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History repeats itself. ——Thucidides

• Smallpox, black-death,……, AIDS,……, SARS(2003), ……, 
A-H1N1(2009), ……E.Coli(2011),……Ebola/Zika,……? 

• The modern medical technology can save more patients than 
before, while failed more effectively stopping a virus 
prevalence than before…

<Science>, June 20, 2003:
Modeling the SARS Epidemic Transmission 
Dynamics and Control of SARS



Daniel Bernoulli, on smallpox inoculation,1766 

Prototype of compartment model

Epidemic models in a population

William Heaton Hamer

(1862-1936)

mass action principle

An incremental infection depends on the rate of

contact between susceptible and infectious individuals.

SIS

S I
𝛽𝐼

𝜇

S I
𝛽𝐼

R
𝜇

SIR

∆𝐼 = 𝛽 ∙ 𝑆 ∙ 𝐼



Epidemics on complex network 

(single population) 

• Analytic thresholds 
R. Pastor-Satorras, A. Vespingnani (2001), Epidemic spreading in scale-free 

networks, Physical Review Letters, 86, 3200.

C. Castellano, R. Pastor-Satorras (2010), Thresholds for epidemic spreading in 
networks, Physical Review Letters, 105, 218701.

P. Van Mieghem and R. van de Bovenkamp (2013), Non-Markovian infection 
spread dramatically alters the SIS epidemic threshold, Physical Review Letters, 110, 
108701.

……

• Evolution dynamics
T. Gross, C.J.D. D‘Limma, B. Blasius (2006). Epidemic dynamics on an adaptive 

network. Physical Review Letters, 96: 208701. 

X. Li, X.F. Wang (2006), Controlling the spreading in small-world evolving 
networks: stability, oscillation, and topology. IEEE Trans. Automatic Control, 51(3): 
534-540.

……

• Latest survey
R. Pastor-Satorras, C. Castellano, P. Van Mieghem and A. Vespignani (2015), 

Epidemic processes in complex networks, Review of Modern Physics, 87(3), 925-979.



From single population to meta-population 

• Richard Levins (1969),  Bull. Entomol. Soc. Am. 15, 237.  

(Spatial ecology)

• Metapopulation: Divide the 

whole population (country/world) 

into several sub-populations 

(cities), a subpopulation is 

connected with others via public 

transportation networks, e.g., the 

air-line web, high-way web. 

V. Colizza, et al. The role of the airline transportation 

network in the prediction and predictability of global 

epidemic.  PNAS 103(2006): 2015-2020.



Too many stories, 

leave for a new book





Spatial epidemics on meta-population 

Assumptions and data-driven availability: 

• Subpopulation (node): Homogeneous mixing, human 

resident structure, human interactive patterns, ……

• Path (edge): Human travel mobility, local commuting 

patterns, invasion tree, …… 

Computational models:  

SI/SIS/SIR/SIRS/…… 

Infectious parameters:  

R0 /……



Our continuous concerns

• Subpopulations (nodes): 

How is the temporal effect of social 

interactive patterns on network epidemics? 

• Paths (edges):  

How to infer the invasion trees before 

predicting network epidemics? 
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Towards Human Interactions

• Data Proxy: Cell phones (bluetooth), Wireless 

Sensors, RFIDs, Wi-Fi……

• Temporal complexity: interaction frequency, 

durations, intervals, time-stamps, ……

• Temporal information, more than ‘time-

varying’, ‘time-switching’, ‘time-evolving’,……



Human Interactive Dynamics：
Proxy Datasets

RFID Wireless Sensor Bluetooth WiFi-Fudan

Number of 

attendee

25~14000 788 100 18715(46669)

Experiment

period(day)

2~69 18 270 (9 months) 84 (3 months)

Time

accuracy(second)

20 20 300 (5 minutes) 60 (1 minute)

Space 

accuracy(meter)

1~5 3 25 20

Agent awareness
(Hawthorne effect)

Y Y Y N

• FudanWiFi09

• HT09

• SGInfectious

• SMS-1

• SMS-2

• Sex6yr



The individual trace begins at the time 

of login passed. 

