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Class of processes on networks

Spreading processes

Includes
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Viruses
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Viruses

The spread of the west-nile-virus
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Viruses

The spread of the Zika virus

Júlia Komjáthy (TU/e) 5 / 44



Memes
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Memes
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Viral videos

Júlia Komjáthy (TU/e) 8 / 44



Extremely fast spread

Search intensity of Gangnam style

from knowyourmeme.com
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Extremely fast spread

Search intensity of the Slenderman meme

from knowyourmeme.com
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Extremely fast spread

Epidemic curve of a flu from China

from Center for Infectious Disease Research and Policy
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Modeling

We need models!
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The scale-free property

Many real-life networks have power-law degrees.

Power-law paradigm

For some τ > 2, the degree of a uniformly chosen vertex satisfies

P(deg(v) = x) � C

xτ

logP(deg(v) = x) � logC − τ log x

log(proportion of degree x vertices) vs log x is a straight line.
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Power laws

Degree distribution of the router level internet network
from Faloutsos, Faloutsos, Faloutsos. 1999
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Power laws

Degree distribution of ecological networks
from Montoya, Pimm, Polé. Nature 2006
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Power laws

Note: τ ∈ (2, 3) often!

When τ ∈ (2, 3) then Varn[deg(v)]→∞ and En[deg(v)] <∞.
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Choice of model

Configuration model
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The configuration model

Matches the degree sequence of the network you would like to model.

[Configuration model simulator by Robert Fitzner]

[Configuration model with power law degrees by Robert Fitzner]

Power-law assumption

For some τ ∈ (2, 3), the tail of the empirical degree distribution satisfies

c1

xτ−1
≤ [1− Fn](x) = P(deg(vn) ≥ x) ≤ C1

xτ−1
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Weighted Configuration model

Information diffusion

Transmission times through edges are random in real networks.
Modeling: each edge has an independent weight from the same
distribution σ.

Independence might not hold in real-life, but makes the analysis tractable.

Spreading time = weighted distance

The spreading time between two vertices u, v
= the weighted distance:

dσ(u, v)

How does dσ(u, v) behave in terms of the degrees and the edge-weight
distribution σ?
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The epidemic curve

Epidemic curve

Considering vertex u as a (single) source of infection, σe as the
transmission time of an infection through edge e, the epidemic curve is
defined as

Iu(t) =
1

|V |
∑
v∈V

1dσ(u,v)≤t .

How does Iu(t) behave, in terms of the degree distribution, the
edge-length distribution σ, and the source vertex u?
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Locally tree-like structure

Local neighborhoods look like random trees with size biased degrees.

Size-biasing effect

A neighbor of a uniform vertex is more likely to have larger degree

P
(

deg(neighbor(v)) > x
)
� Cx

xτ−1
=

C

xτ−2
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Preliminaries

Initial stage of the spreading in the graph looks like a random tree with

power law degrees, tail exponent α := τ − 2 ∈ (0, 1)

each edge has an independent ‘length’ or ‘weight’
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Age-dependent branching process

In an age-dependent branching process BP(X , σ)

root is born at time 0,

the number of children of each individual is independent, from
distribution X ,

birth-times of children are independent, from some distribution σ.
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Explosion?

Definition

D(t) = population born by time t.

A branching process is explosive if for some t > 0,

P(|D(t)| =∞) > 0.

Otherwise conservative.

Explosive vs conservative

When is a branching process BP(X , σ) explosive?
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Explosion of BPs

Theorem (Amini, Devroye, Griffith, Olver)

Assume for x large enough and some ε > 0

1

xε
> P(X > x) >

1

x1−ε . (P2)

The branching process BP(X , σ) is explosive if and only if for some K > 0

∞∑
K

F (−1)
σ

(
e−e

k
)
<∞ (I)

where F
(−1)
σ is the generalised inverse of the distribution function of σ.

