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History repeats itself. Thucidides

Smallpox, black-death,......, AIDS,......, SARS(2003), ...... ,
A-HIN1(2009), ...... E.Coli(2011),......Ebola/ZikKa,......?
X 67

The modern medical technology can save more patients Q’%
before, while failed more effectively stopping a virus | /2
prevalence than before...

<Science>, June 20, 2003:
Modeling the SARS Epidemic Transmission

Dynamics and Control of SARS
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Epidemic models in a population

Daniel Bernoulli, on smallpox inoculation,1766

Prototype of compartment model

SIS SIR

o;.‘-.‘,—,:‘);'l “ :
sk .
e Dernoulli

mass action principle

An incremental infection depends on the rate of
contact between susceptible and infectious individuals.

Al=B-S-1

William Heaton Hamer
(1862-1936)



Epidemics on complex network
(single population)

« Analytic thresholds

R. Pastor-Satorras, A. Vespingnani (2001), Epidemic spreading in scale-free
networks, Physical Review Letters, 86, 3200.

C. Castellano, R. Pastor-Satorras (2010), Thresholds for epidemic spreading in
networks, Physical Review Letters, 105, 218701.

P. Van Mieghem and R. van de Bovenkamp (2013), Non-Markovian infection
spread dramatically alters the SIS epidemic threshold, Physical Review Letters, 110,
108701.

« Evolution dynamics

T. Gross, C.J.D. D‘Limma, B. Blasius (2006). Epidemic dynamics on an adaptive
network. Physical Review Letters, 96: 208701.

X. Li, X.F. Wang (2006), Controlling the spreading in small-world evolving
networks: stability, oscillation, and topology. IEEE Trans. Automatic Control, 51(3):
534-540.

e Latest survey

R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani (2015),
Epidemic processes in complex networks, Review of Modern Physics, 87(3), 925-979.



From single population to meta-population

* Richard Levins (1969), Bull. Entomol. Soc. Am 15 237.

(Spatial ecology) -
« Metapopulation: Divide the Q

whole population (country/world) |
Into several sub-populations -
(cities), a subpopulation is
connected with others via public
transportation networks, e.g., the
air-line web, high-way web.

@ raricleA
@ Paricle B

V. Colizza, et al. The role of the airline transportation
network in the prediction and predictability of global
epidemic. PNAS 103(2006): 2015-2020.




Too many stories,
leave for a new book



Spatial epidemics on meta-population

E""' Computational models:

Q SI/SIS/SIR/SIRSY. .. ...

c.ty, Infectious parameters:

homogeneous mixing

@ ParticleA RO / ......

@ Partice B

Assumptions and data-driven availability:

« Subpopulation (node): Homogeneous mixing, human
resident structure, human interactive patterns, ......

« Path (edge): Human travel mobility, local commuting
patterns, invasion tree, ......



Our continuous concerns

 Subpopulations (nodes):

How Is the temporal effect of social
Interactive patterns on network epidemics?

 Paths (edges):

How to infer the invasion trees before
predicting network epidemics?



Our continuous concerns

 Subpopulations (nodes):

How Is the temporal effect of social
Interactive patterns on network epidemics?



Towards Human Interactions

. Cell phones (bluetooth), Wireless
Sensors, RFIDs, Wi-Fi......

» Temporal complexity: interaction frequency,
durations, intervals, time-stamps, ......

* Temporal information, more than ‘time-
varying’, ‘time-switching’, ‘time-evolving’,......



Human Interactive Dynamics:

Proxy Datasets

\\NIV@
WiFi-Fudant %5

RFID Wireless Sensor  Bluetooth

Number of 25~14000 788 100 18715(46669)
attendee
Experiment 2~69 18 270 (9 months) 84 (3 months)
period(day)
Time 20 20 300 (5 minutes) 60 (1 minute)
accuracy(second)
Space 1~5 3 25 20
accuracy(meter) 4
Agent awareness Y Y Y N [[Iﬂ“
(Hawthorne effect) -

* FudanWiFi109 e SMS-1

« HTO9 e SMS-2

o SGInfectious

e Sexoyr



The individual trace begins at the time
N— of login passed.
t; t: te t:  time
@ Wi Login The individual trace ends at the time of
= REXARER )
S access signal lost.
- |

building
a trace

out of range
=\

t

Copyright CAN Lab @ Fudan, Univ. 2008-2010



Contributed publications
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Social ties

Acguaintances Strangers

<
<

v

Familiar strangers

friends, in-role, ...




Familiar Stranger

* Milgram (1970): Familiar Strangers are two persons
who have repeatedly encountered but might never have
been acquainted with each other.

