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Discrete-time Epidemic Model
Introduction

• Simple discrete model for each epidemic outbreak.

• States according to the pathogen load: non-infectious

asymptomatic phase, infectious asymptomatic phase

(key-feature, mild or no symptoms), infectious symptomatic

phase and immune phase (natural immunity).

• Neither interventions nor vaccination. No demographic

turnover. Reinfections will be considered later on.
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Discrete-time Epidemic Model
Introduction (cont’)

Non-linear epidemic model in discrete-time t = 0, 1, 2, . . . days.

• Markov chain. State variables according to the disease

progression. Fraction of individuals: Susceptible, Exposed

(latent who are not infectious), Asymptomatic (but with

transmission), Symptomatic (I infectious), Removed (alive

and immune) and Deceased (disease-related).

• Total pop. St + Et + At + It + Rt + Dt = 1, t ≥ 0.

• Linear transitions between states based on the geometric

distribution, i.e. P(X = t) = p(1− p)t−1, E[X ] = 1
p ,

Var(X ) = 1−p
p2

, for some generic probability p.

• Fixed probabilities of the model: 0 < α, δ, γ, p, q < 1.
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Discrete-time Epidemic Model
Recalling some definitions

• Incidence: # of new cases per day in the interval (t, t + 1]:

εtStN = (St − St+1)N, where N is the population size.

• Total # of cases until time t:
∞∑
j=0

εt−jSt−jN = (1−St+1)N.

• Force of infection εt : probability per unit of time of the

susceptible becoming infected (starting the latent phase).

• β1, β2 are the infection transmission rates [1/time] (contact

rate × infectiveness). If At + It + Dt ≪ 1, then we have

εt = 1− e−(β1At+β2It)/(1−Dt) ≃ β1At + β2It .
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Discrete-time Epidemic Model
Flow diagram of the SEA-RID non-linear Markov chain

Figure: Infection process with probability ε = 1− e−(β1A+β2I )/(1−D)

depending on the # of infectious individuals over alive population, see

[PNAS 21], and transmission rates β1, β2. No demographic turnover.

Complete immunity along each epidemic outbreak. Virulence: qγ.
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Discrete-time Epidemic Model
Model equations. Force of infection εt

• Mean latent period 1
α , mean infectious A/S period 1

δ and
1
γ , prob. developing symptoms p, survival probability 1− q.

• Non-linear infection process with density-dependent

probability εt = 1− e−(β1At+β2It)/(1−Dt), with β1, β2 > 0.

• System for each epidemic outbreak (single wave): t ≥ 0,

St+1 = (1− εt)St

Et+1 = εtSt + (1− α)Et

At+1 = αEt + (1− δ)At

It+1 = pδAt + (1− γ)It

Rt+1 = (1− p)δAt + (1− q)γIt + Rt

Dt+1 = qγIt + Dt
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Discrete-time Epidemic Model
Equilibria and initial history

• Mean incubation period 1
α + 1

δ , i.e time to onset symptoms.

• Total mean infectious period 1
δ +

1
γ , either as A or I .

• States with viral load: E ,A, I .

• Disease-free steady state: (S∗, 0, 0, 0,R∗,D∗), with

S∗ + R∗ + D∗ = 1. No endemic equilibrium in here.

• Extension of the initial condition at t = 0 to a discrete

history in (−∞, 0] such that (S−∞ = 1, 0, 0, 0, 0, 0).

• Sequence of waves: initial condition of wave (w + 1) may

correspond with the final size of previous wave w :

(Sw
∞,≃ 0,≃ 0,≃ 0,Rw

∞,Dw
∞).
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Discrete-time Epidemic Model
COVID-19: 6 waves already, 7th wave?

Figure: ourworldindata.org/ Link
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Discrete-time Epidemic Model
Recurrent sequences formulation

• Firstly, reduction to 4 state variables:

Rt = 1− (St + Et + At + It + Dt) and Dt = qγ
∞∑
j=1

It−j . Then,

using the model equations recursively we get to:

St =
∞∏
j=1

(1− εt−j) = exp
(
−
∑∞

j=1
β1At−j+β2It−j

1−Dt−j

)
Et =

∞∑
j=1

(1− α)j−1εt−jSt−j

At = α
∞∑
j=1

(1− δ)j−1Et−j

It = pδ
∞∑
j=1

(1− γ)j−1At−j
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Discrete-time Epidemic Model
Renewal equation (asymptomatics)

• Moreover, reduction to a scalar non-linear discrete

renewal equation for At :

At = α

∞∑
j=1

(1− δ)j−1
∞∑
k=1

(1−α)k−1εt−j−k

∞∏
n=1

(1− εt−j−k−n)

with

εt = 1−exp
(
−(β1At+β2pδ

∑∞
j=1(1−γ)j−1At−j)/(1−Dt)

)
and Dt = pqδγ

∑∞
k=1(1− γ)k−1

∑∞
j=1At−j−k .

• The other variables are computed in order as It , St and Et .
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Discrete-time Epidemic Model
Renewal equation (asymptomatics) cont’

• Probabilistic interpretation of the renewal equation:

At =
∑

j ,k≥1

probability of being susceptible at time t − j − k ×
prob. per time-unit of becoming infected at t − j − k ×

probability latent period is k ×
probability infectious asymptomatic period is j ×

mean infectious asymptomatic period =∑
j ,k≥1

∏
(1− ε⋄)× ε⋄ × α(1− α)k−1 × δ(1− δ)j−1 × 1

δ
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Discrete-time Epidemic Model
Linearization: E0 + A0 + I0 ≪ 1

At the disease-free SS, εt ≃ β1At + β2pδ
∞∑
j=1

(1− γ)j−1At−j .