The individual trace ends at the time of 

access signal lost.



Contributed publications
• X. Li, Y.Q. Zhang, A. V. Vasilakos, Discovering and Predicting Temporal 

Patterns of WiFi-Interactive Social Populations, in Opportunistic Mobile 
Social Networks, CRC Press, 2015, 99-122. 

• D. Liang, X. Li, Y.Q. Zhang, Identifying familiar strangers in human encounter 
networks, EPL, 2016, 116, 18006.

• Y.Q. Zhang, J. Cui, S. Zhang, Q. Zhang, X. Li, Modelling temporal networks 
of human face-to-face contacts with public activity and individual reachability, 
European Physical Journal B, 2016, 89:26

• Y.Q. Zhang, X. Li, D. Liang, J. Cui, Characterizing bursts of aggregate pairs 
with individual poissonian activity and preferential mobility. IEEE 
Communication Letters, 2015, 19(7), 1225-1228.

• Y.Q. Zhang, X. Li, J. Xu, A. V. Vasilakos, Human interactive patterns in 
temporal networks, IEEE Trans. Systems, Man & Cybernetics: Systems, 
2015, 45(2), 214-222.

• Y. Zhang, X. Li, Temporal dynamics and impact of event interactions of cyber-
social populations, Chaos, 2013, 23, 013131.

• Y. Zhang, L. Wang, Y.Q. Zhang, X. Li, Towards a temporal network analysis 
of interactive WiFi users, EPL, 2012, 98, 68002.



Social ties 
Acquaintances

friends, in-role, …

Strangers

Familiar strangers



Familiar Stranger
• Milgram (1970): Familiar Strangers are  two persons 

who have repeatedly encountered but might never have 

been acquainted with each other. 
Familiar strangers (FS)

Regular 

Non-social

In-role (IR)

Regular

social acquaintance

Strangers (S)

Random

Non-social

Friend (F)

Irregular

social acquaintance

D. Liang, X. Li, Y.Q. Zhang, Identifying familiar strangers in human encounter networks, 

EPL, 2016, 116, 18006.



Data and Encounter network

|U|:              Number of users

|L|:               Number of locations

Records #:   Total number of records

N:                 number of time cycles

T:                  length of one time cycle

ΔT:               length of time step

𝑚𝑡,𝑙
𝑢,𝑣 = (𝑤𝑡,𝑙

𝑢,𝑣, 𝑝𝑟𝑜𝑝𝑡,𝑙
𝑢,𝑣)

𝑤𝑡,𝑙
𝑢,𝑣：encounter weight. The number of cycles that 

individual u and v encounter at location l and time step t.

𝑝𝑟𝑜𝑝𝑡,𝑙
𝑢,𝑣： encounter probability. The empirical 

probability that individual u and v encounter at location l 

and time step t.



Social ties and Entropy

spatiotemporal entropy

encounter regularity 

𝑑𝑒 𝑢, 𝑣 = 𝑙𝑜𝑔2෍
𝑙
෍

𝑡
sign(𝑤𝑡,𝑙

𝑢,𝑣)

The spatiotemporal entropy measures the degree of social 

similarity. The spatiotemporal entropy between acquaintances  

will be larger than that of other pairs with random social similarity.

𝑑𝑟 𝑢, 𝑣 =
σ𝑙σ𝑡(𝑤𝑡,𝑙

𝑢,𝑣 × 𝑝𝑟𝑜𝑝𝑡,𝑙
𝑢,𝑣)

σ𝑙σ𝑡𝑤𝑡,𝑙
𝑢,𝑣

Encounter regularity measures to what 

degree the encounter events between a 

pair of users  are generated obeying 

the periodic life routines



Familiar Stranger Classifier

(1) Obtain encounter matrix 𝑀𝑢,𝑣 and 
𝑀𝑢,𝑣

𝑛𝑢𝑙𝑙 from the empirical dataset 
and the null model.

