
Temporal profiles of avalanches on 
networks 

 
James P. Gleeson 

MACSI, Department of Mathematics and Statistics, 
University of Limerick 

 
Rick Durrett 

Department of Mathematics, Duke University 
 

  
 

www.ul.ie/gleeson  james.gleeson@ul.ie   @gleesonj  



 Kevin O’Sullivan, UL 
 Yamir Moreno, Zaragoza 
 Raquel A Baños, Zaragoza 
 Jonathan Ward, Leeds 
 William Lee, Portsmouth 

 
 

 
 Science Foundation Ireland 
 SFI/HEA Irish Centre for High-End 

Computing (ICHEC) 

Collaborators, funding, references 

• Gleeson and Durrett, “Temporal profiles of avalanches on networks”, 
arXiv: 1612.06477 

  
 



 
• Prologue: criticality in a model of meme diffusion on Twitter 

 
 
1. Average avalanche shape functions (and beyond…) 

 
 

2. Analytical results 
 
 

3. Numerical simulations 
 
 

 
  
 

Overview 



• A simplified version of the model of Weng, Flammini, Vespignani and 
Menczer, “Competition among memes in a world with limited attention” 
Scientific Reports 2, 335 (2012) 
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Examples of retweet avalanches from model 
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Competition-induced criticality in the 𝜇 → 0 limit 

𝑝𝑘 ∝ 𝑘−𝛾 ,𝛾 = 2.5; 𝜇 = 0.01 
 

𝑝𝑘 = 𝛿𝑘,10; 𝜇 = 0 

Competition-induced criticality: competition between memes 
for the limited resource of user attention induces criticality in 

the 𝜇 → 0 limit 

• Phys. Rev. Lett., 112, 048701 (2014) 
 



Competition-induced criticality: comparison with data 

Competition-induced criticality: competition between memes 
for the limited resource of user attention induces criticality in 

the 𝜇 → 0 limit 

• Phys. Rev. X., 6, 021019 (2016) 
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Overview 



From Sethna et al.,  2001 
“Crackling noise”, Nature, 410: 
242 

From Pinto and Muñoz, 2011 
“Quasi-neutral theory of 
epidemic outbreaks”, PLoS ONE, 
6:e21946 

Criticality: going beyond power-law avalanche size distributions 



From Sethna et al.,  2001 
“Crackling noise”, Nature, 410: 
242 

Average avalanche temporal profiles 



Criticality and the average avalanche shape 
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Criticality and the average avalanche shape 
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From Friedman et 
al.,  2012 “Universal 
critical dynamics in 
high resolution 
neuronal avalanche 
data”, Phys. Rev. 
Lett., 108: 208102 

Examples of average avalanche shape analysis 



From Sethna et al.,  2001 
“Crackling noise”, Nature, 410: 
242 

From Papanikolaou et al.,  2011 
“Universality beyond power laws 
and the average avalanche 
shape”, Nature Physics, 7: 316 

Examples of nonsymmetric average avalanche shapes 



From Friedman et al.,  2012 “Universal critical 
dynamics in high resolution neuronal 
avalanche data”, Phys. Rev. Lett., 108: 208102 

Examples of nonsymmetric average avalanche shapes 



• Threshold model (undirected network) 
 
Each node has a threshold 𝑟  that is assigned randomly from a 
distribution. All nodes are initially inactive, except for one seed node. 
When an inactive node is updated, it becomes active if the number 𝑚 of 
its active neighbours exceeds its threshold 𝑟. 

 
• Neuronal dynamics model of Friedman et al. (directed network) 

 
The weight 𝜙𝑖𝑖 of each directed edge from neuron 𝑖 to neuron 𝑗 is 
assigned randomly from a uniform distribution on [0,𝜙𝑚𝑚𝑚]. When 
neuron 𝑖 fires (becomes active), it causes neuron 𝑗 to become active (in 
the next discrete time step) with probability 𝜙𝑖𝑖. After a neuron fires, it 
returns to the inactive state in the next time step. 

 
• Meme diffusion model (directed network) 

 
  
 

Cascade models: examples 
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• Directed network: 
 

  
 
 

A node with in-degree 𝑗 and out-degree 𝑘 is vulnerable with probability 
𝑣𝑗𝑗: This is the probability that the activation of a single in-neighbour (at 
time 𝑡1) will lead to the activation of the node at some time 𝑡 > 𝑡1, 
assuming that no other in-neighbour of the node becomes active by time 
𝑡. 

Effective offspring distribution 

𝑞𝑘 = �
𝑗
𝑧
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• Example: Neuronal dynamics model of Friedman et al.  

Effective offspring distribution 

𝑞𝑘 = �
𝑗
𝑧
𝑝𝑗𝑗

𝑗
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𝑣𝑗𝑗 =
𝜙𝑚𝑚𝑚

2  



• Undirected network: 
 

  
 
 

A node with degree 𝑘 + 1 (i.e., with 𝑘 inactive neighbours) is vulnerable 
with probability 𝑣𝑘+1: This is the probability that the activation of a 
single neighbour (at time 𝑡1) will lead to the activation of the node at 
some time 𝑡 > 𝑡1 , assuming that no other neighbour of the node 
becomes active by time 𝑡. 
 