Linear discrete renewal equation (3 geometric distributions):

At =
∞∑
j=1

δ(1−δ)j−1
∞∑
k=1

α(1−α)k−1
(β1
δ
At−j−k+

β2p

γ

∞∑
n=1

γ(1−γ)n−1At−j−k−n

)

• Basic reproduction number: spectral radius of the 1-dim.

next-generation operator. R0,a =
β1
δ + β2p

γ , as the expected

secondary asymptomatic cases produced by an

asymptomatic primary case. Abstract setting [Diekmann 1990].
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Discrete-time Epidemic Model
Alternative basic reproduction numbers

• Different reproduction numbers can be defined depending

on what is understood as an infection event. See [BCR17].

• 2-dimensional linear discrete renewal equation:
It = pδ

∞∑
j=1

(1− γ)j−1At−j

At =
∞∑
j=1

(1− δ)j−1
∞∑
k=1

α(1− α)k−1
(
β1At−j−k + β2It−j−k

)

• Basic reproduction number: spectral radius of the 2-dim.

next-generation operator R̃0 =
β1
2δ +

√(β1
2δ

)2
+ β2p

γ .
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Discrete-time Epidemic Model
Renewal equation (symptomatics)

• Moreover, we can reduce to a single renewal equation for It

if β1
δ < 1: It = β2pδ

∞∑
j=1

(1− γ)j−1
(
(Id − β1K)−1K I

)
t−j

.

• Then, the basic reproduction number is given by

R0,s =
β2
γ p

∞∑
n=1

(β1
δ )

n−1 = β2
γ

p
1−β1/δ

, interpreted as the

expected # of symptomatic individuals that a symptomatic

individual will produce.

• As expected, the three expressions of R0 are such that

sign(R0,a − 1) = sign(R0,s − 1) = sign(R̃0 − 1),

and they are related via a function of β1
δ and β2p

γ .
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Discrete-time Epidemic Model
Trade-offs and evolutionary aspects

• One can find similar models in the lit., but we pay attention

to the interpretation of different meaningful R0´s.

• Weighted mean transmission rate β̄ = β1
1+p + β2p

1+p .

• Measure of virulence. Provided individuals can develop

symptoms (p > 0), the disease-induced mortality qγ is

positively correlated with the mean transmission β̄, e.g. the

trade-off qγ = p(c1β̄
2 + c0), c1, c0 > 0.

• Scenario: (constant) Transmission rate is higher in the

symptomatic phase, yet the accumulated number of

infections is larger in the asymptomatic phase.
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Discrete-time Epidemic Model
Virulence-transmission trade-off

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2

3

3.5

4

4.5

5

5.5

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure: Left: mean transmission rate β̄ vs. virulence (disease-induced

mortality). Center: transmission time (asymptomatic + symptomatic

phases 1/δ + 1/γ) vs. virulence. Right: fitness measure as the basic

reproduction number vs. virulence. Optimal virulence at qγ = 0.2421
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Discrete-time Epidemic Model
Trade-offs and evolutionary aspects (cont’)
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Figure: R0(β2). Global maximum at β∗
2 s.t. always β1 < β∗

2p, and
β1

δ >
β∗
2 p
γ∗ if e.g. β2

1 > q(1+p)2

2pc1
δ, so a larger A-phase 1

δ > 1
γ∗ . Values:

β1 = 0.25, p = 0.7, β∗
2p = 0.5929 and around 60% of infections take

place prior to symptom onset. Does evolution lead to this maximum?
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Discrete-time Epidemic Model
Final size of the epidemics 1− S∞ (cont’)

• St is bounded in the interval:

exp

(
−

∞∑
n=1

β1At−n+β2It−n

1−D∞

)
≤ St ≤ exp

(
−

∞∑
n=1

β1At−n+β2It−n

)
• It turns out that lim

t→∞

∞∑
n=1

β1At−n + β2It−n =
( β1

δ
+

β2p
γ

)
(1 − S∞).

• Finally, we get an interval for S∞ solving 2 equations:

e
−R0,a

1−S∞
1−pq(1−S∞) ≤ S∞ ≤ e−R0,a(1−S∞) .

• If pq ≪ 1 we recover the classical equation for 1− S∞. Notice

R0,a has a central role over the other expressions for the basic

reproduction number.

18 / 22



Discrete-time Epidemic Model
Extension of the model

• From Geometric distributions (discrete analog of Exp. dist.)

to Negative Binomial distributions (discrete analog of the

Gamma dist.) and reinfection probability θ: i = 2 . . . n

St+1 = (1− εt)St + θRt

E 1
t+1 = εtSt + (1− α)E 1

t , E i
t+1 = αE i−1

t + (1− α)E i
t

A1
t+1 = αEn

t + (1− δ)A1
t , Ai

t+1 = δAi−1
t + (1− δ)Ai

t

I 1t+1 = pδAn
t + (1− γ)I 1t , I it+1 = γI i−1

t + (1− γ)I it
Rt+1 = (1− p)δAn

t + (1− q)γI nt + (1− θ)Rt

Dt+1 = qγI nt + Dt

• P(X = t) =
(t−1
n−1

)
pn(1− p)t−n, E[X ] = n

p , Var(X ) = n 1−p
p2

.
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