Corollary

If a distribution σ satisfies (I) then it explodes for all X satisfying (P2)
(including all power law degrees with τ ∈ (2, 3)).
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Explosive σ-s

∑
k≥K F

(−1)
σ

(
e−e

k
)
<∞ is easy to check.

Examples

Flatness of distribution function Fσ at the origin matters.

Exponential, Gamma, Uniform, etc.

Fσ(t) = exp{−1/tβ}, β > 0

Boundary case: Fσ(t) = exp{− exp{ 1
tβ
}}. Explosive for β < 1,

conservative for β ≥ 1.

Fσ does not have to be continuous to satisfy (I): e.g. put point-mass
ck1 /(1− c) to points at ck2 , for c1, c2 < 1.
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Application to epidemics in random graphs
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Explosive weights on the configuration model

Theorem (Baroni, van der Hofstad, K)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

independent edge weights from distribution σ.

If the branching process BP(D?, σ) is explosive,

lim
n→∞

dσ(u, v) = V (u) + V (v)

in the distributional sense. V (u),V (v) explosion times of two copies of
BP(D?, σ), with D?=size biased degree, u, v two uniformly chosen
vertices.
Otherwise dσ(u, v)→∞.

This was first shown for exponential edge weights by Bhamidi, Hofstad &
Hooghiemstra.
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Corrollary: Epidemic curve in the explosive case

Recall Iu(t) = 1
|V |
∑

v∈V 1dσ(u,v)≤t is the epidemic curve.

Convergence of the epidemic curve

Consider an epidemic started at a single, uniformly chosen vertex u ∈ V .
Then

Iu(t)
P−→ f (t − V (u)) = P(V (u) + V (v) ≤ t | V (u))

A deterministic curve with a random but constant shift V (u).

Júlia Komjáthy (TU/e) 29 / 44



Conservative weights on the configuration model

Theorem (Adriaans, K unpublished)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

independent edge weights from distribution σ.

If BP(D?, σ) is conservative, then for all ε > 0,

P

 dσ(u,w)

2
∑log log n/| log(τ−2)|

k=1 F
(−1)
σ

(
exp

(
− ( 1

τ−2 )k
))

∈ (1− ε, 1 + ε)

→ 1.

Gives back the main term graph distances by setting σ ≡ 1.
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Not enough...

For an epidemic curve one would need distributional convergence of the
fluctuations of dσ(u, v) around

2
∑log log n/| log(τ−2)|

k=1 F
(−1)
σ

(
exp

(
− ( 1

τ−2 )k
))

which is not known/not

possible to show with our current methods.
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When τ > 3

τ ∈ (2, 3)

Dichotomy: bounded average distance for explosive weight distributions,
non-bounded average distance for conservative weight distributions

Theorem (Bhamidi, Hofstad, Hooghiemstra)

Universally, for all σ that have a density,

dσ(u, v) =
1

λ
log n + tight,

where λ is the Malthusian parameter (exponential growth rate) of the
embedded BP.
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Generalisation to spatial models

Two scale free spatial models

Geometric Random Inhomogeneous Random Graphs
vertices = n uniform points in [0, n1/d ]d

Scale free percolation: vertex set is Zd .

In both models, each vertex v gets a weight Wv and two vertices are
connected

P(u ↔ v |Wu,Wv ) = Θ

(
min{1, WuWv

‖u − v‖α
}
)

Theorems [K&Lodewijks, v/d Hofstad&K]

Both the explosive and conservative results carry through for these models.
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Epidemics with contagious intervals

In a model of an epidemic (X , σ, [I ,C ]), each individual v ,
after being infected at some time tv ,

‘contacts’ its neighbors at times tv + (σ
(v)
i )i≤X i.i.d.

d
= σ,

‘contagious’ in an i.i.d. random interval tv + [Iv ,Cv ],

only those friends will be infected that satisfy σ
(v)
i ∈ [Iv ,Cv ].
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Júlia Komjáthy (TU/e) 34 / 44



Epidemics with contagious intervals

In a model of an epidemic (X , σ, [I ,C ]), each individual v ,
after being infected at some time tv ,

‘contacts’ its neighbors at times tv + (σ
(v)
i )i≤X i.i.d.

d
= σ,

‘contagious’ in an i.i.d. random interval tv + [Iv ,Cv ],

only those friends will be infected that satisfy σ
(v)
i ∈ [Iv ,Cv ].
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Explosion in this case?