 
 

Effective offspring distribution 

𝑞𝑘 =
𝑘 + 1
𝑧
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A node with degree 𝑘 + 1 (i.e., with 𝑘 inactive neighbours) is vulnerable 
with probability 𝑣𝑘+1: This is the probability that the activation of a 
single neighbour (at time 𝑡1) will lead to the activation of the node at 
some time 𝑡 > 𝑡1 , assuming that no other neighbour of the node 
becomes active by time 𝑡. 
 
 

• Example: Threshold model 
 

Effective offspring distribution 

𝑞𝑘 =
𝑘 + 1
𝑧

𝑝𝑘+1𝑣𝑘+1 

𝑣𝑘+1 = 𝐶 1  
node of degree 𝑘 + 1  is 
activated by a single active 
neighbour iff its threshold is less 
than 1 
 

CDF of thresholds 



• The effective branching number is the mean of the offspring distribution: 
 

  
 
 

A process is  
• critical if 𝜉 = 1  
• subcritical if 𝜉 < 1 
• supercritical is 𝜉 > 1 

 
 

• Define the probability generating function (PGF) 𝑓(𝑥) by 
 

 
 

 
so that the effective branching number is  
 
 

Effective branching number 

𝜉 = �𝑘 𝑞𝑘
𝑘
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∞

𝑘=0
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Overview 



• Given:  avalanche duration 𝑇 and the offspring distribution 𝑞𝑘 (and hence 
PGF 𝑓(𝑥)) 
 

• First, solve the ordinary differential equation 
 
      
                  for            with   

 
 

• Then, using the solution 𝑄(𝑡) and the PGF gives the average avalanche 
shape function as 
 

Calculating the average avalanche shape using Markovian 
branching process theory 
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• Continuous-time Markov branching processes 
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Nonsymmetric avalanche shape functions occur when the offspring 
distribution has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 
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• Continuous-time Markov branching processes 
 
 
 
 

• Probability of extinction by time 𝑡: 
 
 

• Avalanche path probability: 
 
 
 
 
 

 
• Average non-terminating avalanche shape: 

Derivation of the average non-terminating avalanche shape 

𝑃1𝑗 𝑡 = 𝑃 𝑍 𝜏 + 𝑡 = 𝑗 | 𝑍 𝜏 = 1  

𝑄(𝑡) 𝑄 0 = 0 

𝐴𝑁𝑁 𝑡 = �𝑛 𝜋𝑛 𝑡
𝑛

=
𝑒 𝑓′ 1 −1 𝑡 − 𝑄(𝑇 − 𝑡) 𝑓 𝑄(𝑇) − 𝑄(𝑇) 

𝑓 𝑄(𝑇 − 𝑡) − 𝑄(𝑇 − 𝑡)
1 − 𝑄(𝑇)
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𝜋𝑛 𝑡 =
𝑃1𝑛 𝑡 1 − 𝑃10 𝑇 − 𝑡 𝑛  

∑ 𝑃1𝑚 𝑡 1 − 𝑃10 𝑇 − 𝑡 𝑚
𝑚

 𝜕
𝜕𝜕
𝐹(𝑠, 𝑡) = 𝑓 𝑠 − 𝑠 𝐹𝐹(𝑠, 𝑡) 

𝜕
𝜕𝜕
𝐹 𝑠, 𝑡 = 𝑓 𝐹 𝑠, 𝑡 − 𝐹(𝑠, 𝑡) 
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𝑞𝑘 ∼ 𝑘−𝛾 with 𝛾 = 2.3, 𝜉 = 1  (critical) 
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𝑞𝑘 ∼ 𝑘−𝛾 with 𝛾 = 2.5, 𝜉 = 1  (critical) 

𝐴𝑁𝑁 𝑡 =
𝑒 𝜉−1 𝑡 − 𝑄(𝑇 − 𝑡) 𝑓 𝑄(𝑇) − 𝑄(𝑇) 

𝑓 𝑄(𝑇 − 𝑡) − 𝑄(𝑇 − 𝑡)
1 − 𝑄(𝑇)

 

Average non-terminating avalanche shape function 



0 0.5 1
0

0.2

0.4

0.6

0.8

1

t/T
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Large-𝑇 asymptotics for critical case (𝜉 = 1): 

Non-parabolic shape functions occur when the offspring distribution 
has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 
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if 𝑞𝑘  has finite second moment  

if 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3  
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Overview 



• Threshold model (undirected network) 
 
Each node has a threshold 𝑟  that is assigned randomly from a 
distribution. All nodes are initially inactive, except for one seed node. 
When an inactive node is updated, it becomes active if the number 𝑚 of 
its active neighbours exceeds its threshold 𝑟. 