(2) Calculate de 𝑢, 𝑣 and dr(𝑢, 𝑣)
from 𝑀𝑢,𝑣. Calculate  de

𝑛𝑢𝑙𝑙(𝑢, 𝑣)
and dr

null(𝑢, 𝑣) from 𝑀𝑢,𝑣
𝑛𝑢𝑙𝑙.

(3) Get 𝒆𝟎 and 𝒓𝟎, where 
𝑃 𝑑𝑟

𝑛𝑢𝑙𝑙 𝑢, 𝑣 > 𝑟0 =
𝑃 𝑑𝑒

null 𝑢, 𝑣 > 𝑒0 = 𝒑𝟎.

(4) Get pairwise relationship 
according to the diagram on the 
left.





FS degree characteristics 

• FS’ average degree is finite but larger 
than the Dunbar Number (150).

• FS’ encounters are structurally stable 
with higher encounter frequencies than 
those of strangers.



FS temporal (ICT) characteristics 



Our continuous concerns

• Subpopulations (nodes): 

How is the temporal effect of social 

interactive patterns on network epidemics? 

• Paths (edges):  

How to infer the invasion trees before 

predicting network epidemics? 



To identify such epidemic processes?

when such epidemic processes are 
unknown with only (partial) observed 
data?

Epidemic parameter?

Invasion trees?

…… 



Contributed publications

• X. Li, J.B. Wang, and C. Li, “Towards identifying and predicting spatial epidemics 

on complex meta-population networks”, Springer, 2017, in press. 

• J.B. Wang, L. Wang, and X. Li, “Identifying spatial invasion of pandemics on meta-

population networks via anatomizing arrival history,” IEEE Trans. Cybernetics, 

2016, 46(12), 2782-2795. 

• X. J. Li, C. Li, and X. Li, “Vaccinating SIS epidemics in networks with zero-determinant

• strategy,” IEEE Int. Symposium on Circuits and Systems (ISCAS 2017), 2275-2278, 2017.

• X. Li, J.B. Wang, and C. Li, “Towards identifying epidemic processes with interplay between 

complex networks and human populations”, 2016 IEEE Conference on Norbert Wiener in 

the 21st Century. 67-71, 2016.

• J.B. Wang, C. Li, and X. Li, “Predicting spatial transmission at the early stage of epidemics on 

a networked metapopulation,” 12th IEEE International Conference on Control & Automation 

(ICCA), 116-121, 2016. 

• J.B. Wang, X. Li, and L. Wang, “Inferring spatial transmission of epidemics in networked 

metapopulations”, IEEE Int. Symposium on Circuits and Systems (ISCAS 2015), 906-909, 

2015.

• J.B. Wang, L. Cao, and X. Li, “On estimating spatial epidemic parameters of a simplified 

metapopulation model,” 13th IFAC Symposium on Large Scale Complex Systems, 383–388, 

2013.



[1] A. Gautreau, A. Barrat, and M. Barthelemy. ”Global disease spread: statistics and estimation of arrival times,”Journal of theoretical 

biology, vol. 251, no. 3, pp. 509–522, Apr. 2008.

[2] D. Balcan, V. Colizza, B. Gonc a̧lves, H. Hu, J. J. Ramasco and A. Vespignani, ”Multiscale mobility networks and the spatial spreading of 

infectious diseases.” Proc. Natl. Acad. Sci., vol. 106 no. 51, pp. 21484–21489, Dec. 2009.

[3] D. Brockmann and D. Helbing, ”The Hidden Geometry of Complex, Network-Driven Contagion Phenomena,”Science, vol. 342, no. 6164, 

pp. 1337–1342, Dec. 2013.