Epidemics with contagious intervals

When is a triplet (X , σ, [I ,C ]) explosive?
Can the explosion of BP(X , σ) be stopped by adding [I ,C ] to it?
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Getting rid of end of interval

Heuristics: Explosion is carried by short edges, so deleting long edges does
not matter.

Theorem (K)

Suppose X satisfies (P2) and [I ,C ] satisfies ∃t0, δ > 0

P(C > t|I = i) ≥ δ ∀i < t < t0. (?)

Then (X , σ, [I ,C ]) explosive ⇔ (X , σ, [I ,∞]) explosive.

Natural condition

Condition (?) on [I ,C ] is satisfied if

I ,C independent, C 6≡ 0.

C = I + L with I , L independent, L 6≡ 0.

It means that the support of I , L is not concentrated on a ‘slented
wedge’ separating the support from the L axes.
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Explosion of epidemics with incubation time

Heuristics: Explosion is carried by short edges, so deleting short edges does
matter.

Theorem (K)

Suppose X satisfies (P2), then
BP(X , σ, [I ,∞]) explosive ⇔ BP(X , σ),BP(X , I ) both explosive.

Coupling argument: If (X , I ) does not explode, all its rays have
infinite length

in (X , σ, [I ,∞]) only edges with σv > Iv are kept,
and (X , I ) is conservative
so (X , σ, [I ,∞]) does not explode either.

Other way round trickier...
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Júlia Komjáthy (TU/e) 37 / 44



Explosion of epidemics with incubation time

Heuristics: Explosion is carried by short edges, so deleting short edges does
matter.

Theorem (K)

Suppose X satisfies (P2), then
BP(X , σ, [I ,∞]) explosive ⇔ BP(X , σ),BP(X , I ) both explosive.

Coupling argument: If (X , I ) does not explode, all its rays have
infinite length

in (X , σ, [I ,∞]) only edges with σv > Iv are kept,
and (X , I ) is conservative
so (X , σ, [I ,∞]) does not explode either.

Other way round trickier...
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Epidemics on the configuration model

Theorem (K, unpublished)

Consider the epidemic model on the configuration model with

power-law degrees with τ ∈ (2, 3)

i.i.d. contact times on edges
d
= σ

i.i.d. contagious intervals on vertices
d
= [I ,C ].

u, v chosen uniformly at random
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i.i.d. contact times on edges
d
= σ

i.i.d. contagious intervals on vertices
d
= [I ,C ].

u, v chosen uniformly at random

For the infection started from u, the time it takes to infect v :

depi(u, v)
d−→ V (u) + V

(v)
bw

if and only if (D?, σ, [I ,C ]) is explosive,
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Theorem (K, unpublished)

Consider the epidemic model on the configuration model with

power-law degrees with τ ∈ (2, 3)

i.i.d. contact times on edges
d
= σ

i.i.d. contagious intervals on vertices
d
= [I ,C ].

u, v chosen uniformly at random

For the infection started from u, the time it takes to infect v :

depi(u, v)
d−→ V (u) + V

(v)
bw

if and only if (D?, σ, [I ,C ]) is explosive, finite iff both Epi(u) and Epi
(w)
bw

survives.
V (u) explosion time, V

(w)
bw explosion time of the backward epidemics.
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Epidemics on the configuration model

Theorem (K, unpublished)

Consider the epidemic model on the configuration model with

power-law degrees with τ ∈ (2, 3)

i.i.d. contact times on edges
d
= σ

i.i.d. contagious intervals on vertices
d
= [I ,C ].

u, v chosen uniformly at random

The epidemic curve of u:

fepi(t) =
1

n

n∑
w=1

11{w infected before t}
d−→ P(V

(w)
bw ≤ t − V (u)|V (u))

a deterministic curve with a random shift, conditioned that Epi(u) survives.