 
• Neuronal dynamics model of Friedman et al. (directed network) 

 
The weight 𝜙𝑖𝑖 of each directed edge from neuron 𝑖 to neuron 𝑗 is 
assigned randomly from a uniform distribution on [0,𝜙𝑚𝑚𝑚]. When 
neuron 𝑖 fires (becomes active), it causes neuron 𝑗 to become active (in 
the next discrete time step) with probability 𝜙𝑖𝑖. After a neuron fires, it 
returns to the inactive state in the next time step. 

 
• Meme diffusion model (directed network) 

 
  
 

Cascade models: examples 



Numerical simulation: threshold model (𝜉 = 1) 

• random 𝑧-regular network, 𝑧 = 3 

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 106 



• scale-free network, 𝑝𝑘 ∼ 𝑘−𝛼 with 𝛼 = 3.3  

Number of nodes: 𝑁 = 106; number of avalanches: 𝑛𝐴 = 106 

Numerical simulation: threshold model (𝜉 = 1) 



• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 𝑧-regular, 𝑧 = 10 

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 

Numerical simulation: neuronal dynamics model (𝜉 = 1) 



• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 ∼ 𝑘−𝛼, 𝛼 = 2.5  

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 

Numerical simulation: neuronal dynamics model (𝜉 = 1) 



Numerical simulation: Twitter model (𝜉 = 1) 

• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 𝑧-regular, 𝑧 = 10 

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 



• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 ∼ 𝑘−𝛼, 𝛼 = 2.5 

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 

Numerical simulation: Twitter model (𝜉 = 1) 



• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 𝑧-regular, 𝑧 = 10 

Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 

Average non-terminating avalanche shapes: Twitter model 



Number of nodes: 𝑁 = 105; number of avalanches: 𝑛𝐴 = 107 

• 𝑝𝑗𝑗 = 𝑝𝑗𝑝𝑘 with 𝑝𝑗  Poisson, 𝑝𝑘 ∼ 𝑘−𝛼, 𝛼 = 2.5 

Average non-terminating avalanche shapes: Twitter model 



• SNAP Twitter social circles network  
 http://snap.stanford.edu/data/egonets-Twitter.html 

Number of nodes: 𝑁 = 81,306; number of avalanches: 𝑛𝐴 = 1.4 × 106 

Twitter model on real Twitter network (𝜉 = 1) 



• SNAP Twitter social circles network  
 http://snap.stanford.edu/data/egonets-Twitter.html 

Number of nodes: 𝑁 = 81,306; number of avalanches: 𝑛𝐴 = 1.4 × 106 

Twitter model on real Twitter network (𝜉 = 1) 
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Nonsymmetric avalanche shape functions occur when the offspring distribution 
has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 

Summary 

Competition-induced criticality in a 
model of meme diffusion 

“active edges” 
(“exposed” nodes) in 

cascades play the 
role of particles in 

branching processes 



• scale-free network, 𝑝𝑘 ∼ 𝑘−𝛼 with 𝛼 = 3.3  

Numerical simulation: threshold model (𝜉 = 1) 

𝑞𝑘 =
𝑘 + 1
𝑧 𝑝𝑘+1𝑣𝑘+1 

Nonsymmetric avalanche shape functions occur when the offspring 
distribution has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 



• scale-free network, 𝑝𝑘 ∼ 𝑘−𝛼 with 𝛼 = 3.3  

Numerical simulation: threshold model (𝜉 = 1) 

𝑞𝑘 =
𝑘 + 1
𝑧 𝑝𝑘+1𝑣𝑘+1 

Nonsymmetric avalanche shape functions occur when the offspring 
distribution has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 



 
• Average avalanche shapes can be predicted from the network structure and 

the dynamics, via 𝑞𝑘 
 

 
• Nonsymmetric avalanche shape functions occur when the offspring distribution 

has a power-law tail: 𝑞𝑘 ∼ 𝑘−𝛾 with 2 < 𝛾 < 3 
 

• Other scaling functions (e.g. non-terminating avalanche shapes) can be defined 
 

• Depending on the dynamics, nonsymmetric avalanche shapes can occur on 
scale-free networks with various power-law exponents 𝑝𝑘 ∼ 𝑘−𝛼 (i.e., 𝛾 may 
not be equal to 𝛼) 
 

 
 

 
 
   
    
 

 

Conclusions 

The theoretical tools developed here should be useful for analysing the 
criticality (or otherwise) of a range of cascading dynamics on networks 

𝑞𝑘 =
𝑘 + 1
𝑧

𝑝𝑘+1𝑣𝑘+1 𝑞𝑘 = �
𝑗
𝑧
𝑝𝑗𝑗

𝑗

𝑣𝑗𝑗 
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(Supplementary material of  

arXiv: 1612.06477) 
 



Comparing discrete-time and continuous-time results 



Non-Markovian meme diffusion model 

• Weibull inter-event time distribution 



Non-Markovian meme diffusion model 

𝑘 = 0.5 



Non-Markovian meme diffusion model 

𝑘 = 0.4 
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