Exploring Epidemic Shortest Paths
Average-Arrival-Time (ARR)-Based Shortest Paths 

Tree (SPT) [1] 
Monte Carlo-Maximum-Likelihood 

(MCML)-Based Epidemic Invasion Tree [2]

Effective (EFF)-Distance-Based Most Probable Paths Tree [3]

𝑑𝑖𝑗 = 1 − 𝑇𝑖𝑗
Distance between 

subpopulation i, j

λ 𝑡𝑗 ≈ 𝜒(𝑗|𝑠)

≡ min
𝑃𝑠,𝑗

෍

𝑘,𝑙 ∈𝑃𝑠,𝑗

ln
𝑁𝑘𝜆

𝑤𝑘𝑙
− 𝛾

Shortest path between subpopulation s, j

𝑑𝑚𝑛 = 1 − log𝑃𝑚𝑛 ≥1Effective distance between 

subpopulation m, n

Shortest paths between 

subpopulation m, n
𝐷𝑚𝑛 = min

Γ
𝜆 Γ



Q: is it possible to retrospect the 

stochastic pandemic spatial paths 

among a networked metapopulation？

Our answer: 

Invasion Pathways Identification Algorithm Based on 

Dynamical Programming and Maximum Likelihood 
Estimation

J.-B. Wang, L. Wang, and X. Li, “Identifying spatial invasion of pandemics on meta-

population networks via anatomizing arrival history,” IEEE Trans. Cybernetics, 2016, 46(12), 

2782-2795. 



Problem Statement with SI dynamics

Reaction process  𝐼 + 𝑆՜
𝛽
2𝐼

Diffusion process 𝒳𝑖

𝑝𝑖𝑗
𝒳𝑗 , 𝒳 represents 𝑆 𝑜𝑟 𝐼

 Known:

• Number of infected individuals of each infected subpopulation  

𝐼𝑖 𝑡 at time step 𝑡, network topology(including diffusion rates)

 Unknown (to identify):

• Spatial invasion pathways

[1] Hufnagel L, Brockmann D, Geisel T., PNAS, 101: 15124-15129, 2004.

[2] Colizza, V., Pastor-Satorras, R. & Vespignani A., Nature Phys.3, 276-282, 2007.



Four Invasion Cases 



Algorithm steps：
1) Invasion Partition (Dynamic Programming)

The whole invasion pathway T is anatomized into (at each epidemic arrival time (EAT)) 

four classes of invasion cases with number of Λ : 

𝐼 ⟼ 𝑆, 𝐼 ⟼ 𝑛𝑆,𝑚𝐼 ⟼ 𝑆, 𝑚𝐼 ⟼ 𝑛𝑆

𝑇𝑤ℎ𝑜𝑙𝑒 𝑖𝑛𝑣𝑎𝑠𝑖𝑜𝑛 𝑝𝑎𝑡ℎ𝑤𝑎𝑦𝑠 = 𝑜𝑝𝑡෍

𝑖=1

Λ

ො𝑎𝑖

2) Identifying Each Invasion Case

Accurate identification + optimal identification (Maximum Likelihood Estimation)

ො𝑎𝑖 = arg max
𝑎𝑖∈𝐺𝐼𝑁𝐶𝑖

𝑃(𝑎𝑖|𝐺𝐼𝑁𝐶𝑖)

Invasion Pathways Identification Algorithm

Invasion Cases 

(INCs)

𝑚𝐼 ⟼ 𝑆 𝑚𝐼 ⟼ 𝑛𝑆



Subpopulations’ observability

Illustration of neighbors subpopulation classification in terms of status transitions from 𝑡 − 1
to 𝑡:
(a) Observable subpopulation 𝑖. (b) Partially observable subpopulation 𝑖. (c) Unobservable 

subpopulation 𝑖.



