems, including
living systems (I). A recent study of the
Dutch interbank network (2) showed that
standard analysis using a homogeneous net-
‘work model could only lead to late detection
of the 2008 crisis, although a more realistic
and heterogeneous network model could
identify an early warning signal 3 years be-
fore the crisis (see the chart).

Ecologists have developed tools to quan-
tify the stability, robustness, and resilience
of food webs and have shown how these
depend on the topology of the network and
the strengths of interactions (3). Epidemi-
ologists have tools to gauge the potential for
events to propagate in systems of interacting
entities, to identify superspreaders and core
groups relevant to infection persistence, and
to design strategies to prevent or limit the
spread of contagion ().

Extrapolating results from the natural
sciences to economics and finance presents
challenges. For instance, publication of an
early warning signal will change behavior
and affect future dynamics [the Lucas cri-
tique (5)]. But this does not affect the case
where indicators are known only to regula-
tors or when the goal is to build better net-
work barriers to slow contagion.

TOO CENTRAL TO FAIL. Network effects
matter to financial-economic stability be-
cause shock amplification may occur via
strong cascading effects. For example, the
Bank of International Settlements recently
developed a framework drawing on data on

University of Groningen, 9712 TG Groningen,
*Lorentz Institute for Theoretical Physics, University of Leiden,
2333 CA Leiden, Netherlands. $Bank of England, London,
EC2R 8AH, UK. "Faculty of Veterinary Medicine, University of
Utrecht, 3512 JE Utrecht, Netheriands. Amsterdam School of
University of 1018WB
Netherlands. *Tinbergen Institute, 1082 MS Amsterdam,
Netherlands. “Beijing Normal University, 100875 Beijing,
China. "Potsdam University, 14469 Potsdam, Germany.
ZGlobal Climate Forum 10178 Berlin, Germany. “Department
of Zoology, University of Oxford, Oxford OX1 2JD, UK.
“Environmental Sciences, Wageningen University 6708 PB
*Authors are in order.
1Ce . E-mail: C.H.l !

818 19 FEBRUARY 2016 « VOL 351 ISSUE 6275

the intercc dness between banks to
gauge the systemic risk posed to the finan-
cial network by Global Systemically Impor-
tant Banks. Recent research on contagion in
financial networks has shown that network
topology and positions of banks matter; the
global financial network may collapse even
when individual banks appear safe (6). Cap-
turing these effects is essential for quanti-
fying stress on individual banks and for
looking at systemic risk for the network as

Published by AAAS

a whole. Despite on-going efforts, these ef-
fects are unlikely to be routinely considered
anytime soon.

Information asymmetry within a net-
work—e.g. where a bank does not know
about troubled assets of other banks—can
be problematic. The banking network typi-
cally displays a core-periphery structure,

“..policies and financial
regulation [that] weaken
positive feedback...
stabiliz[e] experimental
macroeconomic systems...”

with a core consisting of a relatively small
number of large, densely interconnected
banks that are not very diverse in terms of
business and risk models. This implies that
core banks’ defaults tend to be highly cor-
related. That, in turn, can generate a col-
lective moral hazard problem (i.e., players
take on more risk, because others will bear
the costs in case of default), as banks recog-
nize that they are likely to be supported by
the authorities in situations of distress, the
likelihood amplifies their incentives to herd
in the first place.

Estimating systemic risk relies on granu-
lar data on the financial network. Unfortu-
nately, business interactions between banks
are often hidden because of confidentiality
issues. Tools being developed to reconstruct
networks from partial information and to
estimate systemic risk (7) suggest that pub-
licly available bank information does not al-
low reliable estimation of systemic risk. The
estimate would improve greatly if banks
publicly reported the number of connec-
tions with other banks, even without dis-
closing their identity.

In addition to data, understanding the ef-
fects of interconnections also relies on in-
tegrative quantitative metrics and concepts
that reveal important network aspects, such
as systemic repercussions of the failure of
individual nodes. For example, DebtRank,
which measures the systemic importance
of individual institutions in a financial net-
work (8), shows that the issue of too-central-
to-fail may be even more important than
too-big-to-fail.
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AGENTS AND BEHAVIOR. Agent-based
models (ABMs) are computer models in
which the behavior of agents and their in-
teractions are explicitly represented as de-
cision rules mapping agents’ observations
onto actmns Although ABMs are less well

in 1 fi 1- ymic
systems than in, e.g., traffic control, epide-
miology, or battlefield conflict analyses, they
have produced promising results. Axtell (9)
developed a simple ABM that explains more
than three dozen empirical properties of
firm formation without recourse to external
shocks. ABMs provide a good explanation
for why the volatility of prices is clustered
and time-varying (10) and have been used
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Laboratory experiments with human
subjects can provide empirical validation
of individual decision rules of agents, their
interactions, and emergent macro behav-
ior. Recent experiments studying behavior
of a group of individuals in the lab v

monetary and fiscal policies and financial
regulation designed to weaken positive feed-
back are successful in stabilizing experimen-
tal macroeconomic systems when properly
m.hbrated (16') Complexity theory provides

1 under ding of these effects.

show that economic systems may deviate
significantly from rational efficient equi-
librium at both individual and aggregate
levels (14). This generic feature of positive

POLICY DASHBOARD. It is an opportune
time for academic economists, complex-
1ty suentlsts social scientists, ecologists,

iol and researchers at finan-

feedback systems leads to devia-
tions of prices from equilibrium and emer-
gence of speculation-driven bubbles and
crashes, strongly amplified by coordination
on trend-following and herding behavior
(15). There is strong empirical evidence of