Familiar strangers (FS) In-role (IR)
Regular Regular
Non-social social acquaintance
\
Friend (F)
Irregular

social acquaintance

Strangers (S)"

RandQ , - '
Encountersowstda 'familiar strangers’ play

"0 December 2016, by Lisa Zyga PHYS’Q‘Q
D. Liang, X. Li, Y.Q. Zhang, ldentifying familiar strangers in human encounter networks,
EPL, 2016, 116, 18006.



Data and Encounter network

Data |U] |L|  Records #

N

T AT

fui3 | 10,146 1,52 3825382 12 7d 30 || A B E AN [ © O
usc06 | 5,185 137 808,015 84 1d 3h |
sjtu | 14,755 85 4,050,267 92 1d 6h || £ :
g mey t
|U|: Number of users s T '
IL|: Number of locations £
Records #: Total number of records gL
N: number of time cycles l
T length of one time cycle —
AT: length of time step Lo e e v D b L
: i . !
~ 008 - (fdul3) 3 : N g
= ooo Faba W R Wy _ o uw v
0.08 24 hours (usc06) 1 mt,l _ (Wt,l ’propt,l )
o 008 R 1 w”: encounter weight. The number of cycles that
- 000 - = individual u and v encounter at location | and time step t.
008 [ € 24hours (sjtu)
" 0.04 (1 day) uv

~ 0.00

oOF T T T 711

50 100 150 200 250
t_ (hour)

300

prop,; : encounter probability. The empirical

probability that individual u and v encounter at location |
and time step t.



Social ties and Entropy

spatiotemporal entropy  d.(wv) =tog, )’ ) sign(w;{")

The spatiotemporal entropy measures the degree of social
similarity. The spatiotemporal entropy between acquaintances
will be larger than that of other pairs with random social similarity.

Y Xe(we] X propg))

encounter regularity d,(u,v) =

y

2 Xt thfiv
Encounter regularity measures to what = " Pasoiliar In-roles
degree the encounter events between a ; strangers (IR)
pair of users are generated obeying % . (F5)
the periodic life routines : Strangers -
EN S (F)

0 C,
spatiotemporal entropy dL_( u,v)



(uy)

encounter regularity d

Familiar Stranger Classifier

(1) Obtain encounter matrix M,, ,, and
M from the empirical dataset

—— . and the null model.
(FS) (2) Calculate d.(u, v) and drgu, V)
from M, .. Calculate d?**"(u,v)
Strangers Friends and d?ulﬁ (u, U) from M{LL’%U.
(5) ® (3) Geteg and ry, where
0o % P(dM (u,v) > 1y) =
spatiotemporal entropy de(u,v) P dgull(u, v) > 60) — p()-

(4) Get pairwise relationship
according to the diagram on the
left.
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FS de

W ﬁl.l
1000 -

A0 60 80
t (day)

gree characteristics

£200 ' 10°F ;" e=eFS{  10°FF T T T3
200 |- [ < a=a IR | I
E o Bl | E
-i G000 - : e i
10°F ¢ i 107
300 | ﬁ_—F_: _ ¢ — | -
= ° = | -
0 -4I§:_ L .r.E- %
o M L
fduld 1 fusc06
e #7190 100 100 %00 100 107,
N 1 (a) f (b) f (c)
N — « FS’average degree Is finite but larger
@ ° @y " than the Dunbar Number (150).
ooofgis B Sty e
(20 5 end ¢ FS’ encounters are structurally stable

with higher encounter frequencies than
those of strangers.



FS temporal (ICT) characteristics

7 14 21 28 35 42 49 56 1 2 3 4 5 & 7 B8
(a) ICT t (day) (fdul3) (b) ICT t (day) (usc06)

T dul3

&0 hours

10 hours

1 2 3 4 5 6 7 8 w0 10 10°
(c) ICT 1 (day) (sjtu) @ daily ICT t (min)



Our continuous concerns

 Paths (edges):

How to infer the invasion trees before
predicting network epidemics?



To 1dentify such epidemic processes?

4 ¢ ,
Epidemic parameter?
o Invasion trees?

@ ParticleA

@ Particle B
when such epidemic processes are ?
unknown with only (partial) observed "
data?
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Exploring Epidemic Shortest Paths

Average-Arrival-Time (ARR)-Based Shortest Paths
Tree (SPT) [1]

Monte Carlo-Maximum-Likelihood
(MCML)-Based Epidemic Invasion Tree [2]

Shortest path between subpopulation s, j

()]

Mti) = xGils)

= min
P .
> (k,DEPy

Distance between
subpopulation i, j

Effective (EFF)-Distance-Based Most Probable Paths Tree [3]

Effective distance between
subpopulation m, n

Shortest paths between
subpopulation m, n

dmn = (1 —logPy,) =1

Dy = mrin A(D)

[1] A. Gautreau, A. Barrat, and M. Barthelemy. ”Global disease spread: statistics and estimation of arrival times,”Journal of theoretical

biology, vol. 251, no. 3, pp. 509-522, Apr. 2008.

