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Contact process

The model: contact process

Consider N nodes that can either be infected or healthy. An
infected node i heals (becomes healthy) with rate §; > 0.

Furthermore, if i is infected, it infects a node j with rate Aj;; this
means that if / is infected and j is healthy, j can become infected
at rate A; > 0.

If I € {1,..., N} represents the infected nodes (/ is the "state” of
the process), then

I = 1U{j} atrate ) ;. Ajj

I — I\ {i} at rate ¢;.




Mean Field Approximation

Mean flow

If we consider a state X(t) € {0,1}" at some time t, we can
calculate the expected jump in a small time period h:

E(Xi(t+h) = Xi(t) | X(2)) = =Xi(t)dih+ (1 - Xi(t)) Zn: AjiXj(t)h.
j=1
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Stability

If we have meta-stability, we should find that

0= Z(AJ, 6i)E(X, ZAJ,E X; X;).
j=1

j=1

In MFA we approximate E(X;X;) = E(X;)E(X]).




Mean Field Approximation

Example Simulated network
N = 9994 nodes, heavy tailed degree-distribution.
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Mean Field Approximation

Example Simulated network
N = 9994 nodes, heavy tailed degree-distribution.
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Mean Field Approximation

N = 9994 nodes, heavy tailed degree-distribution. \

Ordered MFA expectation
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Mean Field Approximation

Simulation of about 6.5 - 10° events. Average occupation given.
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Mean Field Approximation

Shortcomings of MFA

@ Fluctuations?
@ Correlations?

@ No possibility to improve approximation (at the cost of extra
computations).
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Idea: approximate A by structured matrix
We suggest to approximate A by writing

A~ WTH,

with W and H k x N-dimensional non-negative matrices. This is
known as Non-negative Matrix Factorization (NMF).
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Non-negative Matrix Factorization

When A~ W TH and healing rates are given by A, apply MFA:
AE(X); = (WE(X))TH; — (WE(X))T HE(X);.

Define € = WE(X) € R¥. We get

o N
E(X); = L Z

A+ CTH; C‘ '

How does this compare to original MFA?




Non-negative Matrix Factorization

Compare MFA for simulated network
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Non-negative Matrix Factorization

Feature space

When A = W T H, and the healing rates are given by the vector A,
each node has a 2k + 1 dimensional feature:

Z; = (W, Hj, A).

We say that Wi, is the infectiousness, H; is the susceptibility and
A the healing rate. Node i infects node j with rate W.™ H;.

Now we could define clusters on the basis of these features: two
nodes are almost indistinguishable if they have almost the same
features.




Factorized infection matrix

Indistinguishability

When A= W TH, a set of nodes G C {1,...,N} is
indistinguishable, precisely when Vi,j € G : Z; = Z,.
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The process (Ni(t), ..., N.(t))

Clustering the nodes

We form r clusters of nodes that have Z-values close together:
Bi,..., B, is a partition of {1,..., N}. Define

N; = Nj(t) = #{i € B; | Xi(t) = 1}.

Set m; = #B;. Define Y; as the mean of the Z-values in cluster j:

1
YJ-:;ZZ,-.

 ieB;

In reasonable approximation, the vector (Ny,...,N,) is now a
Markov process, with transition rates determined by Yi,...,Y,.




The process (Ni(t), ..., N.(t))

Transition rates

Write Y; = (Y, Y, Y5;). The rates are given by:

N; — N; +1 at rate (m; — Nj)zr: NkYWT’thJ
k=1
N; — N; — 1 at rate Yj;N;.
Equilibrium: Y5 N; = (m; = Nj) (Sicy Ne Yl i) Vi
Define C =Y, 1 NkYuk € RK. We get

o CT Y,
T Y5+ CTYyy

~ mj(CT Yp )Y,
Ysj+CTYp

-mj and C =




The process (Ni(t), ..., N.(t))

Equilibrium
r

__CTVh
J Y(;J-I-CTY/-,’J'

mi(CTYhj) Y

-m; and C = .
mj an Y5J+CTY/-,J

Compare this to MFA when A= W TH:

CTH; N (ETHW,
E(X)i = Z

A-I-CH -I-CH

This shows that with properly chosen clusters, N> ~ Ziij E(X);.
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The process (Ny, ..., N,)

Fluctuations

N; — N; +1 at rate ( ZY/M Wi e W

N; — N; — 1 at rate Yj;N;.
Define the fluctuations away from equilibrium:

D; = N; — N3*.