V (u) explosion time, V
(w)
bw explosion time of the backward epidemic.
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Picture-proof of explosion
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Non-picture-proof

Step 1: Couple the initial stages of the spreading by two independent age
dependent BPs, one started at u, one at v , until generation Mn for some
small Mn = o(log n).

Step 2: Use degree dependent percolation to percolate the whole graph:
edges connecting vertices with degrees d1, d2 are kept iff their length is
< tr(d1, d2) for some well-chosen threshold function.

Step 3: Find two vertices ũ, ṽ with high enough percolated degree (say
Kn) in the two BPs

Step 4: Show that in the percolated subgraph, there is a nested layering
starting with degree Kn with the property that a vertex in layer i is
connected to at least one vertex in layer i + 1, and the degrees deg v in

layer i is ≈ K
1/(τ−2)i

n .
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Júlia Komjáthy (TU/e) 40 / 44



Non-picture-proof

Step 1: Couple the initial stages of the spreading by two independent age
dependent BPs, one started at u, one at v , until generation Mn for some
small Mn = o(log n).

Step 2: Use degree dependent percolation to percolate the whole graph:
edges connecting vertices with degrees d1, d2 are kept iff their length is
< tr(d1, d2) for some well-chosen threshold function.
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Non-picture-proof

Step 5: Show that ũ, ṽ falls into layer 1. Thus

dL(u, v) ≥ dL(u, ũ) + dL(v , ṽ) + 2

# layers∑
i=1

F−1
σ

(
tr(K

1/(τ−2)i

n ,K
1/(τ−2)i+1

n )
)
.

Step 6: Show that the first two terms can be chosen to be negligible and
the second term is

(1 + ε)2

log log n/| log(τ−2)|∑
i=1

F−1
σ

(
exp{−(τ − 2)−i}

)
.
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# layers∑
i=1

F−1
σ

(
tr(K

1/(τ−2)i

n ,K
1/(τ−2)i+1

n )
)
.

Step 6: Show that the first two terms can be chosen to be negligible and
the second term is

(1 + ε)2

log log n/| log(τ−2)|∑
i=1

F−1
σ

(
exp{−(τ − 2)−i}

)
.

Júlia Komjáthy (TU/e) 41 / 44



Thank you for the attention!
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Explosive ‘extra’ weights on the configuration model

Theorem (Baroni, van der Hofstad, K)

Consider the configuration model with

power-law degree distribution with exponent τ ∈ (2, 3)

independent edge weights from distribution 1 + σ.

Then the sequence of random variables

d1+σ(u, v)− 2 log log n

| log(τ − 2)|
is tight

if and only if the branching process BP(D?, σ) is explosive.

Xn is a tight sequence of random variables if the tail probabilities decay
uniformly in n:
∀ε > 0,∃Kε such that ∀n : P(|Xn| ≥ Kε) ≤ ε.
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4-line proof for non-tightness

Assume that the branching process BP(D?, σ) is conservative.

Every path from u to v uses at least dG (u, v) = d1(u, v) many edges,
so

dG (u, v)− 2 log log n/| log(τ − 2)| is a tight sequence
From Hofstad, Hooghiemstra, Znamenski ‘07

σ non-explosive: dσ(u, v)→∞ by the previous theorem

As n→∞,

d1+σ(u, v)− 2 log log n

| log(τ − 2)|
= O(1) + dσ(u, v)→∞

so the sequence cannot be tight.
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d1+σ(u, v)− 2 log log n

| log(τ − 2)|
= O(1) + dσ(u, v)→∞

so the sequence cannot be tight.
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