[2] D. Balcan, V. Colizza, B. Gonc alves, H. Hu, J. J. Ramasco and A. Vespignani, ”Multiscale mobility networks and the spatial spreading of
infectious diseases.” Proc. Natl. Acad. Sci., vol. 106 no. 51, pp. 21484—21489, Dec. 2009.
[3] D. Brockmann and D. Helbing, ”The Hidden Geometry of Complex, Network-Driven Contagion Phenomena,”Science, vol. 342, no. 6164,

pp. 1337-1342, Dec. 2013.



Q: Is It possible to retrospect the
stochastic pandemic spatial paths
among a networked metapopulation?

Our answer:
Invasion Pathways Identification Algorithm Based on

Dynamical Programming and Maximum Likelihood
Estimation

J.-B. Wang, L. Wang, and X. Li, “Identifying spatial invasion of pandemics on meta-
population networks via anatomizing arrival history,” IEEE Trans. Cybernetics, 2016, 46(12),
2782-2795.



Problem Statement with SI dynamics

:
® / _ B
i Diftusive Reaction process [ -; S —21
j \\MObmty , Diffusion process Xl-—U>Xj,X represents S or |

[1] Hufnagel L, Brockmann D, Geisel T., PNAS, 101: 15124-15129, 2004.
[2] Colizza, V., Pastor-Satorras, R. & Vespignani A., Nature Phys.3, 276-282, 2007.

(a) (b)

0 Known:

* Number of infected individuals of each infected subpopulation
I; (t) at time step t, network topology(including diffusion rates)

O Unknown (to identify):

 Spatial invasion pathways / ? ;




Four Invasion Cases




Invasion Pathways ldentification Algorithm

Algorithm steps:

1) Invasion Partition (Dynamic Programming)

The whole invasion pathway T is anatomized into (at each epidemic arrival time (EAT))
four classes of invasion cases with number of A :

[— S ]T—nSml— S,ml—nS

Twhole invasion pathways — opt a;

Vi

=1
2) ldentifying Each Invasion Case

Accurate identification + optimal identification (Maximum Likelihood Estimation)
a; =arg max P(a;|Ginc.)
a;€Gnc; '

Invasion Cases

(INCs) ©S<
Edges S 2
I
(b)




Subpopulations’ observability

|

©—>©

I (t-1)>1, (1)

O—»@

I (t-1)<l, ()

|

(a) (c)

Illustration of neighbors subpopulation classification in terms of status transitions from ¢t — 1

to t:
(a) Observable subpopulation i. (b) Partially observable subpopulation i. (¢) Unobservable

subpopulation i.



|dentification of mI — S

Step 1 Accurate Identification

Theorem 1 (Accurate Identification of Invasion Pathway):
With the following conditions: 1) among m possible sources
illustrated in set I, there are only m'(m’ < m) partially
observable subpopulations I, whose neighboring subpopu-
lations (excluding the invasion destination S;) only expe-
rience the transition § to S or / to § at that EAT and
2) D ier [I,-(r —1) - I;(r)] = H, the invasion pathway of an
INC mI +— S(m > 1) can be identified accurately.

Step 2 Optimal Identification

Decompose the number of first  Compute the likelihood of each potential solution:

arrival infected individuals \ »
(0j1Emits) = P(Emis|oy)P(07) [ P(Emis)
N 56, = 30 = P(Euio)P(5) | L [P(Eslo)P(o)]
i=1 M
= (@) [ Y1P()]

Choose the maximal one
&mIS

k

m M m

Q(H}jﬂ)/z ]_[Q(Hg]))

= argmax P(o;|Eurs)
P 1 i=1 k=1

I

argmax P(a;|Gyis)

1



|dentification of mI — nS

I Step 1 Accurate Identification

Hyy Theorem 2 (Accurate Identification of Invasion Pathway):

I Hoy O\ With the following conditions: 1) the number of invasion edges
., S, Ej, < n+ m; 2) the neighbor subpopulations of each subpop-

ulation in set I are with the transition S to S or I to § except

their neighbor subpopulations in set S during fEaT—1 tO fEAT:
s 5 and 3) Y " ALi(r) = D j_; Hk, the invasion pathway of an

Edges S ) )
I INC ml +— nS(m,n > 1) can be identified accurately.