Identification of 𝒎𝑰⟼ 𝑺
Step 1 Accurate Identification:

Step 2 Optimal Identification:

Decompose the number of first 

arrival infected individuals

෍

𝑖=1

𝑚

ℋ𝑖1 = ℋ

Compute the likelihood of each potential solution：

Choose the maximal one



Identification of 𝒎𝑰⟼ 𝒏𝑺
Step 1 Accurate Identification:

Step 2 Optimal Identification:

Decompose the number of first 

arrival infected individuals
Compute the likelihood of each potential solution：

෍

𝑖∈𝑌𝑘

𝑚

ℋ𝑖𝑘 = ℋ𝑘

Choose the maximal one



Analysis Identifiability

Denote 𝜋 the probability 

corresponding to the 

most likely pathways 

for a given INC. Thus 

we have 𝜋 𝜎 =
sup 𝑃(𝜎𝑖|ℰ) .

Property 1: Given an 

INC 𝑚𝐼 ⟼ 𝑆 or 𝑚𝐼 ⟼
𝑛𝑆,  𝑃 𝜎𝑖 ℰ =
ς𝑘=1
𝑚 Ω/σ𝑖=1

𝑀 ς𝑘=1
𝑚 Ω . 

there must exist 𝑃𝑚𝑖𝑛 and 

𝑃𝑚𝑎𝑥satisfying

𝑃𝑚𝑖𝑛 ≤ 𝜋 𝜎 ≤ 𝑃𝑚𝑎𝑥

Define identifiability of invasion pathways to 

characterize the difficulty level an INC can be identified 

𝜫 = 𝝅 𝝈 (𝟏 − 𝓢).

Theorem 3: Given an INC 𝑚𝐼 ⟼ 𝑆 or 𝑚𝐼 ⟼ 𝑛𝑆, 

Π is the identifiability computed by the IPI algorithm. 

There exist a lower boundary Π𝑚𝑖𝑛 = Τ1 𝑀 1 − 𝒮′ and 

Π𝑚𝑎𝑥 = 𝜋 − 𝒮 𝜋 𝜎 that

Π𝑚𝑖𝑛 ≤ Π ≤ Π𝑚𝑎𝑥,

where 𝒮′ = −(
1

log𝑀
)(𝜋log 𝜋 + σ

1−𝜋

𝑀−1
log(

1−𝜋

𝑀−1
))).

𝒮 = −
1

log𝑀
෍

𝑖=1

𝑀

𝑃 𝜎𝑖 ℰ log𝑃(𝜎𝑖|ℰ)



Example 1

The figure shows various identified accuracy for 

the early stage and the whole invasion pathways on 

the AAN.

American Airports Network (AAN)

N=404; total population=2.4 × 108 ,
< k > = 16.



Example 2

Large-scale BA metapopulation

network

N=3000; 𝑁𝑖=6× 105; total 

population=1.8 × 109, < k > = 16.

The figure shows various identified 

accuracy for the early stage and the whole 

invasion pathways on 3000 subpopulations 

of the BA networked metapopulation.



Example 3

• L

Illustration of the actual invasion pathways 

and the most likely identified invasion 

pathways on the AAN. Subpopulation 1 is 

the source.

Statistics analysis of the likelihoods 

entropy and identifiability of wrongly 

identified INCs on the AAN.

Source 1

Source 1



Extension to the SIR situation

Inferring SIR spatial invasion on meta-population 

networks, ready for submission. 



Outlook with more extensions

• On reconstructing temporal networks (null model)

Reconstruction of stochastic temporal networks through diffusive 

arrival times, Nature Communications, 2017, 8, 15729. 

• On optimizing vaccination social-cost (ZD strategy)

Minimizing social-cost of vaccinating network SIS epidemics, 

IEEE Trans. Network Science and Engineering, minor revision.

Vaccinating SIS epidemics in networks with zero-determinant 

strategy, ISCAS 2017, Baltimore, 2275-2278. 

• On Temporal epidemic thresholds (non-markovian)

Spectral analysis of epidemic thresholds of temporal networks, 

IEEE Trans. Cybernetics, 2017, in press.  
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