Infections: /; ~ Pois (h(mj - N> - D) Z YhZ‘ Yw k(NZ + Dk)> .
k=1

Healings: H; ~ Pois (hY(;,J-(NJSXJ + Dj)) .




The process (Ny, ..., N,)

Normal approximation

{l;} and {H;} are all independent. When clusters are large enough,
Poisson variables are well approximated by normal random
variables. Define AD; = [; — H;. Up to main order, we get:

E(AD)) = h(m; — N;°) Z Yy Y kDi — hD; Z Vi Yo kN
k=1 k=1
— hYs,;D;
Var(AD;) = 2hY;s;N;*.

Define B(t) to be an r-dimensional Brownian motion. We get

dD(t) = KD(t)dt + diag(+/2diag(N>)Y;)dB(t),
K = diag(m — N*®°)Y, Y,, — diag(Y,] Yo N> + Ys).




The process (Ny, ..., N,)

Explicit solution

Define X = diag(2diag(N>°)Y5). Then

t
D(t)—eKtD(O)—i—/ K(t=95124p(s).
0

Since K only has negative eigenvalues when MFA solution exists,
there exists a stationary solution. Covariance matrix X is given by:

Y :/ eKSZoeKTS ds.
0

This also solves the matrix equation

KY +YKT = —%,.




The process (Ny, ..., N,)

KY +YKT = —-%,.

This matrix equation has an explicit solution if K is diagonalizable:
K=VAVL
We get AVIXV-T + VIS V- TA= —V- 15,V T, so
(Ni + N)(VTIEVT T = (VIS v T
Define J to be the all ones matrix, and we see that

VISV T

r=- AJ + JA




The process (Ny, ..., N,)

Conlusion

We found that the vector-values proces N(t) has an approximating
stationary distribution, given by

N(t) ~ Ny (N>, ).

We have also linked the time-evolution to the eigenvalues of the
matrix K. We used a string of approximations:

o First approximate A by WTH.

@ Choose r clusters, and use average infectiousness, susceptibilty
and healing rate for all nodes within a cluster. This way,
N(t) = (Ny(t),...,N,(t)) becomes a Markov process.

o Approximate N(t) by a non-linear SDE.

@ Only consider highest order terms, and solve linear SDE.




Example: simulated network

Total number infected

Total number of infected: N (327_y NP°, 2504 >0 Ty).
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Example: simulated network

Simulated and predicted variance of the clusters.

Simulated variance



Example: airport network

Airport network

Matrix A is asymmetric and infections rates vary; 3425 nodes. We
try 1 dimensional factorisation, with 3425 clusters.
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Example: airport network

Airport network

Now no factorisation (W = I, H = A), with 3425 clusters. We also
correct MFA.
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Correct the mean of MFA

Use covariance prediction

Rate equation for expectations:

dE(N;)
dt

= VY kE(Ne(m; — N;)) — Y5,E(N))
k=1

= m VY kE(N) = Y5, E(N}) = Vi Vi kE(NicN;
k=1 k=1

=> m Y, Y kE(Ni) — Ys,;E(N))
k=1

> Y Y kE(NQE(N) = > Vi Vi kCov(N, N))
k=1 k=1




Correct the mean of MFA

Use covariance prediction

Use the estimate for the covariance (Cov(Ny, N;) = ¥4;) and put
derivative to 0:

diag( Y} Y, X) = diag(m)Y,” Y, E(N) — diag( Y5)E(N)
— diag(E(N))Y,” Y, E(N).
This gives a corrected estimate for the expected infection of each

cluster. This new value may be (slightly) negative, in which case
we put it to 0.

| \

Not always effective

We found that this correction is small when using low dimensions
or few clusters.




Example: airport network

Airport network
Corrected MFA for each node.




Work in progress

Limit theorems?

@ If we know that the features of all the nodes have a reasonable
distribution, can we prove that the contact process converges
to a normal process, as the number of nodes increases?

@ As we increase the dimension of the feature space, will the
approximation to the true contact process get better? Under
what conditions?

<

Non-negative Matrix Factorization

@ What should we optimise when trying to determine W and
H? For example, the diagonal is irrelevant for us.

o If Aand WTH are close, what does this mean for the contact
process? Can we control the difference in meta-stable
distribution?

A