Step 2 Optimal Identification

Decompose the number of first ~ Compute the likelihood of each potential solution:

arrival infected individuals \ m
ks Uj ISmInS 1_[ QlH kkﬁ / Z 1_[ H;{iﬁ)
z Hir = Hi k=1 i=1 k=1

IEY

Choose the maximal one

&}HIHS — Elrg Hftl}-ﬂx P(U;|gm[}15)
i

= arg I‘I‘LH.X P(aj‘GmfnS)



Analysis

|dentifiability

Denote it the probability
corresponding to the
most likely pathways
for a given INC. Thus
we have (o) =

suptP(o;|€)}.

Property 1. Given an
INCmI +— Sorml —
ns, P(O'llg) =
(IMieq Q/ T T, ).
there must exist P,,,;,, and
P, qxsatisfying

Prin < (0) < Bnax

Definition 1 (Entropy of Transferring Likelihoods of M
Potential Solutions): According to Shannon entropy, we
define the normalized entropy of transferring likelihood

P(a1|£), ..., P(om|€) as
M
1
S =— lOgMZ P(;|€)logP (3] €)
1=

Define identifiability of invasion pathways to
characterize the difficulty level an INC can be identified

InH=n(o)(1-29).

Theorem 3: Given an INC mI — S or ml — nS,
[T is the identifiability computed by the IPI algorithm.
There exist a lower boundary I,,,;,, = 1/, (1 — §') and
Mpax = 7 — S(m(0)) that

Hmin << Hmax1

where §' = —(@) (mlog(m) + 3 (3= ) log G—o)).




Example 1

The whole spreading accuracy of American Airports Network

0.8

American Airports Network (AAN) 075
N=404; total population=2.4 x 108, §__.
< k > — 16 L L ! . . , | 1 1 210

0 2 4 5] 8 10 12 14 16 18
Index of each realization
The early stage accuracy of American Airports Network

accuracy
=]
=l

accuracy
e o o
2 D @
I I I

US Air transportation network

o
o

1 1
0 2 3 6 8 10 12 14 16 18 20
Index of each realization
American Airports Network

—e— IPI

accuracy

0.5 : : :
early mIS early mInS whole mIS whole mInS

The figure shows various identified accuracy for
the early stage and the whole invasion pathways on
the AAN.



Example 2

The whole accuracy of 3000 nodes of BA networked metapopulation

0.7

o
[=2]
T

Large-scale BA metapopulation
network

N :30001 Nl :6 x 1 O 5 1 tOtaI Index of each realization

po pu Iati On — 1 . 8 X 1 09, < k > — 1 6 . ) The early accuracy of 3000 nodes of BA networked metapopulation

SR S A VI N
A b s A A A e A A

| 1 1 1 1 1 | 1 1 |
2 4 6 8 10 12 14 16 18 20
Index of each realization

- ) 3000 nodes of BA networked metapopulation B
—<4— ARR

i —A— MCML

—p— EFF
0'6?\\;
0.4 : —%

early mlS early minS whole mIS whole minS

accuracy
[=]
w

o
B
T T

(=]
44
£
@

accuracy
o o
[s;] [s4] -

=
=

o
(M)

-
F=y

=
2

accuracy

The figure shows various identified
accuracy for the early stage and the whole
invasion pathways on 3000 subpopulations
of the BA networked metapopulation.



Source 1

Illustration of the actual invasion pathways
and the most likely identified invasion
pathways on the AAN. Subpopulation 1 is

the source.

Example 3

045 | I |ikelihoods entropies S of INCs ]
! I identifiabilities IT of INCs

01 02 03 04 05 06 07 08 09 1
intervals

Statistics analysis of the likelihoods
entropy and identifiability of wrongly
identified INCs on the AAN.



Extension to the SIR situation

Inferring SIR spatial invasion on meta-population
networks, ready for submission.



@ Outlook with more extensions

* On reconstructing temporal networks (null model)

Reconstruction of stochastic temporal networks through diffusive
arrival times, Nature Communications, 2017, 8, 15729.

* On optimizing vaccination social-cost (zD strategy)

Minimizing social-cost of vaccinating network SIS epidemics,
|IEEE Trans. Network Science and Engineering, minor revision.

Vaccinating SIS epidemics in networks with zero-determinant
strategy, ISCAS 2017, Baltimore, 2275-2278.
* On Temporal epidemic thresholds (non-markovian)

Spectral analysis of epidemic thresholds of temporal networks,
|IEEE Trans. Cybernetics, 2017, in press.
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