Humogeneous

Crisis
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cial institutions to join forces to develop
tools from complexity theory, as a comple-
ment to existing economic modeling ap-
proaches (7). One ambitious option would
be an online, financial-economic dashboard
that integrates data, methods, and indica-
tors. This might monitor and stress-test the
global socioeconomic and financial system
in something close to real time, in a way
similar to what is done with other complex
systems, such as weather systems or social
networks. The funding requu'ed for essentlal
policy-! and di
ciplinary progress in these areas would be
trivial compared with the costs of systemic
financial failures or the collapse of the global
financial-economic system. m
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to understand how propagation of opinions
through social networks affects emergent
macro behavior, which is crucial to manag-
ing the stability and resilience of socioeco-
nomic systems.
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heuristics, explains individual, as well as
emergent, macro behavior in these laboratory
economies. The experiments also provide
a general mechanism for managing social
contagion in such systems. For example,
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AGENTS AND BEHAVIOR. Agent-based

mode ABMS) are computer models in

Challenge 1

Far from critical events,
the (maximum-entropy) reconstruction of
interbank networks is reliable;

As crises approach,
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Laboratory experiments with human
empirical validation
their

reconstruction becomes unreliable and actually

prevents the detection of early-warning signals;

finanCTAT TICCWOTRS T1as SHOWIT tiiat 1

topology and positions of banks matter; 'he
global financial network may collapse even
when individual banks appear safe (6). Cap-
turing these effects is essential for quanti-
fying stress on individual banks and for
looking at systemic risk for the network as
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In any case,
maximum-entropy methods appear crucial to
construct the early-warning signal itself |

mdmdual nodes For example, DebtRank,
which measures the systemic importance
of individual institutions in a financial net-
work (8), shows that the issue of too-central-
to-fail may be even more important than
too-big-to-fail.
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to understand how propagation of opinions
through social networks affects emergent
macro behavior, which is crucial to manag-
ing the stability and resilience of socioeco-
nomic systems.
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heuristics, explains individual, as well as
emergent, macro behavior in these laboratory
economies. The experiments also provide
a general mechanism for managing social
contagion in such systems. For example,
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monetary and fiscal policies and financial
regulation designed to weaken positive feed-
back are successful in stabilizing experimen-
tal macroeconomic systems when properly
calibrated (16). Complexity theory provides
mathematical understanding of these effects.
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online, financial-economic dashboard
Integrates data, methods, and indica-
is might monitor and stress-test the
socioeconomic and financial system
mething close to real time, in a way
r to what is done with other complex
, such as weather systems or social
rks. The funding required for essential
relevant and fundamental interdis-
pry progress in these areas would be
compared with the costs of systemic
ial failures or the collapse of the global
ial-economic system. m

ENCES AND NOTES
ISchefferet al,, Science 338,344 (2012).
Bquartini etal, Sci. Rep. 3,3357 (2013).
. May et al., Nature 451,893 (2008).
esterbeek et al., Science 347, aaa4339 (2015).
. Lucas Jr., Carnegie-Rochester Conf. Ser. Public Policy 1,
(1976).
Battistonetal., . Econ. Dynam. Control 36, 1121 (2012).
iminietal., Sci. Rep. 5,15758 (2015).
Battistonet al., Sci. Rep. 2,541 (2012).
bxtell, “Endogenous dynamics of multi-agent firms™
Jorking paper version 15, Univ. of Oxford, Oxford 2014);
css.gmu.edu/~axtell/Rob/Research/Pages/Firms.
I
eBaron, in Handbook of Computational Economics,
|2 Agent-Based Computational Economics, L.
pfatsion, and K. L. Judd, Eds. (North-Holland,
isterdam, 2006), pp. 1187-1233.
humer etal., Quant.Finan. 12, 695 (2012).
Rymanns, J. D.Farmer,J. Econ. Dyn. Control 50,155
P15).
lache,M. W.Macy, L Conflict Resolut. 55,970 (2011).
2o, C.Hommes, T Makarewicz,“Bubble forma-
markets inlearning-to-forecast
i " (T12015-10 ing
per Tinbergen Institute, Amsterdam, 2015);
tp://papers tinbergen.nl/15107 pdf
. H. Hommes,
xpectationsin Complex Economic Systems (Cambridge
Univ. Press, Cambridge, 2013).
B. T.Bao,C.H.Hommes," Whenspeculalmsmeemnniruc

marlets (CeNDEF Working paper 15-10, University of
Amsterdam,Netherlands, 2015); http://bit.ly/WP15-10.

. A.G.Haldane, "On microscopes and telescopes,Workshop
on Socio-Economic Complexity, Lorentz Center, Leiden, 23
1027 March 2015 (Bank of England, London, 2015); http://
bit.ly/IVIINX.

ACKNOWLEDGMENTS
We fromThe N
Institute tudies in the d Social

Sciences, The Netherlands Organisation for Scientific Research,
the Lorentz Center, and the Tinbergen Institute.

10.1126/science.aad0299

19 FEBRUARY 2016 - VOL 351 ISSUE 6275 819



Challenge 2: ensemble nonequivalence

I SN(pmic”pcan) . i . *\ — 1 l *
s= lim N — 0 4= Jim N In Ppic.(G*) = Jim = In P.an(GY)

g (G*)

Microcanonical mic
ensemble, P_;.(G)

Canonical
ensemble, P_,.(G)
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Squartini, de Mol, den Hollander, Garlaschelli, PRL 115, 268701 (2015)




1)
2)
3)
4)
5)
6)
7)

Summary/conclusions

binary graphs are often well reconstructed from degrees
weighted graphs are badly reconstructed from strengths
weighted graphs require topological prior info (degrees)
strengths+degrees = BOSE-FERMI = Enhanced CM
degrees can be inferred from strengths (and n. of links)
reconstruction may deteriorate as crises approach

statistical ensembles are not equivalent



